
Master Thesis
at the Interactive Systems Laboratory

Grapheme Based Speech
Recognition

Mirjam Killer

Pittsburgh, PA USA
10. March 2003

Supervisors CMU: Prof. Dr. Alex Waibel, Dr. Tanja Schultz
Supervisors ETH: Prof. Dr. Lothar Thiele, Dr. Beat Pfister

Abstract

Large vocabulary speech recognition systems traditionally represent words in terms of smaller
subword units. During training and recognition they require a mapping table, called the
dictionary, which maps words into sequences of these subword units. The performance of
the speech recognition system depends critically on the definition of the subword units and
the accuracy of the dictionary. In current large vocabulary speech recognition systems these
components are often designed manually with the help of a language expert. This is time
consuming and costly. In this Diplomarbeit graphemes are taken as subword units and the
dictionary creation becomes a triviality.

The grapheme based context dependent speech recognizers cluster or tie subsets of the
subword units together to improve recognition accuracy when the system is trained with
limited data. In current automatic speech recognition systems this is done by a set of
linguistically motivated questions designed by an expert applied to a decision tree. In this
project four different ways to generate such question sets are examined. First of all phoneme
based linguistic questions are transformed into grapheme based ones serving as a baseline
for the other question experiments. Second a bottom-up clustering and a hybrid clustering
procedure based on the entropy distance generate two different question sets and third each
grapheme is taken as a single question creating the singleton question set. It is also tested if it
is reasonable to cluster trigraphemes, quintgraphemes or even septgraphemes. Recognizers in
English, Spanish and German are trained and evaluated. The evaluation shows that graphemes
as subword units and automatically generated question sets come close in performance to the
systems using phonemes as subword units and expert knowledge.

Multilingual speech recognizers are designed with the intention to reduce work without
loosing performance by sharing information between languages. Two ways of multilingual
acoustic context modeling are examined for grapheme based three lingual speech recognizers,
sharing data in English, German and Spanish . One system shares the same distribution and
codebook models for each grapheme among all languages whereas the other system keeps the
language information and models each grapheme with a language dependent distribution while
sharing the codebook language independently.

It is investigated if information from the multilingual systems can improve the creation
of a grapheme based speech recognizer in Swedish through bootstrapping. The Swedish
bootstrapped recognizer shows that much better results can be reached with fewer trainings
iterations compared to a flatstart.

i

Diplomarbeit

Interactive Systems Lab, Carnegie Mellon University Pittsburgh, PA
ETH Zürich

Grapheme based Speech Recognition

With the distribution of speech technology products all over the world, the portability
to new target languages becomes a practical concern. As a consequence the research on
rapid deployment focuses on creating methods for automatizing the design of speech
systems for new languages with information gathered from already studied languages.
Especially the design of pronunciation dictionaries for Large Vocabulary Continuous
Speech Recognizers is a very time and cost consuming task since so far it requires
partly manual design and development by human experts.
The idea of my Diplomarbeit / this project is to make the process of manually creating
a pronunciation dictionary superfluous by implementing a completely data-driven
method. In doing so, I will implement a speech recognizer that is not relying
on phonemes as acoustic units but on graphemes. The step of transforming the
transcription of a word into a string of phonemes (grapheme-to-phoneme mapping)
is therefore no longer necessary. The grapheme based recognizer will function on
context-dependent models, which are generated by applying a decision tree defined
through a set of questions to the orthographic representation of words.
The results will be tested on a variety of languages that provide us with a wide range
of close grapheme-to-phoneme relation to very loose one.

Tools: JRTk (Janus Speech Recognition Tool Kit)
Supervisors: Tanja Schultz (CMU) , Beat Pfister (ETH)
Professor: Alex Waibel (CMU) , Lothar Thiele (ETH)

ii

Acknowledgements

I would like to thank Alex Waibel for giving me the opportunity to work on my
Diplomarbeit at the Interactive Systems Laboratory at the Carnegie Mellon University
in Pittsburgh, USA and Beat Pfister as well as Lothar Thiele for enabling my visit.
A special Thank-you goes to Tanja Schultz and Sebastian Stücker for their support
and guidance throught this project.
I enjoyed my stay (despite the freezing weather) very much which I accredit to the
positive and inspiring atmosphere at CMU and its labs.

11th March 2003, Pittsburgh USA

iii

Contents

1 Introduction 2
1.1 Big Picture . 3
1.2 Objective . 5
1.3 Languages of the World . 5
1.4 Writing Systems . 6

1.4.1 Alphabetic writing systems . 7
1.4.2 Syllabic writing systems . 8
1.4.3 Logographic writing systems . 10
1.4.4 Alternative writing systems . 11

2 Speech Recognition Basics 12
2.1 Preprocessing . 14

2.1.1 Digitalization . 14
2.1.2 Short-term Analysis . 15
2.1.3 Vocal Tract Length Normalization 15
2.1.4 Linear Discriminant Analysis . 16

2.2 Acoustic Model . 17
2.2.1 Hidden Markov Models . 18
2.2.2 Suitable Units for Speech . 20
2.2.3 Language Modeling . 22

2.3 Evaluation of Recognition Accuracy . 26
2.3.1 Decoding Continuous Speech . 26
2.3.2 Measuring Error Rates . 26

3 Multilingual Speech Recognition 28
3.1 Definition of a Multilingual Speech Recognizer 29
3.2 GlobalPhone Project . 31

4 Baseline Recognizers 34
4.0.1 The English Recognizer . 36
4.0.2 The German Recognizer . 36
4.0.3 The Spanish Recognizer . 37
4.0.4 The Swedish Recognizer . 37

iv

CONTENTS CONTENTS

5 Generation of Pronunciation Dictionaries 39
5.1 Selected Languages . 39
5.2 Dictionary Creation . 40
5.3 Initial Labels . 41
5.4 Context Independent Systems . 41
5.5 Context Dependent Systems . 43
5.6 Question Generation . 44

5.6.1 Distance Measurements . 47
5.6.2 Phoneme-Grapheme Question Generation 49
5.6.3 Singleton . 51
5.6.4 Bottom-Up Entropy . 51
5.6.5 Hybrid Entropy . 52

5.7 Three-lingual Recognizer . 54
5.7.1 Language-Mixed Context Modeling: ML3-Mix 54
5.7.2 Language-Tagged Context Modeling: ML3-Tag 55

5.8 Porting to new Languages . 56
5.8.1 Bootstrapping Swedish . 56

5.9 Language Model . 57

6 Experimental Results 58
6.1 Grapheme-based Recognizers . 58

6.1.1 English . 59
6.1.2 German . 62
6.1.3 Spanish . 65
6.1.4 Summary . 67

6.2 Question Set Evaluation . 69
6.3 Three-lingual Recognizers . 71

6.3.1 ML3-Mix . 71
6.3.2 ML3-Tag . 72

6.4 Swedish . 75
6.4.1 Flatstart vs. Bootstrapping . 75
6.4.2 Hybrid-Entropy vs. Singleton Questions 75
6.4.3 Language Model . 77
6.4.4 Language Model Parameters . 78
6.4.5 Baseline Comparison . 78

7 Conclusion 80

Bibliography 82

A Tables 85

v

B Script Files 92
B.1 Dictionary Creation . 92

B.1.1 German . 92
B.1.2 English . 92
B.1.3 Spanish . 92
B.1.4 Swedish . 93
B.1.5 Three-Lingual . 93

B.2 Question Generation . 93
B.2.1 Grapheme-Phoneme Mapping . 93

B.3 Training . 95
B.4 Questions . 98
B.5 Bootstrapping . 98
B.6 Language Model . 98

C The JANUS Recognition Toolkit 99
C.1 JRTk and Ibis . 99

D JANUS Howto 100
D.1 Starting Janus . 100
D.2 Getting Started . 101
D.3 Training with JRTk . 105

Index 108

vi

List of Figures

1.1 Living Languages . 6
1.2 Arabic . 7
1.3 Roman . 8
1.4 Burmese . 8
1.5 Japanese . 10
1.6 Chinese . 10
1.7 Braille . 10

2.1 Automatic Speech Recognizer . 14
2.2 Emission Probabilities . 19
2.3 Gaussian Mixture Distribution . 20
2.4 Decision Tree . 23
2.5 HMM-Model for Graphemes . 25
2.6 HMM-Model for Silence . 26

3.1 Parallel Monolingual Recognizer . 29
3.2 Multilingual Recognizer . 30

5.1 Decision Tree . 45
5.2 Decision Tree Clustering . 46
5.3 Bottom-Up Clustering . 52
5.4 Hybrid Clustering . 53
5.5 Multilingual Context Modeling . 55

D.1 Janus Directory Organization . 101
D.2 Janus System Development . 102

vii

List of Tables

1.1 Languages using Roman alphabet . 9

3.1 GlobalPhone Languages . 33

4.1 Overview of the data used from the GlobalPhone corpus 35
4.2 Size of the GlobalPhone dictionaries . 35
4.3 The Swedish Database . 37
4.4 Baselines: Word Accuracy . 38

5.1 The Question Set . 50
5.2 Singelton . 51

6.1 The English Recognizer . 60
6.2 English: 3000-4500 Models . 61
6.3 English CD . 62
6.4 The German Recognizer . 63
6.5 German CD . 64
6.6 The Spanish Recognizer . 65
6.7 Spanish CD . 67
6.8 Context Change . 68
6.9 Different Question Sets . 70
6.10 The ML3-Mix Recognizer: Number of Models 72
6.11 The ML3-Mix Recognizer: Question Sets 73
6.12 The ML3-Mix Recognizer: CI . 73
6.13 The ML3-Tag Recognizer: Question Sets 74
6.14 The Swedish Recognizer . 76
6.15 Hybrid or Single Questions for Swedish 77
6.16 Swedish Language Models . 78
6.17 Swedish CD . 79

A.1 Swedish CD: z-p Parameter . 85
A.2 English CI: z-p Parameter . 86
A.3 English CD: z-p Parameter . 87
A.4 German CI: z-p Parameter . 88
A.5 German CD: z-p Parameter . 89

viii

LIST OF TABLES LIST OF TABLES

A.6 Spanish CI: z-p Parameter . 90
A.7 Spanish CD: z-p Parameter . 91

B.1 Mapping: English . 94
B.2 Mapping: Spanish . 96
B.3 Mapping: German . 97

D.1 Janus Readable Dictionary . 103

1

Chapter 1

Introduction

One of the core components of a speech recognition system is the pronunciation dic-

tionary. A dictionary is basically a mapping table that translates words into their

subunits. Large vocabulary continuous speech recognition (LVCSR) systems do not

usually use whole words as the basic units for classification because the vocabulary

usually holds some ten thousand words. Thus there are enough training examples for

every word in the vocabulary. The acoustic samples of some words might never be seen

during training and can therefore not be learned by the recognizer. For these reasons

the speech recognition system segments each word in the vocabulary into subunits.

These subunits occur more frequently than words and for that reason are trained more

robustly. It is also easier to deal with words unseen during training since they can just

be decomposed into the subunits. Usually those subunits are phonemes and thus the

pronunciation dictionary defines the pronunciation of a word.

The performance of a recognition system depends critically on the choice of subunits

and the accuracy of the dictionary [4]. An accurate mapping of the orthographic

representation of a word onto a subunit sequence is important to ensure recognition

quality because otherwise the acoustic models (a HMM state for a ”poly-subunit”)

is trained with the wrong data or during decoding the calculation of the scores for a

hypothesis is falsified by applying the wrong models.

The dictionaries are usually created manually by language experts and depend on

2

Introduction 1.1 Big Picture

phonemes as subword units. But for large vocabularies this task gets very time con-

suming and expensive. Especially if a recognizer for a new language has to be built

fast or if no experts in this language are available new methods to resolve this issue are

needed. Besides manually designed subword units may generalize well, but they might

not be the optimal units of classification for the specific task or environment for which

the system is trained [4].

1.1 Big Picture

Several researchers have made an effort to automatically identify subword units or

the optimal pronunciation for a word in terms of manually defined subword units (for

more references see [4]). The problem of automatically designing subword units and

dictionaries given only a set of acoustic signals and their transcripts has been addressed

by [4]. Their approach does not depend on initial labels, nor makes any assumptions

about the availability of any a priori knowledge or information. They look at the

problem from a modeling perspective and try to identify sound classes that best fit

the training data. The closeness of fit to training data is quantified by likelihood, e.g.

if a set of symbols and the acoustic models for those symbols are found, such that

the dictionary and the acoustic models together best fit the data, the ML solution for

the problem is obtained. The results (see [4]) of their automatically generated subword

units and dictionary produced models that performed worse than the manually designed

subword units and dictionary. Human experts use knowledge from experience with a

huge amount of hours of speech, as well as other consciously or subconsciously acquired

knowledge. Their manually designed phone set is therefore expected to be generalize

well.

Other approaches built a set of rules to create the pronunciation for words in a

certain languages. Especially for languages with a close grapheme to phoneme relation

this works well. Spanish is such an example. In other languages this is impossible (e.g.

Chinese see the following Sections in this Chapter).

There are also data driven approaches (refer to [5]) that tried to create dictionaries

3

Introduction 1.1 Big Picture

by voting among phoneme recognizers for a new unseen language in nine different

languages other than the target language. Each time frame is decoded by those nine

language recognizers resulting in nine different hypotheses for a phoneme per frame.

An algorithm then maps the most prospective hypothesis into a dictionary entry. The

results didn’t allow creation of dictionaries that were accurate enough to train large

vocabulary continuous speech recognizers with them.

[6] work with spontaneous speech where word pronunciations vary more than in read

speech. To cope with pronunciation variations in spontaneous Japanese speech they

built pronunciation dictionaries from real speech data. An automatic method gener-

ates pronunciation dictionaries based on pronunciation networks which give the most

plausible pronunciations. First they use regular phoneme recognition results to train

multi-layer perceptron neural networks to predict these correct pronunciations from the

symbol sequence and finally produce the dictionaries automatically with these neural

networks. Their experiments show that automatically-derived pronunciation dictionar-

ies give consistently higher recognition rates and require less computational time for

recognition than the conventional dictionary.

This project tries to evaluate to what extend graphemes are suitable subunits for speech.

Although it is not expected to reach equal performance to manually created subunits

and dictionaries (for reasons mentioned above e.g. manually created subunits are ex-

pected to be highly generalizing and a huge amount of additional knowledge is included

in the design), using graphemes is a very easy and fast approach. The idea on one hand

was motivated by results from [7], who made large vocabulary speech recognition based

on context-dependent acoustic modeling using graphemes for subunits, as well as by [8]

who made speech recognition based on character units for Arabic. Each model for a

character in Arabic (see Section 1.4.1), e.g. a consonant, can thus model the consonant

alone, as well as the consonant followed by vowels. Their system which regards each

Arabic character as a phoneme performed surprisingly well.

On the other hand there is an increased effort to romanize most scripts. For example

logographic script systems like Chinese Hanzi (a grapheme stands for a whole word)

4

Introduction 1.2 Objective

are very hard to learn. Therefore romanization is an interesting and often necessary

operation when working with those languages. Romanizing a word meaning symbol

conversion based on the transcription principle results per definition in the pronunci-

ation of the word and thus making it suitable as pronunciation dictionary entry. Or

languages with no existing script system are mostly transcribed using Roman letters

(see Section 1.4.1).

The following Sections 1.3 and 1.4 give an overview over the languages of the world

and the used script systems. It shows that the Roman alphabet is the most widely used

and therefore the approach of this Diplomarbeit is applicable to numerous languages.

1.2 Objective

In this Diplomarbeit I like to show that instead of using phonemes it is possible to use

graphemes as subunits. The creation of pronunciation dictionaries will therefore be a

triviality and for a great deal of languages this enables us to safe a lot of time and work.

Grapheme recognizers in 4 different languages, namely English, Spanish, German and

Swedish, are built and it is shown that the word accuracies of the context dependent

recognizers are comparable to the ones of phoneme recognizers. It is discussed how

questions to create a context dependent environment can be generated automatically

and how the context width influences the recognition results.

Furthermore I will investigate if grapheme based speech recognition is also qualified

for building multilingual recognizers and how the models are best shared among the

languages.

1.3 Languages of the World

The following pictures and information are taken from [9]. According to [10, 11, 12,

13, 9] the number of languages varies in between 5000 to 7000. [11] notes that there

are probably as many different answers to this question as there are linguists. Usually

5

Introduction 1.4 Writing Systems

Figure 1.1: Geographic Distribution of Living Languages in 2000

languages are called different if the speakers from one language do not understand the

speakers form the other language, otherwise it is mostly referred to as a dialect (a

counter example to this is Norwegian and Swedish).

Total Living Languages Percentage

The Americas 1013 15%

Africa 2058 30%

Europe 230 3%

Asia 2197 32%

The Pacific 1311 19%

TOTAL 6809

1.4 Writing Systems

Information and pictures are taken from [10].

6

Introduction 1.4 Writing Systems

Figure 1.2: Sample of Arabic script

There are numerous writing systems in use around the Globe. Every one of

them has its own characteristics and specialities. Over time languages and their scripts

might change, dissapear or be newly created. In [11] it is explained that alphabet

scripts change over time because they are derived form the pronunciations of words

which can change over time, whereas e.g. the Chinese script systems is manly invariant

to time because they symbols not only represent sounds but have its own meanings.

1.4.1 Alphabetic writing systems

Abjads

Abjads, also called consonant alphabets, represent only consonants or consonants plus

a few vowels. Most Abjads (with a few exceptions) are written from right to left.

Some scripts, such as Arabic (see Figure 1.2), are used both as an abjad and as an

alphabet.

Alphabets

Alphabets, or phonemic alphabets, represent consonants and vowels. The most widely

used alphabet today is the Roman alphabet (see Figure 1.3) [13]. Most European

nations, some nations in Asia, almost all countries in Africa and all nations of America

and Oceania use the Roman alphabet [13]. The earliest known inscriptions in the

Roman alphabet date from the 6th century B.C. The Romans used just 23 letters to

write Roman:

A B C D E F G H I K L M N O P Q R S T V X Y Z

which included no lower case letters. The letters J, U and W were added to the alphabet

at a later stage to be able to write languages other than Roman. The modern Roman

alphabet consists of 52 letters, 10 numerals, punctuation marks and a variety of of

7

Introduction 1.4 Writing Systems

Figure 1.3: Sample of Roman script

Figure 1.4: Sample of Burmese script

other symbols such as &, % and .

Many languages supplement the basic Roman alphabet with accents or extra letters

used to modify pronunciation of a letter to indicate where a stress should fall in a word

to put emphasis in a sentence, to indicate pitch or intonation of a word or syllable, to

indicate length of a vowel or to visually distinguish homophones.

Some of the languages written with the Roman alphabet are shown in Table 1.1.

1.4.2 Syllabic writing systems

Syllabic alphabets

Syllabic alphabets, or alphasyllabaries, consist of symbols for consonants and vowels.

Consonants are combined with a vowel that is changed or silenced by diacritic signs.

Vowels can be written separately if they occur at the beginning of a word or by them-

selves. There are also special conjunctive symbols used to add essential parts to the

first letter or letters after the final one when two or more consonants occur together.

Burmese (see Figure 1.4) is an example of such a script.

Syllabaries

Syllabaries consist of separate symbols for each syllable of a language. Japanese Hira-

gana belongs to this group of writing systems (Figure 1.5).

8

Introduction 1.4 Writing Systems

Afrikaans Hausa Occitan

Ainu Hawaiian Polish (Polski)

Albanian (Shqip) Hmong Portuguese (Português)

Amo Hopi Prussian

Aymara Hungarian (Magyar) Quechua

Azeri Ibibio Romanian (Limba Român)

Balear Icelandic (́Islenska) Romany

Basque (Euskara) Ido Sami

Batak Indonesian (Bahasa Indonesia) Scottish Gaelic (Gàidhlig)

Bosnian Ingush Shona

Breton (Brezhoneg) Interlingua Slovak (Slovenský)

Catalan (Català) Inuktitut Slovene

Cherokee (Tsalagi) Iñupiaq Somali

Cornish (Kernewek) Irish (Gaeilge) Spanish (Español)

Corsican Italian (Italiano) Swahili

Cree (Nehiyaw) Javanese Swedish (Svenska)

Croatian (Hrvatski) Kanuri Tagalog

Czech Khasi Tagbanwa

Danish (Dansk) Kirghiz Tahitian

Dutch (Nederlands) Kurdish Tajik

Edo Lapp Tamazight

English Latin Turkish (Türkçe)

Esperanto Latvian Turkmen

Estonian (Eesti) Lithuanian Uighur

Faroese Lushootseed Uzbek

Fijian Luxemburgish Valencian

Finnish (Suomi) Malay (Bahasa Melayu) Vietnamese

French (Français) Maltese (Malti) Volapük

Frisian (Frysk) Manx (Gailck) Welsh (Cymraeg)

Galician (Gallego) Naga Yi

Gascon Navajo (Diné) Yoruba

German (Deutsch) Naxi Zulu (isiZulu)

Guarani Norwegian (Norsk)

Hanunóo

Table 1.1: Some of the languages written with the Roman alphabet

9

Introduction 1.4 Writing Systems

Figure 1.5: Sample of Hiragana (Japanese) script

Figure 1.6: Sample of Chinese (Zhöngwén) script

1.4.3 Logographic writing systems

In logographic writing systems each symbol not only represents a sound, but also has

a meaning. Thus these writing systems usually have a numerous amount of symbols

ranging from several hundred to tens of thousands. There is no theoretical upper limit

to the number of symbols in some logographic scripts such as Chinese 1.6.

Logographic scripts may include the following types of symbols:

Logograms - symbol representing parts or whole words. If logograms visually resem-

ble the things they stand for they are also known as pictograms or pictographs.

Ideograms - symbols which graphically represent abstract ideas.

Semantic-phonetic compounds - symbols which include a semantic element, which

represents or hints at the meaning of the symbol, and a phonetic element, which

denotes or hints at the pronunciation.

Figure 1.7: Sample of Braille script

10

Introduction 1.4 Writing Systems

1.4.4 Alternative writing systems

There are other additional writing systems and scripts invented for books, movies,

computer games or constructed languages. Figure 1.7 shows the Braille script which

consists of patterns of raised dots which enable blind and partially sighted people to

read by touch.

11

Chapter 2

Speech Recognition Basics

This chapter gives a brief overview of the automatic speech recognition techniques used

in this Diplomarbeit. It is not a general introduction to speech recognition basics but

only covers the theory and models needed to understand this project. For more general

and in depth explanation refer to [14, 15].

What makes Automatic Speech Recognition so interesting is first of all the fact that

speech is the most natural and easiest way of human communication. With the increase

of technology in everyday life we would like to adapt computers to human behavior,

thus making it easier for us to operate machines and computers. For example Speech

Recognition can be a big help for physically challenged people. It would eliminate the

need to use your hands for certain daily challenges like turning on a TV or a radio.

Speaker identification or authentication is another promising area which eliminates

the need to remember all kinds of passwords or pins. The computer simply recognizes

who is speaking and sets the access control accordingly. With the boom of cell phones

and small palm tops the desire of better ways to input information arises. It is utterly

annoying to type a text on a cell phone keyboard and it would be a big relief to just

dictate an SMS-message or even an email.

The speech recognition process seems fairly easy for us humans. We have to be aware

though that we use an enormous database of background knowledge, e.g. our ”world-

knowledge” to decode uttered sentences. We not only use syntactical and grammatical

12

Speech Recognition Basics

knowledge, but also analyse if the utterance makes sense and if it is pragmatically

correct. For example ”The police man smoked my ID” expresses a syntactical and

semantical correct sentence, but (for humans easy to see) it makes no sense. The

difficulties of Automatic Speech Recognition lie in segmenting the data (e.g. where does

a word start or end), the complexity of the data (how many different words are there

and how many different combinations of all those words are possible), the variability of

the speakers (women compared to men have a higher basis frequency; or microphones,

telephones limit the bandwidth, etc.), ambiguity of words (two vs. too), word boundaries

(interface vs. in her face), semantics (he saw the grand canyon flying to New York) and

ambiguity in pragmatism (time flies like an arrow). Automatic Speech Recognition

started with speaker-dependent single word recognizers that processed only a small

amount of words in quiet surroundings. Not until the late eighties was it possible

to handle continuous speaker-independent speech with a large vocabulary. Today’s

focus lies on system development for spontaneous or colloquial speech with a noisy

background as it can be found in a car. The systems have to be able to adapt to new

situations quickly and optimally.

The speech recognition problem can be formulated as follows: For a given acoustic

signal X we’d like to find the word sequence W∗ which was most likely produced by

the event X. This is known as the Fundamental Equation of Speech Recognition:

W∗ = argmax
W

P (W |X)

= argmax
W

P (X|W) · P (W)
P (X)

= argmax
W

P (X|W) · P (W) (2.1)

We can divide this equation further into three basic problems:

Acoustic Model: Calculation of the conditional probability P (X|W) to observe a

signal X given a word sequence W was spoken.

Language Model: Calculation of the a priori probability P (W) that word sequence

W was spoken.

13

Speech Recognition Basics 2.1 Preprocessing

Pronunciation
Dictionary

Language
Model

Acoustic
Model

Feature
Extraction

X P(X|W) P(W)

Decoder W* = P(X|W) P(W)

Speech 1 2 w w w ...3

t

Hz

|F(iw)|

Zurich Z U R I C H
Zug Z U G
Bern B E R N

in Zurich

from Bern
.....

to Zug

Figure 2.1: Block diagram of an automatic speech recognizer

Search: Efficient calculation of word sequence W∗ that maximizes P (X|W) · P (W)

We like to map the spoken utterance onto a textual representation in form of a sequence

of words W∗ = w1w2w3 First of all we need to extract proper feature vectors that

sufficiently characterize the acoustic signal. To calculate the acoustic models P (X|W)

we split the word sequences into subunits (usually phonemes) with the help of a pronun-

ciation dictionary (defines how to segment each word into the subunits) and a language

model (provides the probabilities for combining different words to a sequence of words).

A monolingual speech recognizer (see Figure 2.1) consists of a feature extraction com-

ponent, an acoustic model, a pronunciation dictionary, a language model and a decoder

that searches for the optimal word sequence W∗.

2.1 Preprocessing

The first step is to process the analog sound signal in such a way that it can be handled

by a computer. The signal is digitalized and to reduce the tremendous amount of

data certain relevant features have to be extracted. Those extracted features are then

subject to further adaptation.

2.1.1 Digitalization

The recorded speech signal is transformed into a digitalized signal by an analog-digital

converter. The sampling rate needs to be at least twice the bandwidth of the speech

14

Speech Recognition Basics 2.1 Preprocessing

signal to be able to fully reconstruct it. This is known as the Nyquist theorem. Humans

listening ability changes with age. In our younger years we might be able to hear

anything form 20Hz to 20kHz, but with age the upper bound lowers. So we can

approximately say that humans hear a range of 20Hz to 16kHz. Speech only covers

parts of that frequency range. A sampling rate of 20kHz allows to represent most

speech sounds, but for speech recognition it is sufficient to use a sampling rate of

16kHz. The amplitudes are quantized with a 8− or 16 − bit resolution. A 16kHz

sampling rate and a 16− bit amplitude quantization results in 32kB data per second.

The next step is therefore needed to reduce the amount of data.

This Project: The acoustic data used for this project was digitally recorded with a

sampling frequency of 48kHz and a 16 − bit amplitude resolution. Transmitted

onto a PC it was then downsampled to 16kHz.

2.1.2 Short-term Analysis

Speech is quasi-stationary in periods of 10−30ms. With a suitable windowing function

samples are cut out and analyzed. Certain time domain or spectral features are then

extracted from each time-frame of the signal. It is common to work with Cepstral- or

Melscale-Spectral coefficients in combination with Log-Energy coefficients.

This Project: A Hamming-window cuts out 256 samples corresponding to 16ms time

frames. The window is shifted over the data with an offset of 10ms thus neighbor-

ing segments overlap by 6ms. With the Discrete Fourier Transform 129 spectral

coefficients are calculated from the 256 samples.

2.1.3 Vocal Tract Length Normalization

VTLN is an adaptation method that tries to reduce the effects of different sized vocal

tracts through transformation in the spectral domain. Men have usually a longer

tract than women which causes men to have a deeper voice (e.g. a lower fundamental

frequency). A gender- and speaker-independent modeling would introduce on top of

15

Speech Recognition Basics 2.1 Preprocessing

other speaker-variabilities also a variation in short or long vocal tracts. The goal of

VTLN is to reduce the impact of the variation of vocal tracts during preprocessing.

The length of the vocal tract l of a speaker is estimated from the speech signal by a

maximum likelihood approach. The power spectrum is then linearly transformed in

order to match the vocal tract of average length.

This Project: The 129 spectral coefficients are adapted by a vocal tract length nor-

malization. A warping parameter α is estimated in the range 0.8 − 1.2 and the

spectrum is linearly transformed. The 129 coefficients per 10ms are then re-

duced to 30 dimensions with a Mel-scale filterbank. Mel-scale filterbanks model

the properties of the human ear. The so called critical bands combine frequen-

cies together in such a way that lower frequencies have a higher resolution and

higher frequencies a lower resolution. The resulting 30 Mel-Scale coefficients are

then logarithmized and with an Inverse Fourier Transform transformed into 30

Cepstral-coefficients. From these 30 coefficients only 13 are used further. With a

Cepstral-Mean Value subtraction the cepstren are exempt from mean value. All

10ms we now have a vector with 13 components. These vectors are stationary

snap-shots of the speech signal therefore they are complemented with dynamic

features. The first and second derivative of the 13 cepstren are approximated and

the zero-crossing rate as well as the signal energy are calculated. The resulting

43 features are then combined to one feature vector.

2.1.4 Linear Discriminant Analysis

After extracting the desired features a linear discriminant analysis (LDA) is carried out

to reduce the dimension. LDA tries to transform the axis in such a way that classes

become separable. The LDA-Matrix is then determined such that it minimizes the

average variance inside a class and at the same time maximizes the variance between

classes. Feature vectors belonging to the same class rank closer together while the dif-

ferent class centers move away from each other. The classification process thus becomes

easier. The coefficients of the LDA-Matrix are sorted in decreasing order according to

16

Speech Recognition Basics 2.2 Acoustic Model

their variances. Coefficients of higher order are less important for the classification pro-

cess since they only have small variances. Therefore they can be omitted thus reducing

dimensionality of the feature vector coefficients.

This Project: The LDA-Transformation reduces the 43-dimensional vectors down to

32 dimensions.

The preprocessing methods are mostly independent of languages. But the selection

of the used feature vectors may well vary from one language to another. For example

in tonal languages the progression of the basic frequency can change the meaning of a

word. In such cases it makes sense to include information of the basic frequency course

in the used feature vector set. In non-tonal languages this information is irrelevant.

2.2 Acoustic Model

To model the conditional probability P (X|W) of a signal X given a word sequence

W we need an appropriate design that approximates the problem. Speech is a time

variable, continuous and very complex phenomenon. A word for example can sound

very different depending on coarticulation effects, speaker dependent pronunciation

variants or characteristics of the transmission channel. Since it is infeasible to model

P (X|W) for each word sequence (there are way too many possible word combinations),

smaller units are modeled. The fragmentation of words into smaller units brings along a

few other problems. First of all a pronunciation dictionary is required to split the words

into the subunits. Secondly a time alignment is needed. The beginning and ending of

subunits have to be found first. There are various other problems in automatic speech

recognition. There are coarticulation effects at word transitions (a word be pronounced

very differently depending on the context). For example American English has a lot of

coarticulation effects.

Most known continuous speech recognition systems at time are based on the idea

of HMM: Hidden Markov Models. Speech can be seen as a stochastic process. It is

obvious that the same phoneme can be pronounced very differently by various people

17

Speech Recognition Basics 2.2 Acoustic Model

and even the same person pronounces phonemes differently at times. HMMs offer a

way to model speech and certain of its problems.

2.2.1 Hidden Markov Models

An introduction to HMMs can be found in [14, 16]. A HMM λ is defined by the

following components:

• S set of all N states S := {S1, S2, . . . , SN}

• π probability distribution. Each state Si has a certain probability πi = P (q1 = Si)

to be the starting state of a state sequence.

• A N ×N matrix of the transition probabilities. An entry aij of A stands for the

probability p(Si|Sj) that given state Si, state Sj follows.

• B set of emission distributions B = b1, b2, . . . , bN . bi(x) is the probability that x

is observed in state Si.

• V set of observable features which can either be discrete or continuous.

To simplify calculations, state transitions only depend on the directly preceding

states hence the name Markov Models. According to the start probabilities π a starting

state S1 is selected. With the probability aij the system changes from the current state

Si to Sj . In each state Si the emission probabilities bi(x) are produced by some hidden

(only the output of bi is observable, not the process producing it) random process

according to which the most likely observed feature is selected (see Figure 2.2).

Discrete HMMs have a discrete feature vector space. In this case the emission

probabilities bi(x) are given by probability tables over the discrete observable features

V . For continuous HMMs the feature vector space is continuous and the emission

probabilities are now probability densities. Usually the emission probabilities b(x) are

approximated by a Gaussian distribution with a mean value vector µ and the covariance

18

Speech Recognition Basics 2.2 Acoustic Model

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

a a a

a a

11

12 23

b b b1

1

2

2

3

V VV

22 33

3

o o o1 2 3

S S S

Figure 2.2: Generation of observed features using HMMs (Picture taken from [14])

matrix Σ:

bi(x) =
Li∑
l=1

cil ·Gauss(x|µil,Σil) (2.2)

Li∑
l=1

cil = 1 (2.3)

Li is the number of mixture distributions used in state Si. The weight coefficients

cil are called Mixture Components. The Gaussian mixture distribution is defined as

follows:

Gauss(x|µil,Σil) =
1√

(2π)d|Σ|
· e

1
2

(x−µ)T ·Σ−1(x−µ) (2.4)

(2.5)

d is the dimensionality of the feature vector space (e.g. V = R
d). See Figure 2.3 for an

example of a one dimensional Gaussian mixture distribution.

The mean value vectors µil and the covariances Σil are referred to as the Codebook of

a model. Fully continuous HMMs so called CDHMMs offer for each state a probability

distribution with its own mixture components cil, variances Σil and mean value vectors

µil. Where as in semicontinuous HMMs (SCHMM) states share among each other the

19

Speech Recognition Basics 2.2 Acoustic Model

µ µ1 2 3

c c c1 2 3

µ x

p(x)

Figure 2.3: One dimensional Gaussian mixture distribution (Picture taken from [14])

variance matrix Σ and the mean value matrix µ, but have state dependent mixture

weights ci.

To solve recognition problems with the given HMM models one needs to build sen-

tence models out of word models and those again out of sequences of subunits.

The evaluation problem Calculates the probability P (O|λ) that a certain observed

feature sequence O = o1o2 . . . oT was produced by the HMM-model λ. The For-

ward Algorithm solves this problem.

The decoding problem Identify the most likely path q∗ that produces the observed

feature sequence O . The Viterbi Algorithm is used for this problem.

The optimization problem Given a model λ = (A,B, π) from a word w and its

acoustic realization O, find the parameters λ∗ that maximize the probability to

produce O. The Forward-Backward Algorithm is used.

The algorithms used are described plentifully in the referenced literature.

2.2.2 Suitable Units for Speech

Before the time of continuous speech recognition words or morphemes were commonly

used as subunits. Morphemes are well fitted for a single word recognizer. In continuous

speech there is a tremendous amount of possible words and word combinations. It

got infeasible to write down all possible morphemes and it wasn’t possible anymore to

20

Speech Recognition Basics 2.2 Acoustic Model

find enough training data for each such unit. The simplest way to split up words is

to decompose them into their syllables. Syllables model coarticulation effects between

phonemes and capture the accentuation of a language. Although they are limited in

number they are still various enough so that trainings problems might arise. The

number of phonemes and subphonemes are well below the number of syllables. Usually

there are in between 30 to 50 phonemes and subphonemes. They are well trainable

and offer the advantage that a new word can be added very simply to the vocabulary.

In the GlobalPhone project a phoneme is divided into 3 subphonemes to model the

inter-phoneme dynamic. Especially in multilingual speech recognition it is interesting

to use phonemes since it offers the perspective of an universal phoneme inventory.

In today’s systems this is improved by looking at phonemes in their various contexts. If

only the immediate left and right neighbor is considered we talk about Triphones. The

term polyphones is used if we talk about an unspecified neighborhood. Subpolyphones

are modeled subject to their left and right neighbor phonemes. The number of context

dependent models for such polyphones can get quite large and it reaches its limit in

regards to trainability. Furthermore context dependent models generalize less the wider

the context neighborhood. To compromise between generalization and model accuracy

clustering algorithms merge context dependent models together. Clustering algorithms

are characterized by their subunits, the used distance measure and by a bottom-up or

top-down search. The clustering procedure can be based on a decision tree and only

clusters states of the same phoneme in different contexts. Initially the decision tree is

context independent thus collecting all contexts of a subunit in its leaves. With the

help of a set of questions these leaves are then split up resulting in a clustering of the

contexts. All different contexts in one leave are then modeled by the same distribution

and the same codebook. Usually the questions that split the branches of the decision

tree are linguistically motivated and done by an expert. A question is selected if the

entropy loss is maximized by a split of a node into two child nodes when applying the

question. Figure 2.4 shows an example of such a splitting for quintphone units. To

begin the clustering procedure a node collects all polyphones belonging to a phoneme,

21

Speech Recognition Basics 2.2 Acoustic Model

thus a phoneme in its various contexts. From the previously defined question set the

question maximizing entropy loss by performing a split is selected. The polyphones are

then sorted into the successor nodes depending on the answer to the posed question (In

the example all quintphones with a vowel as immediate left context were put into the

yes-successor and the others into the no successor node. The next selected question

regards the context at a neighborhood width = 2 from the center phoneme.

Since the entropy criterion is not useful to stop the clustering procedure automatically

the number of leaves are limited by an upper bound and in addition to that a new node

is only allowed to be created if enough training material can be accumulated. During

the decoding process one traverses the built decision tree and uses the acoustic model

of the yes-leaf. This way one always gets an acoustic model even if a context has not

be seen during training.

Context dependent models have brought a big improvement in speech recognition. A

reasonable context neighborhood width depends on the language and available training

material.

2.2.3 Language Modeling

Language Models are used to calculate the a priori probability P (W) for a given word

sequence W = w1w2w3 . . . wN . The probability is independent of the acoustic signal

X. There is a linguistic and a statistical approach to calculate P (W).

The linguistic technique tries to understand the syntactical and semantical structure

of a language and derive the probabilities of word sequences using this knowledge .

In the statistical way huge text corpora are evaluated and word transitions are counted.

It is one of the most common method used in today’s state-of-the-art recognizers. The

probability of a word sequence can be written as:

P (W) =
N∏
i=1

P (wi|w1w2 . . . wi−1) (2.6)

The problem lies in the tremendous amount of possible word combinations therefore

a simplification is made and only the previous N words are considered to have an

22

Speech Recognition Basics 2.2 Acoustic Model

Ja Nein

K(1)

Ja Nein

K(1) K(2)

K

k(w,e|l,a)

−1=Vokal

−1=Vokal

+2=Labial

k(l,f|o,n)
k(l,f|a,u)

k(j,a|r,a)

k(w,e|l,a)
k(j,a|r,a)

k(l,f|o,n)
k(l,f|a,u)

NeinJa

k(l,f|o,n) k(l,f|a,u)

k(j,a|r,a)
k(w,e|l,a)

K(3) K(4)

Figure 2.4: Evolution of a decision tree for quintphones (Picture taken from [14])

23

Speech Recognition Basics 2.2 Acoustic Model

influence. These language models are thus called N-gram models. A powerful and

still manageable alternative is to set N = 3. These Trigram models calculate the

probabilities:

P (W) =
N∏
i=1

P (wi|wi−2wi−1) (2.7)

Despite the limited memory of trigram data deficiency can complicate accurate esti-

mation of the probabilities. Furthermore trigram models might not be suited for all

languages. For example in German the trigram models memory is too short to be able

to group the rightful word forms together if parts of it enclose a subset of a sentence.

Combining Acoustic and Language Model

During the decoding process the emission probabilities of the HMMs and the word

transition probabilities of the language model are combined to decide on the most

likely word sequence. In reality the mean values and variances of the probabilities of

the two models differ so badly that a correction is required. Otherwise the results

would be dominated by one term only. This adjustment is done by a parameter z

that weights the language model relative to the acoustic model. A second parameter

the word transition penalty p normalizes the different lengths |W | of the viewed word

sequences W .

P (W |(X)) =
P (X|W) · P (W)

P (X)
↓ (2.8)

=
P (X|W) · P (W)z · p|W |

P (X)
(2.9)

This Project: A grapheme is split into a begin-state, a middle-state and an end-

state which are marked correspondingly with -b, -m and -e. The grapheme A

for example is split into its subgraphemes A-b, A-m and A-e. A grapheme is

thus modeled by a 3−state left-right-HMM (see Figure 2.5). Only transitions

to the right neighboring state or to the same state are allowed. Each grapheme

24

Speech Recognition Basics 2.2 Acoustic Model

−b −e−m
0.5 0.5 0.5

0.50.50.5

Figure 2.5: A 3-state HMM to model graphemes (Picture taken from [14])

has a minimum length of 3. Each state corresponds to a frame of 10ms thus the

minimal grapheme-duration is 30ms.

The silence model is a HMM with 4 − states like shown in Figure 2.6. A

minimum duration of 40ms is required for silences. In comparison to graphemes

silences are not divided in to beginning, middle and end.

The transition probabilities of the HMMs are uniformly set to 1.0 and will not

be further trained. The emission probabilities are modeled through Gaussian

mixture distributions. A mixture distribution consists of 32 Gaussian distributions

which have a dimension of 32 after the above processing steps. Since the LDA-

transformation decorrelates the dimensions of the feature vectors averaged over

all classes, there is no need to model the complete covariance matrix. It suffices

to only calculate the diagonal so that the multivariate Gaussian distributions

decompose into their univariante components.

For the context independent models each subgrapheme is modeled by 32 distri-

butions. In the context dependent case each subpolygrapheme is modeled by 32

distributions as well . The number of subpolygraphemes is limited to 3000 dur-

ing the clustering procedure. Per language 32 · 3000 = 96000 distributions are

approximated.

The generation of the questions for the context decision tree is described in more

detail in Section 5.6.

The language models used for this work were calculated during the GlobalPhone

project and the Semesterarbeit of Sebastian Stüker [14, 5]

25

Speech Recognition Basics 2.3 Evaluation of Recognition Accuracy

0.5 0.5 0.5

0.50.50.5 0.5

0.5

Figure 2.6: A 3-state HMM to model silence (Picture taken from [14])

2.3 Evaluation of Recognition Accuracy

A spoken utterance is decoded and the resulting word sequence is stored as a so called

hypothesis. To evaluate the hypothesis an appropriate error measurement is necessary

which allows comparison between different recognition systems.

2.3.1 Decoding Continuous Speech

To find the word sequence W∗ that maximizes P (X|W) · P (W) the Viterbi algorithm

is used. Since it is too time consuming to calculate the emission probabilities for all

possible word sequences one has to think of a different approach. If the segmentation

of the sequence into words is know the Viterbi algorithms could just calculate the

best word for each section. The One-Stage-Dynamic-Time-Warping Algorithm is an

improved Viterbi algorithm that solves the segmentation and the single word decoding

problem simultaneously. [14] explains the decoding procedure in more detail.

By back tracking the best search path a sequence of words is generated which are

emitted as hypotheses by the recognizer. If the N -best search path are analyzed a

N -best list of hypotheses is created and stored as word-hypotheses-graphs so called

lattices. With additional information new hypotheses can be generated from these

lattices.

2.3.2 Measuring Error Rates

To calculate the error during the recognition process one compares reference sentence

with the recognized hypothesis sentence. One differs between substitution (word of

26

Speech Recognition Basics 2.3 Evaluation of Recognition Accuracy

hypothesis and reference differ), deletion (the word is left out in the hypothesis) and

insertions (there is an extra word in the hypothesis) errors. The word error rate WE

is a combination of them all:

WE = 100 · Nsub +Nins +Ndel

N
(2.10)

WA = 100−WE (2.11)

Where N is the total number of words in the reference sentence and WA stands for word

accuracy. The WE is suitable to compare recognition performance within a language

but not always reasonable to compare performance between different languages since

it is based on words. (Different languages might have different notions of the concept

”word”).

27

Chapter 3

Multilingual Speech Recognition

To comprehend the objective of this project it is important to understand what we mean

when we talk about multilingual speech recognition. This chapter likes to give a brief

introduction and is based on the Ph.D.-thesis of Tanja Schultz [14]. The development

of recognizers for new languages used to be connected with a lot of work. Multilingual

speech recognition systems try to reduce the work without loosing performance. The

idea is to combine information from different languages with existing recognizers and

to port it to new languages. The idea is that with the additional information a new

recognizer can be build faster and needs fewer trainings data. The goal to reach is

a language universality that allows a complete separation of the recognizer with all

its components and its acquired knowledge and the actual language that one likes to

recognize. So ideally one would like to use the same recognizer for different languages

and even for new unknown ones without any readjustments.

On the one hand we have a software sharing. That means the trainings- and evalu-

ation modules of a speech recognizer are independent of language specific information

which will be stored separately. The software sharing works without any problems.

The real challenge lies in the data sharing. How can we share acoustic models, pro-

nunciation dictionaries and language models among the different languages or how can

we create them without specific knowledge about the language. Sharing of training

data is also an attractive offer since we would like to need as few training data as

28

Multilingual Speech Recognition 3.1 Definition of a Multilingual Speech Recognizer

L = argmax P(L|X)*
L

w w ... w1 2 nLex LM

Lex LM
Russisch Russisch Russisch

Japanisch Japanisch Japanisch
Sprache AM

AM

Lex LM
Deutsch Deutsch Deutsch
AM

Figure 3.1: A multilingual recognizer formed through the interconnection of monolin-

gual ones (Picture taken from [14])

possible while estimating the parameters as robustly as possible. The development of

a recognizer requires collecting and preparing the speech data, defining the phoneme

inventory, creation of a pronunciation dictionary, editing large text corpora for the cal-

culation of the language models, training of the acoustic models as well as tuning of the

system and its evaluation. A universal phoneme inventory allows the initialization of a

recognizer in a new language as well as the adaptation of existing systems to new lan-

guages. The sharing of training’s material reduces its total needed amount to estimate

the parameters robustly. Another important aspect is that the financial and time costs

of developing a new recognizer are reduced. There is only a limited number of human

producible sounds due to our anatomy. The hope of multilingual speech researcher

therefore is that unseen sounds get more rare with every new language and might be

at one point fully covered.

3.1 Definition of a Multilingual Speech Recognizer

Multilinguality can be understood in two different ways. First the term refers to a

system that is able to process several different languages at one time. This multilingual

recognizer can be created through an interconnection of monolingual components. Each

component is responsible for only one language and is trained with its own language

specific data (see Figure 3.1 for an example). If the input language is not know a

29

Multilingual Speech Recognition 3.1 Definition of a Multilingual Speech Recognizer

w w ... w1 2 nSprache

M
ul

til
in

gu
al

e
A

M

M
ul

til
in

gu
al

es
 L

ex
ik

on

M
ul

til
in

gu
al

es
 L

M

Figure 3.2: A multilingual recognizer (Picture taken from [14])

LID component (Language Identification) is required. It can either be consulted first

to tell the multilingual recognizer which of its monolingual components to activate or

after the recognition process to select the language which optimizes the output. In

these multilingual systems software sharing is a common technique. For example the

recognizer only needs to extract feature vectors once and the decoder is implemented

once and during runtime the language specific data is linked to it.

[14] refers to multilingual speech recognition in a stricter sense. A multilingual sys-

tem has to share at least either the acoustic model, the pronunciation dictionary or

the language model. The jointly used component is trained with data from all the

different languages. Therefore it is referred to as language independent or multilingual.

See Figure 3.2 to see a block diagram of such a multilingual speech recognizer.

Data Sharing allows to reduce system parameters by sharing knowledge among lan-

guages. Since this enables less overhead and a slimmer structure it is an interesting

approach for memory limited applications found in palm tops or cellular phones.

Multilingual Acoustic Model: If the acoustic models are shared among different

languages the combined data is usable for training. The more speech data is

available to train a certain state the robuster its parameters can be trained thus

improving recognition rate. Ideally at one point the whole phoneme inventory

of human producible sounds should be covered. Such generalizing models would

enable an easy and fast portability to any new language.

30

Multilingual Speech Recognition 3.2 GlobalPhone Project

Multilingual Language Model: Switching from one language to another in the mid-

dle of an utterance requires a multilingual language model. This is for example

important to embed phrases that are in another language. Language Identifying

components ask for a multilingual language model as well.

Multilingual Pronunciation Dictionary: It can stand for a pronunciation dictio-

nary created through interleaving the monolingual dictionaries.

A multilingual speech recognition system like [14] defines it, realizes data sharing

and software sharing together.

3.2 GlobalPhone Project

For her Ph.D. thesis in Multilingual speech recognition Tanja Schultz [14] needed a

database in many different languages that fulfilled the following requirements:

• The most relevant languages in the sense of economic importance and number of

speakers are covered

• Includes all or as many as possible human producible sounds

• The selected speakers represent their mother tongue language balanced in regard

to gender, age and education

• The transcribed data material is large enough to allow robust training of acoustic

models

• There are texts with millions of words at hand to extract an accurate language

model

• The acoustic quality of the material is uniform to allow language specific depen-

dencies to be identifiable.

• The same speech style was used among the different languages e.g. spontaneous,

colloquial speech, monologue, dialog or read

31

Multilingual Speech Recognition 3.2 GlobalPhone Project

• The data of all different languages are similar in respect to their domain and

vocabulary, e.g. in their semantics.

At that time no according database existed. Therefore the GlobalPhone project was

called to life to create a multilingual database sufficing the above conditions. Diversity

was the key issue in selecting the languages. They should offer a certain variance in

regard to their phonetic, phonological, prosodic and grammatical characteristics. For-

eign students at the university of Karlsruhe were asked to record samples in their home

country. 15 different languages were selected with the above criterion and the limita-

tion of having such a native speaker at hand.

12 of the world’s main languages are included in this selection. It covers 85% of all

spoken language families. See at Table 3.2.

To keep costs and time low in producing the database the collected material is read

speech since it allows to save the most costly task; the transcription process of spoken

sentences into text. Newspaper articles from local newspapers were selected since they

allow on one hand to have a similar domain (daily local events, world news and eco-

nomic updates) over all languages and on the other hand it was easy to access them

through Internet (allowing credible estimation of the language models). The data col-

lection and training has been done in a uniform process to ensure comparability of

the resulting recognition process. With the database available monolingual recognizers

were constructed for various experiments and combined to form a multilingual recog-

nizer. The results were used to analyze the possibilities to create recognizers for new

languages using these resources and the knowledge of already existing systems. Results

and Experiments are described in detail in [14, 17]

This project uses the GlobalPhone database and language model for English, German

Swedish and Spanish. Certain scripts and models are copied from the GlobalPhone

project and then changed to meet the needs of this work.

32

Multilingual Speech Recognition 3.2 GlobalPhone Project

Language Country

Arabian Tunisia

French France

Mandarin-Chinese Mainland-China

Shanghai-Chinese Mainland-China

German Germany

Japanese Japan

Korean South Korea

Croatian Croatia and Bosnia

Portuguese Brazil

Russian Belarus

Swedish Sweden

Spanish Costa Rica

Tamil India

Turkish Turkey

Czech Czech Republic

Table 3.1: Languages and the country where they were collected for the GlobalPhone

project

33

Chapter 4

Baseline Recognizers

To evaluate the performance of the grapheme based large vocabulary continuous speech

recognizers they were compared to the baseline recognizers used and described by [14, 5].

The baseline recognizers were trained by Schultz and Stüker in the course of the Global-

Phone project [14] and a Studienarbeit [5]. The recognizers trained during this project

use the database, the language model and the same preprocessing algorithms (see Sec-

tion 2.1) and techniques as the baselines. The only difference lies in the generation

of the dictionaries and the questions used to produce context dependent models. The

baselines dictionaries are phoneme based and were created with a combination rule-

based algorithms and expertise knowledge. The global phoneme set in the GlobalPhone

project is defined based on the IPA chart [18] and sounds from different languages that

share the same IPA symbol, share the same unit in our phoneme set. Table 4.2 shows

the size of the dictionaries. Every word in our dictionaries is tagged with the language

it belongs to, so that it can be distinguished from words in other languages that might

share the same orthography but have a different pronunciation.

34

Baseline Recognizers

#utterances (hours)

Language EN DE SP

Training 7,137 9,259 5,426

(15.0) (16.9) (17.6)

Development 144 199 250

(0.4) (0.4) (0.7)

Evaluation 152 250 250

(0.4) (0.4) (0.7)

Table 4.1: Overview of the data used from the GlobalPhone corpus

#words

Language EN DE SP

Size Dict 9,461 24,000 18,510

Table 4.2: Size of the GlobalPhone dictionaries

35

Baseline Recognizers

4.0.1 The English Recognizer

The Database

English data was not collected by the GlobalPhone project but instead the Wall Street

Journal Corpus provided the appropriate data. Table 4.1 and 4.2 give an overview of

the amount of data. There were 103 speakers contributing their voices.

The Language Model

Additional material from [16] was used to appropriately estimate the trigram probabil-

ities.

Evaluation

The English baseline recognizer showed a WA (word accuracy) of 87.3% for the devel-

opment and a WA of 84.4% for the evaluation data. See Table 4.4.

4.0.2 The German Recognizer

The Database

The newspaper articles for the German recognizer are taken from the FAZ www.faz.de

and Süddeutsche www.sueddeutsche.de and read by 77 speakers. See Table 4.1 and 4.2.

The Language Model

Additional material from [16] was used to appropriately estimate the trigram probabil-

ities.

Evaluation

The German baseline offers a WA of 82.3% (Developement) and a WA of 87.0% for the

evaluation data. See Table 4.4.

36

Baseline Recognizers

4.0.3 The Spanish Recognizer

The Database

The newspaper La Nacion www.nacion.co.cr provided the text data. See Table 4.1 and

4.2 for the amount of recorded data from 100 different speakers.

The Language Model

Additional speech data was obtained from The European Language Resources Associa-

tion which collected data from the newspaper Expansion and from The Linguistic Data

Consortium which did the same for the Newswire newspaper.

Evaluation

The Spanish basline offers a WA of 75.5% for the development set and a WA of 83.7for

the evaluation set. See Table 4.4.

4.0.4 The Swedish Recognizer

The Database

The newspaper articles were collected from the Göteborgs-Posten Internet site

www.gp.se. The database is described in regards to amount of hours of recordings,

number of speakers (Nspk), number of utterances (Nutt), number of words (Nw) in

Table 4.3.

Rec Length Nspk Nutt Nw

Training 17.4h 79 9406 144700

Cross 2.1h 9 1207 18455

Evaluation 2.2h 10 1203 17870

Total 21.7h 98 11816 181025

Table 4.3: The Swedish Database

37

Baseline Recognizers

The Language Model

Additional texts to create the language model were all downloaded from the above

mentioned web site. Refer to 6.16 for the characteristics of the Swedish language

model.

Evaluation

The Swedish recognizer showed a word accuracy rate of 33.2% for the context indepen-

dent case and an accuracy of 47.3% for the evaluation and 51.4% for the development

set in case of a context dependent recognizer. See Table 4.4.

Word Accuracy in %

English Spanish German Swedish

Development 87.3 75.5 82.3 51.4

Evaluation 84.4 83.7 87.0 47.3

Table 4.4: Word accuracy in % of the basline systems tested on the development and

evaluation set

38

Chapter 5

Generation of Pronunciation

Dictionaries

Pronunciation dictionaries are built by splitting a word into its graphemes which are

used as subunits. For example the word ZURICH would be simply followed by its

fragmentation into subunits (graphemes) Z U R I C H. This is a very easy and fast ap-

proach to produce pronunciation dictionaries. The questions arise how well graphemes

are suited as subunits, to what extend are they inferior to phonemes or do they perform

combarably well, how do we cluster graphemes into polygraphemes, how do we generate

the questions to built up the decision tree, can we build a multilingual recognizer based

on graphemes and share the acoustic models among languages? It is also interesting

to see for which languages this seems a reasonable way to produce dictionaries and

which languages offer worse performance. Is a close grapheme to phoneme relationship

helpful? References to the Tcl-scripts in this chapter might be better understood if

first reading Chapter C where the general training process in JANUS is described.

5.1 Selected Languages

To evaluate the performance of a grapheme based system language, English was se-

lected as a language with a fairly poor grapheme to phoneme relation. On the other

39

Generation of Pronunciation Dictionaries 5.2 Dictionary Creation

side Spanish was selected because it offers a very close grapheme to phoneme rela-

tion. German lies somewhat in between those two extremes. The recognizers in these

languages built during the Global Phone projects are used as a baseline. To evaluate

the performance further and to test to what extend multilingual ideas are reasonable

for grapheme based recognizers Swedish is chosen as a new unknown language. A

Multilingual Recognizer is created using Spanish, English and German data and it is

investigated how far knowledge from the multilingual recognizer can help improve the

Swedish recognizer.

5.2 Dictionary Creation

A Tcl-script reads in each transcription from the database, cuts out the single words

and stores them in a word list. In a further step those words are split into their

graphemes and both the word and its grapheme-fragmentation are stored in dictionary

files. Word beginning and ending are marked with a word tag WB. Each grapheme is

also tagged with a language ID. Special characters are extracted and romanized. Ä,

ö or ü in German for example need special attention. Table D.1 shows an extract from

the English grapheme based dictionary.

The German and Spanish Dictionaries included numbers. In case of the German

dictionary the number entries were corrected with a few script commands. Since for

example 1995 can either be a year or simply an enumerator both versions were in-

cluded in the dictionary (Neunzehnhundertfünfundneunzig as well as Tausendneunhun-

dertundfünfundneunzig). German numbers offer some variability, for example 101 can

be called Hunderteins, Einhunderteins, Hundertundeins or Einundertundeins. There-

fore all those possibilities were added as ”pronunciation variants” in the dictionary.

The Spanish number system is straight forward and a few rules are sufficient to

generate it. Two scripts (zahl2word SP.tcl and zahlpron2J3.tcl), previously written for

phoneme based dictionaries), were adapted to deal with graphemes and produced then

the wanted mapping from the number to its word form representation.

40

Generation of Pronunciation Dictionaries 5.3 Initial Labels

5.3 Initial Labels

To start training the acoustic models and its parameters, we need a mapping between

the acoustic data and the acoustic models. This mapping defines the frame-wise time

alignment of the data to the according HMM state. For example in Janus labels can

be thought of as something like frame with index i belongs to HMM state with index j.

The labels are usually obtained by the Viterbi algorithm, meaning labels actually are

nothing else but the stored Viterbi path for a given utterance.

Since there were no previous labels at hand for graphemes the utterances were linearly

segment into its subunits the sub-graphemes (grapheme beginning, middle and end).

For each utterance, which usually consist of a sentence out of a newspaper article

(see 3.2), the number of graphemes |G| was calculated. The total number of frames

TotFrames used for this utterance is then divided by the number of subunits resulting

in the amount of frames per unit. As explained at the end of Section 2.2.3 a HMM for

graphemes consists of three sub graphemes. A silence is modeled only by one state. So

we get the following formula for the amount of frames per subunit:

nbrFrames =
TotFrames

3 · |G|+ |Silences|
(5.1)

If the variable nbrFrames is smaller than 1 for an utterance then this specific utterance

was skipped for this first training cycle. A rewritten sample.tcl script goes through all

utterances in the training data, calculates the nbrFrames and extracts continuously

that amount of samples and checks to which model (subgrapheme e.g. A-b, A-m, A-e

or silence SIL) the data gets assigned to. After we know which data material belongs

to which models we initialize the codebooks (one for each subgrapheme) with the K-

means-algorithm (kmeans.tcl). Now everything is available to write first labels which

of course are still far from being accurate (labels.tcl).

5.4 Context Independent Systems

After creating the initial labels the acoustic models were trained. The following training

iterations are then done along the labels assuming the alignment remains unchanged.

41

Generation of Pronunciation Dictionaries 5.4 Context Independent Systems

Once in a while new labels are written under the assumption that the recognizer has

improved enough to produce better alignment for the forthcoming development steps.

Training is done by loading paths from the label files and then accumulating training

information in so called accumulators by the Viterbi Algorithm (alternatively training

could be done by the Forward-Backward algorithm). The accumulators are stored

explicitly on disc because they can become very large. A training cycle looks as follows:

Calculate the LDA matrix This step is not necessary to build a recognizer, but

it helps to improve the recognition accuracy. Multiplying every feature vector

X with the LDA matrix maximizes the ratio between the diversity of all data

and the average diversity of the data belonging to the same class. Finding the

LDA will thus make data belonging to a class move closer together and data of

different classes move a bit further apart. To calculate the LDA it needs to be

defined which acoustic models belong to which LDA-class. In this Diplomarbeit

one class for each Gaussian codebook was used.

Extract sample vectors for each codebook It is virtually impossible to keep all

that is needed for the K-Means algorithm in memory in large enough buffers since

it can easily sum up to about half a giga byte of data. Therefore the example

vectors used for the K-Means algorithm below are stored on disc.

Initialize the codebooks E.g. find new reference vectors. Cluster a set of example

vectors into a few classes iteratively such that the distortion measure is being

minimized. The K-Means algorithm assigns each example vector to the class

with the closest mean vector and updates the mean vector by replacing it with

the average of all vectors.

Training Train multiple iterations along labels and update the parameters.

The context independent systems are trained with cycles of 6 training iterations followed

by writing new labels. These cycles are repeated six times before changing to context

dependent modeling.

42

Generation of Pronunciation Dictionaries 5.5 Context Dependent Systems

5.5 Context Dependent Systems

In this Diplomarbeit we use the term polygraphemes to refer to graphemes modeled in

an arbitrary wide context. Before being able to start training the context-dependent

system all polygraphemes need to be collected that occur in the database in a so called

ptrees. The ptrees are simply containers that hold all seen contexts of a grapheme. A

parameter P defines the maximum context width that is considered when collecting the

polygraphemes. Setting P = 1 means that only contexts up to one grapheme to the

right and to the left are considered, thus giving ”trigraphemes”. Since our subunits in

this Diplomarbeit are on the level of subgraphemes (beginning, middle and end) there

is a decision tree for each HMM state. For each subsegment of a polygrapheme seen in

the training sentence we start at the corresponding root node of the decision tree (root-

b, root-m or root-e) traverse it by answering the questions of the tree (is the central

grapheme an A, B . . . Z?) and when reaching a leave node attach the polygrapheme

to the ptree.

After processing all training data the decision tree’s attached ptrees are filled. See

Figure 5.1 to get an impression.

All polygraphemes belonging to a leaf node after the clustering process share the

same codebook, but specific contexts as collected in the ptree are modeled by a separate

distribution. This system is then trained with 2 iterations and the calculated parame-

ters are then used for the next step in which the polygraphemes are clustered together

using an entropy criteria and a set of questions. Usually the questions are generated

by a person with expertise knowledge in that language. But since that would destroy

this project’s goal to automatically generate pronunciation dictionaries to eliminate the

need of language experts a variety of ways to find such questions are examined. Let’s

assume for now that we have such a set of questions ready at hand. Starting at the

leaf in the decision tree that holds the ptrees the benefit of every allowed question used

to split the node is computed (see Subsection 2.2.2). There is a parameter Q which

specifies up to which width a question can be asked regarding the context of a grapheme

(a question with Q=2 for example can ask if the grapheme 2 to the right is a vowel).

43

Generation of Pronunciation Dictionaries 5.6 Question Generation

This step is done until we reach a maximum amount of models (usually set to 3000 in

this Diplomarbeit except where specifically noted otherwise) or if the split is not good

enough, meaning there is a minimal count of training frames required per node. See

Figure 5.2 to see how node ”D” with its ptree is split up into two successor nodes by

the question if the grapheme after the central grapheme D is a B or not. The buckets

symbolize the ptrees and the numbers are indexes for the used models.

The clustering procedure results in a decision tree where all polygraphemes in a leaf

are modeled by the same codebook and same distribution (the ptrees are not needed

anymore after the clustering step). Thus we end up with up to 3000 models in our

case. The resulting decision tree and codebooks are then saved for the generation of a

context dependent recognizer.

The training cycles are similar to the ones in the context independent system. But

instead of a simple training a VLTN is also computed.

5.6 Question Generation

Since the set of possible polygraphemes for a standard language in a context dependent

speech recognizer is very large, the estimation process often runs into data-insufficiency

problems. To counter these, it becomes necessary to group the polygraphemes into a

statistically estimable number of clusters. It is described above in 5.5 how this is

done in this Diplomarbeit. Reducing the amount of free parameters will then allow

to estimate the remaining parameters more robustly. Recognizing speech is basically

a pattern classification procedure and therefore it is important that the clusters are

maximally separated. This is a partitioning problem and to identify the maximally

separated clusters all groupings would have to be evaluated.

The question set used for the clustering procedure should be a good guess to what an

optimal clustering of graphemes would look like had it been possible to exhaustively

search through all possible clusters. [20] argue that the training \ recognition process is

strictly a maximum likelihood statistical estimation process and therefore it is desirable

to generate the questions using the same statistical criterion.

44

Generation of Pronunciation Dictionaries 5.6 Question Generation

Figure 5.1: A decision tree and ptrees for a context dependent recognizer (taken from

[19])

45

Generation of Pronunciation Dictionaries 5.6 Question Generation

Figure 5.2: Clustering of the decision tree and its ptrees (taken from [19])

46

Generation of Pronunciation Dictionaries 5.6 Question Generation

[20, 21] proposed algorithms to automatically generate question sets. They both used

a log-Likelihood distance measure. [21] use a bottom up clustering while [20] used

a hybrid clustering method combining a bottom up and top-down technique. They

showed that it is possible to derive a set of automatically produced questions that give

equivalent results to linguistically motivated questions generated by an expert. Both

approaches address the issue of having contextual questions, meaning the left and right

context questions are not necessarily the same. Since it was not clear how context

sensitive graphemes behave this Diplomarbeit generated a question set regardless of

treating the left and right context differently. The following Subsections are inspired

by these two papers [20, 21].

In the next subsection two different distance measurements are introduced before

explaining the implemented algorithms in this Diplomarbeit.

5.6.1 Distance Measurements

See [16] for a more detailed explanation although this Diplomarbeit uses a slightly

different entropy formula. The entropy distance’s goal is to optimize the information in

the parameter space of a recognizer while the second distance likelihood distance tries

to maximize the probability of the training data.

Entropy Distance

To calculate the entropy distance between two sets of models for subgraphemes

(grapheme-beginning, -middle and -end) a context independent system is trained

where all the acoustic models share the same codebook. Let K1 and K2 be two sets

of distribution models defined by the mixture weights of the Gaussian distributions

γ1,i and γ2,i (they all share the same Gaussian, but only differ in their mixture weights):

47

Generation of Pronunciation Dictionaries 5.6 Question Generation

K1 = γ1,1, . . . , γ1,N

K2 = γ2,1, . . . , γ2,M (5.2)

K1 ∩K2 = ∅ (5.3)

γ1,1 = (γ1,1(1), . . . , γ1,1(k), . . . , γ1,1(n)) (5.4)

There are n Gaussians to form the Gaussian mixture distribution. K1 has N and K2

has M models in the set. The a priori probability for a set of models is calculated by

summing the amount of how many samples of the training data were classified to a

certain model. This is equivalent to the sum of the numbers of samples (p1,i and p2,i)

that got stored in the different polygrapheme models collected by the ptrees in 5.5 (for

a system that shares the codebook for all graphemes of course).

p(K1) =
N∑
i=1

p1,i

p(K2) =
M∑
i=1

p2,i (5.5)

Now let K12 be the union of K1 and K2 and :

K12 = K1 ∪K2 (5.6)

γ1(k) =
1

p(K1)
·
N∑
i=1

p1,i · γ1,i(k)

γ2(k) =
1

p(K2)
·
M∑
i=1

p2,i · γ2,i(k)

γ12(k) =
p(K1) · γ1(k) + p(K2) · γ2(k)

p(K1) + p(K2)
(5.7)

The entropy distance between the two sets of models is now calculated as follows:

D = (p(K1) + p(K1)) ·H12 − p(K1) ·H1 − p(K2) ·H2 (5.8)

Where Hi is the entropy of the distribution γi:

Hi = −
n∑
k=1

γi(k) · log(γi(k)) (5.9)

48

Generation of Pronunciation Dictionaries 5.6 Question Generation

The distance between graphemes is calculated as follows:

DTOT = Db +Dm +De (5.10)

For each subgrapheme class (b, m, e) the distance is calculated individually and the sum

of the subgrapheme class distances forms the distance between the grapheme models.

Likelihood Distance

Again the acoustic models share the same codebook. Let P = {x1, . . . ,xT} be a set

of training vectors assigned to the codebook and N (xi, µk,Σk) is the value of the k-th

Gaussian distribution at position xi. γP marks the mixture weights estimated from all

data ∈ P .

The log-likelihood, e.g. the log of the probability to observe x1, . . . ,xT given the model

defined by γ and the Gaussians N is defined as follows:

LP = log(
∏
i∈P

∑
k

γP,k · N (xi, µk,Σk)) (5.11)

The log likelihood distance between two clusters Q and R is defined by:

D = LQ+R − LQ − LR (5.12)

where LQ+R is the likelihood of the set formed by merging cluster R and Q. The

problem with the likelihood distance is that the parameters for the joint clusters would

have to be estimated by a training step where the models in a cluster share the same

distribution. This would result in a more time consuming procedure requiring a training

iteration for every investigated combination of models.

5.6.2 Phoneme-Grapheme Question Generation

To get a feeling of how good those grapheme based recognizers can get compared to

the phoneme based ones the original question sets from the baseline recognizers were

taken. With a language dependent phoneme to grapheme mapping (described in the

Tables B.1, B.2 and B.3 found in B.2.1) that was created manually and the script

49

Generation of Pronunciation Dictionaries 5.6 Question Generation

PHONES A EN B EN C EN D EN E EN F EN G EN H EN I EN J EN

K EN L EN M EN N EN O EN P EN Q EN R EN S EN T EN

U EN V EN W EN X EN Y EN Z EN @ SIL +hGH EN +QK EN

NOISES +hGH EN +QK EN

SILENCES SIL

CONSONANT B EN C EN D EN F EN G EN H EN K EN

L EN M EN N EN P EN Q EN R EN S EN T EN V EN

W EN X EN Y EN Z EN

OBSTRUENT B EN C EN D EN F EN G EN J EN K EN N EN P EN Q EN

S EN T EN U EN V EN W EN X EN Z EN

SONORANT A EN D EN E EN H EN J EN L EN M EN N EN O EN R EN

W EN Y EN

SYLLABIC A EN E EN H EN I EN O EN U EN Y EN

VOWEL A EN E EN I EN O EN U EN Y EN H EN
...

Table 5.1: Example of a phoneme-grapheme question set for English

50

Generation of Pronunciation Dictionaries 5.6 Question Generation

phonemeToGrapheme.tcl which substituted each phoneme belonging to a question by

the according graphemes a new grapheme based set of questions was formed. An

example of such a question set (called the phoneme-grapheme question set in this

project) can be seen in Table 5.1. Explanations on why the English grapheme ”H” or

the German ”R” are regarded as vowels can be found by looking at the mappings in

the Appendix B.2.1.

5.6.3 Singleton

A very simple idea to generate questions is to ask what kind of grapheme the left or

right context is. Each question consists of one grapheme, thus they are called singeltons

in this Diplomarbeit. The questions look like in Table 5.2.

PHONES A EN B EN C EN D EN E EN F EN G EN H EN I EN J EN

K EN L EN M EN N EN O EN P EN Q EN R EN S EN T EN

U EN V EN W EN X EN Y EN Z EN @ SIL +hGH EN +QK EN

NOISES +hGH EN +QK EN

SILENCES SIL

QUES 1 A EN

QUES 2 B EN

QUES 3 C EN
...

QUES 26 Z EN

Table 5.2: Example of a singelton question set for English

5.6.4 Bottom-Up Entropy

To automatically derive a proper set of questions a context independent system sharing

one codebook among all graphemes is trained for one cycle using the labels of the

previously trained context independent system 5.4. The codebook and distribution

51

Generation of Pronunciation Dictionaries 5.6 Question Generation

a, b, c, d, e, f, g, z

c, d

a, e

a, b, c, d, e

a b

c d

e

b, c, d

...
..

...
...

...
...

...
..

x z

Figure 5.3: An example of how a final bottom-up clustering tree could look like

parameters are saved on disc.

The next step is to call the ptree.tcl script which will count the number of times a

distribution was seen in the training data. These counts are used for the calculation

of the a priori probability of a model refer to equation 5.5. Starting with a set of

monographemes, the monographemes are clustered together with a bottom-up cluster

algorithm using the entropy distance measure until one cluster remains. This results

in a tree recording the clustering states of the set of graphemes. The intermediate

clusters, the nodes in this tree, are then recorded as questions. Questions for individual

graphemes and for the word boundary are added as well. This question set is then used

to construct the decision tree for training and recognition of the context dependent

system described in Section 5.5. The bottom-up clustering results in a tree that could

look like the one in Figure 5.3.

5.6.5 Hybrid Entropy

The generation of the hybrid questions starts off like in Subsection 5.6.4. A system

where all graphemes share a codebook is trained and the number of samples per ptree

52

Generation of Pronunciation Dictionaries 5.6 Question Generation

a, i b c d e f g h i j k l m n o p q r s t u v x y z

a, i b c d e f h i j l m n o p g, q, k r t u v x y s, z
...

...

a b c d e f g h i j k l m n o p q r s t u v w x y z

l, n, y, u, v t, c, x s, z d, o, e, g, k, q, f, h, a, i, m, w, r, p, b, j

Extensive Search

l, n, y, u, v, t, c, x s, z, d, o, e, g, k, q, f, h, a, i, m, w, r, p, b, j

Figure 5.4: Sketches the hybrid clustering method: bottom-up clustering followed by

an exhaustive search and recursive repetition on each subset

is evaluated. The entropy distance is used as a distance measurement. The cluster-

ing algorithm proposed by [20] is a hybrid of the top-down and bottom-up clustering

technique. Starting with a set of mono graphemes the closest graphemes are clustered

together in a bottom-up procedure until the number of partitions can be exhaustively

evaluated. This involves the comparison of all possible groupings of clusters resulting

in two maximally separated groups. The best partition is chosen as the beginning of

the subsequent recursion step. See Figure 5.4 for the first step of the hybrid clustering

method. On each resulting subset the bottom-up clustering step is performed again

followed by an exhaustive search. If the subsets in each recursion step are stored in a

top-down matter they build a tree. Again the intermediate nodes serve as questions

or put in other words all final partitions resulting after the exhaustive search step are

recorded as questions. Again questions concerning a single grapheme and the word

boundary are added.

53

Generation of Pronunciation Dictionaries 5.7 Three-lingual Recognizer

5.7 Three-lingual Recognizer

To study the scope of multilingual recognizers in combination with graphemes as sub-

units two different methods to combine the acoustic models are investigated. As already

discussed in Chapter 3 multilingual recognizers could be made up of parallel monolin-

gual once. The context modeling for this scenario is shown in the first Picture in Figure

5.5. Models are trained separately for each language and no data sharing takes place.

The multilingual component in this system is the feature extraction. This is not the

true multilingual idea that this project would like to examine further and is therefore

only mentioned here for information purposes.

5.7.1 Language-Mixed Context Modeling: ML3-Mix

Similarly to the language-mixed context modeling of the multilingual phoneme recog-

nizers of the GlobalPhone project [14], for each grapheme a model is provided and

trained with all given data. A grapheme belonging to more than one language (e.g. a

German ”A”, a Spanish ”A” and an English ”A”) is then trained with data from all the

languages (the model for an ”A” is trained with Spanish, English and German data).

This way to model context is referred to as ML3-Mix in this project. The knowledge

about language affiliation of each grapheme is dismissed in this approach.

Like in the monolingual case the ML3-Mix uses a clustering based on the entropy dis-

tance to generate context dependent models. The multilingual question set is derived

by combining the phoneme-grapheme questions of each underlying language. During

the clustering procedure it doesn’t matter to which language a context belongs. It is

thus possible that a polygrapheme is modeled with contexts from different languages.

The combination of all languages leads to a reduction of model parameters.

In the case of phoneme recognizers it makes sense to combine phoneme categories that

then share data among languages since a phoneme as defined by the IPA [18] is pro-

nounced in a specific way independent of the language, e.g. the IPA-notation is language

independent. Therefore it can be argued that the data for a phoneme category is very

similar and it makes sense to model it language independent. It the case of graphemic

54

Generation of Pronunciation Dictionaries 5.7 Three-lingual Recognizer

Spanish
SP−b

Deutsch
DE−b

Englisch
EN−b Englisch

Deutsch

Spanish
ML3−b

ML3−b

ML3−b

Deutsch

Englisch

Spanish
ML3−b/SP

ML3−b/DE

ML3−b/EN

Figure 5.5: Three methods to do multilingual context modeling (ML-separate, ML3-

Mix and ML3-Tag)

subunits this is a whole other issue. A Spanish ”V” for example is pronounced very

differently from an English ”V” and the acoustic data is thus not necessarily expected

to be similar. How much the loss due these inaccuracies is will be seen in the next

Chapter 6. See the middle Picture in Figure 5.5 for language-mixed context modeling.

5.7.2 Language-Tagged Context Modeling: ML3-Tag

Each grapheme is tagged with a language ID and there is an individual distribution

for each tagged grapheme. But for each grapheme (like in the case of the ML3-Mix)

they all share a codebook independently of their language affiliation. The codebooks

are trained with speech data across all languages, but the mixture distributions are

created language specific. See the picture to the far right in Figure 5.5 for a visual

example.

The phoneme-grapheme questions for the clustering procedure are derived by combin-

ing the same questions for each language to one language independent question. For

example the English question VOWELS A EN E EN H EN I EN O EN U EN Y EN,

the Spanish question VOWELS A+ SP A SP E+ SP E SP I+ SP I SP O+ SP O SP

U+ SP U SP Y SP and the German question VOWELS A DE E DE R DE I DE

O DE U DE Y DE A DE O DE U DE are all merged into the language independent

55

Generation of Pronunciation Dictionaries 5.8 Porting to new Languages

question VOWELS A DE E DE I DE O DE U DE Y DE A DE O DE R DE U DE

A EN E EN I EN O EN H EN U EN Y EN A+ SP A SP E+ SP E SP I+ SP I SP

O+ SP O SP U+ SP U SP Y SP. Questions asking for the language are added. The

clustering procedure then decides if questions concerning language affiliation are more

important than graphemic context. Thus training data of different languages are only

combined if a sufficient similarity can be stated. It can be looked at as a data driven

multilingual acoustic modeling approach without giving up the advantage to save pa-

rameters.

For graphemes this way of modeling acoustics seems more promising since only those

graphemes are combined into one model across languages if their acoustic representation

is similar to each other.

5.8 Porting to new Languages

Porting is defined in [14] as transferring learned language knowledge of a speech rec-

ognizer to another (during training unseen) language. There are different methods to

port language described in more detail in [14]. Tanja Schultz talks of Bootstrapping if

there is a great amount of data in the target language and of Adaptation if there is only

limited data material at hand. In a Cross-Lingual Transfer there is no data at hand at

all. In this Diplomarbeit it is investigated if knowledge from the ML3-Mix recognizer is

helpful when building a Swedish recognizer from scratch. In more detail it is tested if

porting acoustic models of the ML3-Mix recognizer to initial Swedish acoustic models

results in an increase of recognition accuracy.

5.8.1 Bootstrapping Swedish

Swedish training data is at hand. The problem is how to initialize the Swedish recog-

nizer, e.g. the calculation of the initial labels. The models used for the initialization are

called seed models. They act as a start basis. After initialization the models are trained

with a considerable amount of Swedish data. Simply said the acoustic models of the

56

Generation of Pronunciation Dictionaries 5.9 Language Model

Swedish recognizer are initialized with the acoustic models of the ML3-Mix recognizer

to write initial Swedish labels. Then the Swedish recognizer, its acoustic models, are

trained in the usual way with Swedish data.

A mapping defines which grapheme model in Swedish is bootstrapped with which

grapheme model in the ML3-Mix case. The ML3-Mix codebooks and distributions

are then basically copied into the Swedish ones.

In case of graphemes as subunits the question arises if the bootstrapping process even

makes sense. Because in the phoneme IPA notation the phonemes noted by the same

IPA-symbol are similar to each other independent of the language, it can be argued

that the acoustic data is alike and it thus makes sense to use models from the same

IPA-symbol in another language to initialize it in the new target language. No similar-

ity is guaranteed in case of graphemes, therefore it is left open until the next Chapter

6 if bootstrapping can help improve or speed up training and recognition results.

5.9 Language Model

Because the Swedish baseline system (see page 37) showed poor recognition performance

an increased effort was made to collect Swedish data in order to create an improved

language model. A web crawler was designed by [22] to collect Swedish HTML-pages.

No special attention was given to the content of the HTML-pages, as long as they

belonged to the domain .se. During text normalization only whole sentences were cut

out and a minimum sentence length was required to get rid of unwanted parts.

The language model toolkit is not part of the JANUS distribution and was written by

Klaus Ries [23].

57

Chapter 6

Experimental Results

To see if this project’s approach is suitable to automatically produce pronunciation

dictionaries, speech recognizers in English, German, Spanish and Swedish were trained

using the described algorithms in the previous Chapter 5. A multilingual recognizer

using the English, Spanish and German data was trained as well to see wether multi-

lingual methods work for grapheme subunits and if they can improve or simplify the

creation of a recognizer in a new language.

6.1 Grapheme-based Recognizers and Phoneme-

Grapheme Questions

The context independent recognizers were trained from scratch and, after the initial

sample extraction (refer to Section 5.3), trained for 6 cycles (each cycle consisting of

an LDA calculation, sample extraction, Kmeans codebook initialization and 6 training

iterations → Section 5.4).

Using labels from the last trained context independent system a context dependent

recognizer was created using phoneme-grapheme questions in the according language.

The grapheme-phoneme mapping used to transform linguistic phoneme questions into

grapheme based questions is shown in the Appendix B.2.1. Different context widths

were tried out during clustering: a true trigrapheme (P=1, Q=1), quintgrapheme (P=2,

58

Experimental Results 6.1 Grapheme-based Recognizers

Q=2) and septgrapheme (P=3, Q=3) system, as well as a hybrid trigrapheme (P=2,

Q=1) and quintgrapheme (P=3, Q=2) system. Hybrid meaning here in the example

of a trigrapheme system (P=2, Q=1) that the collected contexts in the ptrees are

quintgraphemes each modeled by an individual distribution. These quintgrapheme

based models are then trained for 2 iterations. The clustering works based on these

trained models, but the final clustered polygraphemes are trigraphemes. These hybrid

systems allow the clustering procedure to work on finer contexts, while the output

remains more generalizing.

6.1.1 English

Table 6.1 shows the results for the English context dependent phoneme-grapheme rec-

ognizers, clustered with various widths, 3000-Models and language parameters z=25

and p=2.

Context Width

What can be clearly seen is that performance decreases with increasing context width.

This is due to the fact that a wider context width creates finer models, e.g. the dis-

tributions and codebooks model polygraphemes in more detail (for example a separate

model for each quintgrapheme), and thus the system does not generalize well anymore.

Besides there might not be enough training material available for each of these ”spe-

cialized” contexts. The most promising results are reached by the English trigrapheme

(one P=1, Q=1) system. Performance drops from a WA (Word Accuracy) of 80.8%

to 80.5% in the fourth context dependent training cycle which can be explained by

over-training.

The hybrid trigrapheme (P=2, Q=1) system is trained further for an additional three

trainings cycles. It almost reaches performance of the true trigrapheme system.

59

Experimental Results 6.1 Grapheme-based Recognizers

3000-/ 4500- Models

For the English recognizer it was further investigated if performance of the quint-

grapheme system can be increased by allowing more models during the clustering pro-

cedure (see Table 6.2). Reaching 78.0% WA after the first context dependent training

cycle shows an improvement of 2.7% absolute compared to the system with only 3000

models. It has to be assumed though that the 4500-Model system generalizes worse due

to more in detail modeling and the poorer performance compared to the trigrapheme

system.

Language Model Parameters

Language parameter adaptation (see Section 2.2.3) results are shown in Table A.2

on page 86 for the context independent recognizer (WA-CI: 28.4%). The results are

not very smooth, e.g. no clear maximum is recognizable. All z-, and p-parameters

promising good results were tested again on the final context-dependent system (the

most promising was taken marked by ♣ in Table 6.1). These results are listed in Table

English (CI: 28.4)

Baseline (CD: 87.3)

TC P=1, Q=1 P=2, Q=1 P=2, Q=2 P=3, Q=2 P=3, Q=3

1 79.2 76.1 75.3 76.8 74.4

2 79.8 79.3 77.0 77.6 75.4

3 80.8 ♣ 79.8* 76.9 77.0 75.1

4 80.5 80.1 78.3 77.4 76.4

5 - 80.2 - - -

6 - 80.2 - - -

7 - 79.4 - - -

Table 6.1: Word accuracy in % of the English recognizer using phoneme-grapheme

questions. (TC denotes Training Cycle)

60

Experimental Results 6.1 Grapheme-based Recognizers

English(P=2,Q=2)

TC 3000-Models 4500-Models

1 75.3 78.0

2 77.0 78.0

3 76.9 77.6

4 78.3 77.6

Table 6.2: Comparison of Word accuracy in % of the English recognizer using quint-

graphemes as subunits and allowing 4500 models to be clustered comparing to 3000

clustered models (TC denotes Training Cycle)

A.3 on page 87. The maximum word accuracy rate of 80.9% was reached when setting

z to 29 and p to 4.

Baseline Comparison

The final most promising English system reaches 80.9% word accuracy on the devel-

opement set and 77.8% on the evaluation set (z=29 and p=4). This is still significantly

below the basline with 87.3% word accuracy for the development set and 84.4% word

accuracy for the evaluation set. English is a language with a relatively difficult phoneme

to grapheme alignment. It was expected to give the worst performance in this project.

See Table 6.3 for the final results.

61

Experimental Results 6.1 Grapheme-based Recognizers

6.1.2 German

Table 6.4 shows the results for the German context dependent phoneme-grapheme

recognizers, clustered with various widths, 3000-Models and language parameters z=25

and p=1.

Context Width

Performance of the German recognizers (compared to the English recognizer from

above) does decrease with increasing context width too (for reasons mentioned above),

but slower (compare the trigrapheme system (P=1, Q=1) with the septgrapheme sys-

tem (P=3, Q=3)). It is interesting that the hybrid trigrapheme system (P=2, Q=1)

performs up to 1.1% better than the true trigrapheme system. The author reasons

that this is due the fact that for the clustering procedure more detailed models are at

hand, e.g. quintgrapheme contexts are each modeled by a separate distribution, thus

allowing the clustering procedure to be more precise in combining models. The finite

system still generalizes well, since it goes back to only model on a trigrapheme level.

WORD RECOGNITION PERFORMANCE:

EVAL DEV

Correct 81.5% (3205) 84.4% (3166)

Substitutions 15.0% (589) 13.1% (493)

Deletions 3.5% (138) 2.5% (94)

Insertions 3.7% (144) 3.5% (130)

Errors 22.2% (871) 19.1% (717)

WORD ACCURACY 77.8% 80.9%

BASELINE 84.4% 87.3%

Table 6.3: Final word accuracy rates of the English grapheme based ♣-system. Eval-

uated on the development and evaluation set (z=29 and p=4). Numbers enclosed in

brakets denote number of words

62

Experimental Results 6.1 Grapheme-based Recognizers

Language Model Parameters

Language parameter adaptation can be seen on page 88 in Table A.4 for the context

independent recognizer (CI: 53.0%). Again the decoder reacts very sensitive to param-

eter changes and there is more than one region that looks promising. Table A.5 on page

89 shows results of the language parameter adaptation on the most promising German

system marked by ♦ in Table 6.4. The results of the language parameter adaptation in

the context dependent case are smoother and it seems that 83.0% (e.g. z=25 and p=1)

word accuracy is the maximum one can get out of the phoneme-grapheme recognizer

for German.

German (CI: 53.0)

Baseline (CD: 82.3)

TC P=1, Q=1 P=2, Q=1 P=2, Q=2 P=3, Q=2 P=3, Q=3

1 81.6 79.8 81.6 80.3 79.5

2 81.5 82.4 81.4 80.9 79.9

3 81.9 82.8* 81.6 81.3 80.5

4 81.7 83.0 81.5 81.2 81.3

5 - 83.0 ♦ - - -

6 - 82.8 - - -

7 - 82.8 - - -

Table 6.4: Word accuracy in % of the German recognizer using phoneme-grapheme

questions. (TC denotes Training Cycle)

Baseline Comparison

The German system (z is set to 25 and p to 1) reaching a word accuracy of 83% for

the development set shows an improved word accuracy rate of 0.7% absolute compared

to the basline system (82.3% development set). But the evaluation shows an increased

WE of 4.9% absolute, whereas the basline system acctually shows improved WA of

63

Experimental Results 6.1 Grapheme-based Recognizers

4.7% absolute. Nontheless the results show that using graphemes as subunits in case

of German performs comparably well to a system based on phonemes as subunits. See

Table 6.5 for the final results.

WORD RECOGNITION PERFORMANCE:

EVAL DEV

Correct 82.0% (2789) 89.2% (2617)

Substitutions 15.3% (519) 10.1% (297)

Deletions 2.8% (95) 0.7% (20)

Insertions 3.8% (131) 6.2% (181)

Errors 21.9% (745) 17.0% (498)

WORD ACCURACY 78.1% 83.0%

BASELINE 87.0 % 82.3%

Table 6.5: Final word accuracy rates of the German grapheme based ♦-recognizer.

Evaluated on the development and evaluation set (z=25 and p=1). Numbers enclosed

in brakets denote number of words

64

Experimental Results 6.1 Grapheme-based Recognizers

6.1.3 Spanish

Table 6.6 shows the results for the Spanish context dependent phoneme-grapheme rec-

ognizers, clustered with various widths, 3000-Models and language parameters z=25

and p=0.

Spanish (CI: 44.6)

Baseline (CD: 75.5)

TC P=1, Q=1 P=2, Q=1 P=2, Q=2 P=3, Q=2 P=3, Q=3

1 72.6 73.2 71.0 71.1 68.2

2 72.9 73.4 71.2 71.6 68.3

3 72.9 73.6* 71.0 71.8 68.6

4 73.0 73.9 71.1 70.0 68.2

5 - 73.9 - -

6 - 74.0 ♠ - -

7 - 73.9 - -

Table 6.6: Word accuracy in % of the Spanish recognizer using phoneme-grapheme

questions (TC denotes Training Cycle)

Context Width

Performance of the Spanish recognizer (similar to the German recognizer) does decrease

with increasing context width as well and shows an optimal performance for the hybrid

trigrapheme system (P=2, Q=1). Refer to the explanations given for the German

recognizer in Subsection 6.1.2.

Language Model Parameters

Language parameter adaptation can be seen on page 90 in Table A.6 for the context in-

dependent recognizer (CI: 44.6%). Again the decoder reacts very sensitive to parameter

changes (ranging form around 41% to roughly 49% WA in this case). Table A.7 on page

65

Experimental Results 6.1 Grapheme-based Recognizers

91 shows results of the language parameter adaption on the most promising Spanish

system marked by ♠ in Table 6.6. Since the author was running out of time and started

to investigate the language model parameters at the wrong end first, parameters z=25

and p=5 were taken to evaluate the final system. However performance is expected to

improve if searching further into the direction 24 <= z <= 26 and p >= 6.

Baseline Comparison

The Spanish grapheme recognizer reaches a WA of 73.2% for the development set and

comes close to the baseline’s WA of 74.5%. The evaluation set performs surprisingly

well with a WA of 82.5% which is almost 10% absolute decrease in WE compared to

the development set. Since the results of the basline and the grapheme based speech

recognizers are so close together this can be seen as confirmation of the close grapheme

to phoneme relation in Spanish. It thus seems to make no difference in Spanish if

the models are phoneme based or grapheme based. The Spanish recognizers (both the

baseline and the ones built during this project) fall short of the expectations. A reason

for this is the poor data preparation, the acoustic data was not cut very carefully. See

Table 6.7 for the final results.

66

Experimental Results 6.1 Grapheme-based Recognizers

WORD RECOGNITION PERFORMANCE:

EVAL DEV

Correct 86.7% (5217) 77.7% (5465)

Substitutions 9.8% (590) 17.3% (1217)

Deletions 3.5% (212) 5.0% (349)

Insertions 4.1% (249) 4.6% (321)

Errors 17.5% (1051) 26.8% (1887)

WORD ACCURACY 82.5% 73.2%

BASELINE 83.7% 75.5%

Table 6.7: Final word accuracy rates of the Spanish grapheme based ♠-recognizer.

Evaluated on the development and evaluation set (z=25 and p=5). Numbers enclosed

in brakets denote number of words

6.1.4 Summary

The grapheme-based speech recognizers show promising results. Especially for

languages with a close grapheme to phoneme relation it seems to be irrelevant if

the models are based on graphemes or phonemes. In case of English the phoneme

recognizer is still significantly better than the grapheme based one.

It is also obvious that the recognizers are sensitive towards the context width with

which they were collected and trained and the context width of their final models

with which they were clustered. Table 6.8 shows another example of comparing

different context widths to cluster models. New context dependent recognizers using

different context widths were created from systems P = 2, Q = 1 in Table 6.1, 6.4,

6.6 marked by ?. This time it can be seen for all languages that the hybrid system

(P=2, Q=1) looks most promising. As mentioned above the author believes that this

is due to the fact that clustering can be done more precisely (distributions are based

on quintgraphemes thus enabling more in detail and more accurate modeling) without

loosing the advantage of good generalization of the final models (trigrapheme models).

67

Experimental Results 6.1 Grapheme-based Recognizers

LID P=1, Q=1 P=2, Q=1 P=2, Q=2

English 79.7 80.1 79.1

Spanish 73.2 73.9 71.4

German 82.3 83.1 81.6

Table 6.8: Word accuracy in % for the recognizers changing context width of systems

P = 2, Q = 1 in Table 6.1, 6.4, 6.6 marked by ?

68

Experimental Results 6.2 Question Set Evaluation

6.2 Question Set Evaluation

It was experimented with different question sets on the English, German and Spanish

recognizers. The context independent systems are the same as in Tables 6.1, 6.6 and

6.4. Generation of the individual question sets is described in Section 5.6 starting on

page 44. It may seem surprising that the phoneme-grapheme question set does not

perform best, but is outperformed by the singletons. Linguistic questions are derived

on a phoneme basis, thus characterizing certain sounds that belong to the same sound

class, e.g. are pronounced in a somewhat similar way. In the case of graphemes though,

the pronunciation of a grapheme depends on its left and right context (e.g. a German

”s” with a succeeding ”c” and ”h” is pronounced very differently than and an ”s”

followed by an ”o”). To cluster classes together such that the acoustic material in one

class is close, meaning they represent similar sounds, is in case of graphemes a question

of which grapheme is to the right and left, whereas in case of sounds (phonemes) it is

a question of to which sound class does the phoneme belong (is it a fricative, a plosive,

etc.). This explanation is backed up by the fact that singleton questions perform

less good in Spanish and best in English. Because the grapheme-phoneme mapping in

Spanish is quite simple, the graphemes in Spanish can be looked at as almost phonemes.

Thus the pronunciation of a grapheme (e.g. which models have similar acoustic data) is

not as dependent on the neighboring graphemes, but more on the fact to which sound

class it belongs to. In case of English with a loose phoneme-grapheme relation the

linguistically motivated questions introduce errors, whereas the singletons are better

able to characterize pronunciation and therefore acoustics.

The Hybrid Entropy questions perform generally better than the Bottom-Up questions,

because the bottom-up clustering procedure imposes no closeness constraints on the set

excluded from clustering (i.e. the complement of the cluster). Thus the acoustic models

clustered together are similar to each other in the sense of the entropy distance criteria,

but the remaining models do not have to fit together at all. The hybrid clustering

procedure tries to ensure that the partitions are maximally separated. The classes

defined by these questions ensure better similarity inside a class and greater distance

69

Experimental Results 6.2 Question Set Evaluation

to other classes thus making the clustering procedure more accurate.

Language (P=1,Q=1)

Ques Type English German Spanish

Phoneme-Grapheme 76.1 79.1 73.2

Bottom-Up Entropy 74.8 79.8 72.2

Hybrid Entropy 77.5 80.7 72.5

Singleton 78.2 81.4 71.3

Table 6.9: Word accuracy in % of the recognizers using different questions

70

Experimental Results 6.3 Three-lingual Recognizers

6.3 Three-lingual Recognizers

The monolingual recognizers from the above sections are used as baselines for the

multilingual ones. The multilingual recognizers are trained with a third of the Spanish,

a third of the English and a third of the German data. All in all the multilingual

recognizers used the same amount of data across languages like the monolingual ones

used for one specific language. It can thus be said that the multilingual recognizers use

less data per language. The preprocessing, HMM-structure and training procedures

are equivalent to the monolingual systems (refer to Chapter 5).

6.3.1 ML3-Mix

As seen in Table 6.10 the ML3-Mix system performs clearly worse than the monolingual

recognizers tested on the target languages Spanish, English and German. Multilingual

speech recognition based on graphemes as subunits does not reach performance of the

monolingual grapheme based recognizers. To ensure that the differences in performance

are not a matter of how many parameters are available to the system per language, a

new context dependent recognizer was trained, allowing 3-times as many polygrapheme

models (9000 Models). Results for the 9000-Models recognizer are slightly better, but

they do not improve significantly to the monolingual baselines (refer to Tables 6.1, 6.6,

6.4). The differences in performance can be explained by mixing graphemes belonging

to different languages which results in model inaccuracies.

Further it can be seen that the context independent ML3-Mix systems still improves

significantly if trained for more than the 6 cycles of 6 training iterations as used in

the monolingual trainings case (see Table 6.12). The author assumes that because the

models have to stand for a wider range of acoustic data (graphemes from different lan-

guages instead of graphemes belonging to only one language), it takes more time to

learn the mapping because it is more difficult. The intentions behind this was to see

how good a context independent recognizer can get to see if it makes sense to use a

context independent recognizer for bootstrapping Swedish later on or a context depen-

dent ML3-Mix recognizer.

71

Experimental Results 6.3 Three-lingual Recognizers

Using different question sets (as shown in Table 6.11) doesn’t seem to hurt performance

averaged over the languages. The results are similar to the ones reached in Section 6.2.

As already mentioned before mixing phonemes among languages makes sense because

the notation is based on pronunciation and thus the acoustic data for a phoneme is sim-

ilar across languages. But for graphemes this is not true. A ML3-Mix recognizer based

on graphemes can make significant errors by mixing data from graphemes belonging to

different languages: they might be pronounced totally different, meaning the acoustic

data is not similar to each other.

ML3-Mix (P=1, Q=1)

TC English (CI: 19.1) Spanish (CI: 32.1) German (CI: 27.7)

3000 Models 9000 Models 3000 Models 9000 Models 3000 Models 9000 Models

1 67.1 68.1 66.3 66.4 73.1 73.4

2 67.5 68.1 65.4 66.1 73.0 73.4

3 68.5 66.7 65.8 65.7 73.0 74.0

4 69.0* 68.0 65.6* 65.9 74.1* 74.4

Table 6.10: Word accuracy in % of the ML3-Mix recognizer using phoneme-grapheme

questions and tested on English, Spanish and German data (TC denotes Training Cycle)

6.3.2 ML3-Tag

For the above mentioned reasons it makes sense to tag each grapheme with the language

it belongs to. The system then can decide itself if the acoustic data of graphemes is

similar to each other across languages and can thus be modeled together or if the lan-

guage specific differences require a separate modeling. Evaluation of the decision tree

shows that the language questions (English, German or Spanish) are used throughout

the tree.

Performance of the ML3-Tag system using phoneme-grapheme questions shows a max-

imum word accuracy rate of 72.3% for English where as the ML3-Mix system only

72

Experimental Results 6.3 Three-lingual Recognizers

ML3-Mix (P=1, Q=1)

TC English (CI: 19.1) Spanish (CI: 32.1) German (CI: 27.7)

P-G Hybrid Singleton P-G Hybrid Singleton P-G Hybrid Singleton

1 67.1 67.3 68.9 66.3 63.3 65.9 73.1 73.3 71.8

2 67.5 68.4 66.1 65.4 63.6 64.4 73.0 73.4 70.7

3 68.5 68.9 18.7 65.8 62.6 43.5 73.0 74.0 43.5

4 69.0 68.2 64.6 65.6 63.0 65.0 74.1 73.3 73.2

Table 6.11: Word accuracy in % of the ML3-Mix recognizer using phoneme-grapheme

questions, hybrid questions and singleton questions. Tests are performed on English,

Spanish and German data (TC denotes Training Cycle)

ML3-Mix CI Recognizer

TC English Spanish German

6 19.1** 32.1** 27.7**

7 19.6 32.4 26.2

8 24.7 37.1 28.5

9 24.0 37.3 28.6

Table 6.12: Word accuracy in % of the three-lingual context independent recognizer

using phoneme-grapheme (P-G) questions and tested on English, Spanish and German

data (TC denotes Training Cycle)

73

Experimental Results 6.3 Three-lingual Recognizers

reaches 69% WA. For Spanish the ML3-Tag system reaches a WA of 67.7% compared

to maximally 65.8% in the ML3-Mix case. It also looks similar for German; 75.6%

WA for ML3-Tag and 74.1% WA for the ML3-Mix system. The WE decreases approx-

imately by 2.2% averaged over the languages in the ML3-Tag system. The gain in WA

has to be accounted to the language information.

Using different question sets shows again that singelton questions perform best for En-

glish or German and worst for Spanish. The best WA averaged over the languages

shows that the question sets almost perform equally with WE differences less than 1%.

ML3-Tag (P=1, Q=1)

TC English (CI: 25.9) Spanish (CI: 38.5) German (CI: 40.7)

P-G Hybrid Singleton P-G Hybrid Singleton P-G Hybrid Singleton

1 69.5 68.1 70.5 65.7 64.9 66.1 75.1 74.9 73.4

2 72.3 69.9 72.0 66.7 65.1 64.6 75.5 75.0 73.3

3 71.4 69.8 71.6 67.7 65.1 65.6 74.8 76.0 74.8

4 71.6 70.6 71.6 67.1 65.1 65.5 75.6 75.6 75.7

Table 6.13: Word accuracy in % of the ML3-Tag recognizer using phoneme-grapheme

(P-G) questions, hybrid questions and singleton questions. Tests are performed on

English, Spanish and German data (TC denotes Training Cycle)

74

Experimental Results 6.4 Swedish

6.4 Swedish

6.4.1 Flatstart vs. Bootstrapping

One Swedish recognizer was built and started up in the same way as the English, Ger-

man and Spanish recognizer described in Section 5.3. Two other Swedish recognizers

were bootstrapped with a CI-ML3-Mix and a CD-ML3-Mix system (Bootstrapping is

done with CD-system P = 1, Q = 1 in Table 6.10 marked by ? and with the CI-system

in Table 6.12 marked by ??). All recognizers were trained with 6 training cycles before

changing to a context dependent system. The context width during clustering and for

the final models was set to P = 1 and Q = 1. The hybrid trigrapheme system (P=2,

Q=1) was not considered since at the start of the experiments the outcome of the

context-width tests was unknown and to ensure consistency the parameters remained

at these values during the remaining experiments as well. As seen by the results of

Table 6.14 bootstrapping does not seem to improve performance nor does it seem to

hurt recognition accuracy after enough training iterations. It is as if the recognizer

forgets its initial parameters.

But looking at the situation right after the first trainings cycle the Swedish flatstart

recognizer only reaches a word accuracy rate of 1.3% whereas the bootstrapped rec-

ognizer (with system in Tabel 6.10 marked by ?) reaches a WA of 19.0% right after a

first trainings cycle (see Table 6.14). Bootstrapping can thus be seen to speed up the

trainings procedure of a recognizer, thus saving development time and money.

In case of Swedish, bootstrapping does not seem to improve recognition accuracy after

the same amount of trainings iterations, but it does provide better WA results sooner.

It can also be looked at as an easy and alternative way (compare to Section 5.3) to

initialize models to generate first labels.

6.4.2 Hybrid-Entropy vs. Singleton Questions

As already seen in the above Section 6.2 the Singleton questions perform better than

the other question sets for English and German. This is also the case for the Swedish

75

Experimental Results 6.4 Swedish

Swedish (P=1, Q=1)

TC Flatstart Bootstrap ** Bootstrap *

CI 1 1.3 - 19.0

CI 2 - - -

CI 3 - - -

CI 4 - - -

CI 5 - - -

CI 6 23.0 23.9 23.2

CD 1 52.1 ♥ 52.0 50.4

CD 2 52.9 52.7 51.3

CD 3 52.1 51.9 51.1

CD 4 52.0 53.0 50.6

Table 6.14: Word accuracy in % of the Swedish recognizer using hybrid entropy ques-

tions. Bootstrapping is done with system P = 1, Q = 1 in Table 6.10 marked by ?

and with the context independent multilingual system in Table 6.12 marked by ?? (TC

denotes Training Cycle)

76

Experimental Results 6.4 Swedish

recognizer (see Table 6.15). Since we used the Swedish language to test our speech

recognition training without using any human expert knowledge, only data-driven ques-

tion generation (Hybrid-Entropy questions) and singletons were considered. Singleton

questions show an improved WA of 2.4% absolute compared to the best Hybrid-Entropy

question set result. See Section 6.2 above for an explanation.

Swedish (P=1, Q=1)

TC Bootstrap * (CI: 23.2)

Hybrid Singleton

1 50.4 51.7

2 51.3 53.5

3 51.1 53.2

4 50.6 53.74

Table 6.15: Word accuracy in % of the Swedish recognizer using hybrid entropy ques-

tions and singleton questions. Bootstrapping is done with system P = 1, Q = 1 in

Table 6.10 marked by ? (TC denotes Training Cycle)

6.4.3 Language Model

System marked by ♥ in Table 6.14 with a word accuracy of 52.1% was evaluated using

the old language model (obtained from [5]). The performance of the same system, but

using the newly estimated language model reached a word accuracy rate of 53.1%. The

new language model is not much better than the old one as can be seen from comparing

their perplexities.

A language model calculated from the combined data makes better use of 3-grams

and has a slightly lower perplexity. The performance of the recognizer is still not

significantly better, but reaches a word accuracy of 53.7% on the Swedish ♥-system.

See Table 6.16 for a comparision among the characteristics of the different language

models.

77

Experimental Results 6.4 Swedish

The increased perplexity of the new language model is assumed to be compensated

by an improved use of trigrams and bigrams. The language model from the combined

data offers smaller perplexity and better 3-gram and 2-gram use.

6.4.4 Language Model Parameters

Initially the language parameters were set to z=25 and p=1 for all experiments. Lan-

guage parameter adaptation was performed on the so far most promising Swedish sys-

tem marked by 4 in Table 6.15 and the old language model calculated by [5] was used

to be comparable to the baseline.

Table A.1 on page 85 shows the language model parameter adaptation results. Param-

eters set to z=25 and p=-2 show a maximum word accuracy rate of 54.4%.

6.4.5 Baseline Comparison

The Swedish grapheme recognizer reaches a WA of 54.4% for the development set (z=25

and p=-2) and outperforms the basline’s WA of 51.4%. Also on the evaluation set the

performance of the grapheme based speak recognizer beats the basline’s WA by 0.4%

absolute. See Table 6.17 for the final results.

Language Model

LM-Old [5] LM-New Combination

Perplexity 1054 1199 973

WC Vocabulary 19661 19662 19662

WC LM 1441770 25454141 26895911

1-grams 57.22% 30.01% 27.2%

2-grams 32.24% 41.09% 41.11%

3-grams 10.53% 28.9% 31.69%

Table 6.16: Characteristics of the different Swedish Language Models (WC stands for

word count)

78

Experimental Results 6.4 Swedish

The Swedish recognizers (both the baseline and the ones built during this project) show

poor performance compared to the other recognizers. A reason for this is thought to be

an inadequate language model. The perplexity is still too high even for the combined

language model.

WORD RECOGNITION PERFORMANCE:

EVAL DEV

Correct 57.8% (1781) 59.4% (1873)

Substitutions 35.0% (1079) 31.7% (1001)

Deletions 7.2% (222) 8.9% (281)

Insertions 10.1% (311) 4.9% (156)

Errors 52.3% (1612) 45.6% (1438)

WORD ACCURACY 47.7% 54.4%

BASELINE 47.3% 51.4%

Table 6.17: Final word accuracy rates of the Swedish grapheme based 4-system. Eval-

uated on the development and evaluation set (z=25 and p=-2). Numbers enclosed in

brakets denote number of words

79

Chapter 7

Conclusion

This Diplomarbeit examined the possibilities of graheme based speech recognition.

Using graphemes as subunits to model speech enables easy and fast creation of

dictionaries. Different question sets were generated to produce context dependent

speech recognizers without using linguistic knowledge and thus eliminating the need of

a language expert.

Multilingual grapheme based speech recognizers were built and different ways were

examined on how to combine the acoustic models of each language.

The multilingual recognizers built a basis to bootstrap a Swedish recognizer thus

porting the multilingual knowledge over to the Swedish recognizer.

The results on the development sets for the English, Spanish, German and Swedish

recognizer were promising and showed that it seems reasonable to build grapheme

based speech recognizers. The data-driven question generation resulted in question

sets that performed in some cases better than the baselines and in others came close

to it. The results are very promising since the questions were generated with simple

clustering algorithms using the entropy distance described in this Diplomarbeit.

Future work will have to investigate if it enhances performance to distinguish between

left context questions and right context questions or if using the likelihood distance

results in better question sets.

80

Conclusion

The multilingual recognizers showed that their performance does not come close

to the monolingual recognizers. This confirms that more specialized models perform

better than generalizing ones provided the system requirements are known before

hand. It has to be questioned if the idea of a global phoneme set introduced by [14]

can be transported onto a global grapheme set. But porting the knowledge of the

multilingual systems to a Swedish recognizer showed that this provides a good way

to initialize the Swedish models and provides reasonable performance rates after a

first training cycle. Future work should investigate if grapheme based multilingual

recognizers perform equally well with limited data material or if they can be used as a

language identifying component.

81

Bibliography

[1] K.Lenzo A.W.Black and V.Pagel. Issues in building general letter to sound rules.

Workshop on Speech Synthesis, Jenolan Caves, Australia. ESCA, 1998.

[2] K.Lenzo A.W.Black and V.Pagel. Letter to sound rules for accented lexicon com-

pression. Sydney,Australia. ICSLP, 1998.

[3] Tilo Sloboda and Alex Waibel. Dictionary learning for spontaneous speech recog-

nition. Philadelphia, USA. Proceedings of the ICSLP 96, October 1996.

[4] B. Raj R. Singh and R. M. Stern. Automatic generation of subword units for

speech recognition systems. In IEEE Transactions on Speech and Audio Processing,

volume 10, pages 89–99, February 2002.

[5] Sebastian Stüker. Automatic generation of pronunciation dictionaries for new,

unseen languages by voting among phoneme recognizers in nine different languages.

Semester project, University Karlsruhe, Germany and Carnegie Mellon University,

USA, 2002. Under the supervision of Professor Dr. Alex Waibel and Dr. Tanja

Schultz.

[6] Toshiaki Fukada and Yoshinori Sagisaka. Automatic generation of a pronuuncia-

tion dictionary based on pronunciation network. IPSJ SIGNotes Spoken Language

Processsing. Information Processing Society of Japan, 2001.

82

BIBLIOGRAPHY BIBLIOGRAPHY

[7] Stephan Kanthak and Hermann Ney. Context-dependent acoustic modeling using

graphemes for large vocabulary speech recognition. In IEEE Signal Processing

Society, ICASSP in Orlando FL, pages 845–848, 2002.

[8] J. Billa M. Noamany A. Srivastava D. Liu R. Stone J. Xu J. Makhoul and

F. Kubala. Audio indexing of arabic broadcast news. In IEEE Signal Process-

ing Society, ICASSP in Orlando FL, pages 5–8, 2002.

[9] SIL International. Ethnologue, 2003

. http://www.ethnologue.com.

[10] Simon Ager. Omniglot a guide to writing systems, 1998-2003

. http://www.omniglot.com.

[11] Janson Tore. Speak a short history of languages. Oxford University Press, New

York, 2002.

[12] N.G. Jablonski and L.C.Aiello, editors. The Orignin and Diversification of Lan-

guage. California Academy of Sciences, 1998.

[13] A. Nakanishi. Writing Systems of the World. Charles E. Tuttle Co., Tokyo, 1980.

[14] Tanja Schultz. Multilinguale Spracherkennung - Kombination akustischer Modelle

zur Portierung auf neue Sprachen. Ph.D. dissertation, Univesity of Karlsruhe,

Germany, 2000.

[15] B. Pfister and P.Hutter. Sprachverarbeitung 1 und 2. Lecture Notes. ETH, 2002.

[16] Ivica Rogina. Parameterraumoptimierung für Diktiersysteme mit unbeschränktem

Vokabular. Ph.D. dissertation, Univesity of Karlsruhe, Germany, 1997.

[17] Tanja Schultz. Tanja Schultz’s homepage, 2002

. http://www-2.cs.cmu.edu/∼tanja/.

[18] IPA. The international phonetic association (revised to 1993) - ipa chart. Journal

of the International Phonetic Association, 1(23), 1993.

83

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Ivica Rogina. Janus 3 Documentation, 1998

. http://www-2.cs.cmu.edu/∼tanja/Lectures/JRTkDoc/.

[20] B. Ray R. Singh and R. M. Stern. Automatic clustering and generation of con-

textual questions for tied states in hidden markov models. ICASSP in Phoenix,

Arizona, 4, May 1999.

[21] K. Beulen and H. Ney. Automatic question generation for decision tree based

state tying. Proceedings of the IEEE Conference on Acoustics, Speech and Signal

Processing, 2, May 1998.

[22] C.Bergamini J.F. Serignat L.Besacier D. Vaufreydaz and M. Akbar. A new

methodology for speech corpora definition from internet documents. Proceedings

of the LREC, Athens, Greece, 2000.

[23] Klaus Ries. Language Modeling Tools, 1997

. http://www.is.cs.cmu.edu/local/janus-lm.doku/node3.html.

[24] The Ibis-Gang. Online JRTk Documentation, 2002

. http://isl.ira.uka.de/∼jrtk/janus-doku.html.

[25] The Ibis-Gang. JRTk and Ibis, September 11, 2002

. http://isl.ira.uka.de/∼jrtk/doc.Janus5/janus-doku/janus-doku.html.

[26] Tcl Developer Xchange. Tcl/Tk Manual Page, 2002

. http://www.scriptics.com/man.

84

Appendix A

Tables

Swedish-4 System

Word Accuracy in % (DEL,INS)

z\p -3 -2 -1 0 1

24 53.8(8.5—5.6) 54.0(8.7—5.3) 54.3(8.8—5.0) 54.0(9.3—4.9) 53.9(9.7—4.6)

25 54.2(8.7—5.3) 54.4(8.9|4.9) 54.2(9.2—4.7) 53.8(9.8—4.7) 53.7(10.2—4.4)

26 53.9(9.2—5.2) 54.0(9.5—4.9) 53.9(9.9—4.6) 54.0(10.1—4.3) 53.8(10.7—4.0)

Table A.1: Language parameter adaptation for the most promising Swedish recognizer

85

Tables

Word Accuracy (DEL,INS)

z\p -2 -1 0 1

16 –.-(-.-—-.-) 29.0(14.8—5.7) –.-(-.-—-.-) 29.7(16.3—5.0)

17 –.-(-.-—-.-) –.-(-.-—-.-) 29.0(17.1—4.8) 29.9(16.1—4.8)

18 –.-(-.-—-.-) 28.5(16.7—5.1) –.-(-.-—-.-) 31.3(17.8—3.8)

19 –.-(-.-—-.-) –.-(-.-—-.-) 27.7(18.4—4.5) 30.6(18.8—3.7)

20 –.-(-.-—-.-) 29.9(17.5—4.4) –.-(-.-—-.-) 20.7(27.7—6.5)

22 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 29.1(20.5—3.3)

23 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 28.5(20.8—3.0)

24 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 14.3(42.9—0.0)

25 18.5(30.4—4.3) 28.6(33.3—0.0) 28.5(21.3—3.0) 29.0(21.9—2.5)

26 28.5(19.6—3.2) 32.9(18.9—4.4) 28.3(21.3—2.7) 27.4(22.8—2.5)

27 27.6(20.0—3.0) 28.6(33.3—0.0) 27.4(22.0—2.6) 26.7(23.4—2.5)

28 26.6(20.9—3.2) 26.8(21.9—2.9) 26.4(22.6—2.5) 27.5(22.1—3.7)

29 25.8(22.0—3.2) 25.6(23.0—2.8) 25.5(23.7—2.3) 25.9(24.1—2.2)

30 24.5(22.9—3.0) 24.9(23.9—2.6) 24.8(24.3—2.5) 25.0(24.7—2.1)

31 24.4(23.2—2.7) 24.0(23.7—2.6) 23.9(24.8—2.1) 24.2(26.0—1.9)

z\p 2 3 4 5

16 29.7(17.4—4.3) 23.8(28.6—0.0) 30.3(18.9—3.4) 24.5(20.1—4.9)

17 30.2(18.9—3.8) 22.8(21.2—6.5) 30.5(19.8—3.2) 30.4(20.4—3.1)

18 23.8(28.6—0.0) 30.3(19.5—3.5) 30.1(20.1—3.5) 23.4(22.3—6.0)

19 39.0(25.4—1.7) 23.4(19.6—7.1) 29.9(20.7—3.3) 29.3(21.8—3.1)

20 30.1(20.1—3.4) 29.9(20.3—3.1) 30.1(21.0—2.9) 29.3(22.4—2.9)

22 29.3(21.1—3.3) 29.7(22.0—2.8) 29.0(23.1—2.8) 28.6(23.9—2.3)

23 28.6(22.2—3.0) 28.7(23.1—2.6) 28.6(23.8—2.5) 28.6(24.4—2.1)

24 14.3(42.9—0.0) 28.8(23.5—2.7) 28.6(24.2—2.3) 28.5(24.6—1.9)

25 28.4(22.7—2.4) 28.2(23.9—2.4) 27.5(24.8—2.1) 27.6(25.3—1.9)

26 27.6(23.0—2.3) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

27 27.2(23.6—2.1) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

28 26.4(24.5—2.2) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

29 25.7(25.1—2.1) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

30 19.6(22.8—3.3) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

31 24.3(26.4—1.4) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

Table A.2: z and p Language model parameter adaptation for the context independent

English system

86

Tables

English ♣-System

Word Accuracy in % (DEL,INS)

z\p 3 4 5

17 78.4(1.9—5.1) –.-(-.-—-.-) –.-(-.-—-.-)

18 78.9(1.9—4.8) –.-(-.-—-.-) –.-(-.-—-.-)

19 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

20 –.-(-.-—-.-) 79.9(2.1—4.2) –.-(-.-—-.-)

21 –.-(-.-—-.-) 80.0(2.2—4.2) –.-(-.-—-.-)

22 80.1(2.2—4.1) 80.2(2.2—4.0) 80.3(2.3—3.9)

23 80.3(2.1—4.0) 80.3(2.2—3.9) 80.3(2.2—3.8)

24 80.3(2.2—3.9) 80.4(2.2—3.8) 80.5(2.2—3.7)

25 80.6(2.2—3.7) 80.6(2.2—3.6) 80.6(2.2—3.6)

26 80.7(2.1—3.6) 80.7(2.2—3.6) 80.6(2.4—3.6)

27 80.7(2.3—3.7) 80.8(2.3—3.5) 80.7(2.4—3.5)

28 80.8(2.3—3.6) 80.8(2.4—3.6) 80.8(2.5—3.5)

29 80.8(2.4—3.5) 80.9(2.5|3.5) 80.8(2.6—3.4)

30 80.7(2.4—3.5) 80.4(2.5—3.5) 80.5(2.6—3.4)

31 80.2(2.6—3.7) 80.1(2.7—3.5) 80.0(2.7—3.4)

32 80.0(2.6—3.7) 79.7(2.8—3.7) 79.8(2.7—3.6)

Table A.3: Language parameter adaptation for the most promising English recognizer

87

Tables

Word Accuracy (DEL,INS)

z\p -2 -1 0 1

18 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

20 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

21 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

22 –.-(-.-—-.-) –.-(-.-—-.-) 47.4(10.4—4.9) –.-(-.-—-.-)

23 –.-(-.-—-.-) –.-(-.-—-.-) 47.0(11.1—4.6) –.-(-.-—-.-)

24 –.-(-.-—-.-) –.-(-.-—-.-) 46.8(11.7—3.9) –.-(-.-—-.-)

25 45.9(11.2—4.3) 45.9(11.6—4.1) 46.3(12.4—3.5) 53.0(9.1—3.8)

26 45.7(12.2—3.8) 45.6(12.5—3.6) 45.5(13.2—3.4) 45.3(13.3—3.3)

27 45.0(12.2—3.6) 44.9(13.0—3.6) 44.8(13.4—3.2) 44.0(14.2—3.1)

28 43.6(13.0—3.7) 43.6(13.3—3.1) 43.2(14.3—2.9) 42.8(14.8—2.9)

29 42.2(13.3—3.0) 41.9(14.1—2.7) 41.5(14.8—2.6) 41.5(15.1—2.6)

30 41.0(14.1—3.1) 41.1(14.7—2.9) 40.8(15.4—2.9) 40.1(16.2—2.4)

31 40.0(14.6—3.4) 39.6(15.1—3.2) 38.9(16.2—2.9) 38.7(16.4—2.8)

z\p 2 3 4 5 6

18 48.8(10.0—5.6) –.-(-.-—-.-) 48.0(11.0—5.0) –.-(-.-—-.-) 48.8(12.1—4.1)

20 47.3(10.9—4.8) 47.2(11.4—4.7) 51.1(7.8—4.6) 47.3(12.5—3.9) 50.0(11.4—3.5)

21 50.0(9.5—4.6) 47.9(11.8—4.0) 52.4(7.3—4.3) 47.1(13.1—3.4) 46.4(14.0—3.3)

22 47.4(11.9—4.0) 47.6(12.0—3.6) 55.1(8.5—3.9) 47.0(13.7—3.1) –.-(-.-—-.-)

23 47.2(12.0—3.5) 46.8(13.1—3.4) 46.5(13.9—3.3) 51.6(8.9—3.3) –.-(-.-—-.-)

24 46.0(13.2—3.3) 45.9(13.8—3.3) 45.8(14.2—3.0) 45.5(15.3—2.9) –.-(-.-—-.-)

25 45.8(13.7—3.3) 45.7(14.0—2.9) 45.2(14.7—2.8) 45.1(14.8—2.7) –.-(-.-—-.-)

26 45.0(13.7—3.2) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

27 43.9(14.7—2.9) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

28 42.5(15.2—2.6) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

29 41.2(16.1—2.5) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

30 39.7(16.5—2.5) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

31 38.1(17.4—2.6) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

Table A.4: z and p Language model parameter adaptation for the context independent

German system

88

Tables

German ♦-System

Word Accuracy in % (DEL,INS)

z\p -1 0 1 2

20 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

21 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

22 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

24 82.7(0.6—6.5) 82.7(0.6—6.4) 82.8(0.6—6.3) 82.8(0.7—6.3)

25 82.9(0.6—6.3) 83.0(0.7—6.2) 83.0(0.7|6.2) 83.0(0.7—6.2)

26 83.0(0.7—6.2) 83.0(0.7—6.2) 83.0(0.7—6.1) 82.9(0.7—6.2)

27 82.9(0.7—6.2) 82.9(0.7—6.2) 82.8(1.0—6.1) 82.8(1.0—6.0)

z\p 3 4 5

20 –.-(-.-—-.-) 82.3(0.5—7.0) –.-(-.-—-.-)

21 –.-(-.-—-.-) 82.4(0.5—6.7) –.-(-.-—-.-)

22 –.-(-.-—-.-) 82.7(0.6—6.5) –.-(-.-—-.-)

24 83.0(0.7—6.2) 83.0(0.7—6.2) 83.0(0.7—6.2)

25 83.0(0.7—6.2) 83.0(0.7—6.2) 83.0(0.7—6.1)

26 82.9(0.7—6.2) 82.9(0.7—6.1) 82.8(1.0—6.0)

27 82.8(1.0—6.0) 82.8(1.0—6.0) 82.8(1.0—6.0)

Table A.5: Language parameter adaptation for the most promising German recognizer

89

Tables

Word Accuracy (DEL,INS)

z\p -4 -3 -2 -1 0

16 49.2(9.9—7.7) 49.3(10.7—7.0) 49.4(11.6—6.5) 49.2(12.3—5.9) –.-(-.-—-.-)

17 48.9(10.4—7.2) 49.1(11.1—6.7) 48.7(11.9—6.4) 49.1(12.6—5.7) –.-(-.-—-.-)

18 48.1(10.9—7.2) 48.5(11.5—6.8) 48.4(12.0—6.3) –.-(-.-—-.-) –.-(-.-—-.-)

19 –.-(-.-—-.-) –.-(-.-—-.-) 47.8(12.5—5.9) 47.4(13.2—5.6) –.-(-.-—-.-)

20 –.-(-.-—-.-) 47.4(12.2—6.0) 47.3(12.8—5.6) 47.2(13.6—5.4) 46.4(14.4—5.1)

21 –.-(-.-—-.-) 47.1(12.8—6.0) 47.3(13.4—5.4) 47.2(13.9—5.3) 46.7(15.0—4.9)

22 –.-(-.-—-.-) 46.7(13.2—5.8) 47.1(13.4—5.3) 46.4(14.4—5.1) –.-(-.-—-.-)

23 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

24 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

25 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

z\p 1 2 3 4 5

16 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

17 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

18 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

19 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

20 46.3(15.1—4.7) 46.2(15.9—4.5) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

21 46.2(15.8—4.6) 46.1(16.4—4.1) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

22 –.-(-.-—-.-) 45.1(17.2—3.8) 44.9(18.0—3.7) 44.6(18.8—3.5) 44.3(19.8—3.0)

23 –.-(-.-—-.-) 44.8(17.5—4.0) 44.5(18.1—3.7) 43.8(19.5—3.5) 43.2(20.3—3.1)

24 –.-(-.-—-.-) 44.5(17.7—3.8) 43.9(18.9—3.6) 43.2(20.1—3.2) 42.8(20.7—2.9)

25 –.-(-.-—-.-) –.-(-.-—-.-) 42.6(21.1—3.2) 42.2(21.9—3.0) 41.7(22.5—2.8)

Table A.6: z and p Language model parameter adaptation for the context independent

Spanish system

90

Tables

Spanish ♠-System

Word Accuracy in % (DEL,INS)

z\p -3 -2 -1 0 1

15 66.6(3.3—8.9) 67.1(3.4—8.4) 67.6(3.6—7.8) –.-(-.-—-.-) –.-(-.-—-.-)

16 67.9(3.4—8.2) 68.0(3.6—8.0) 68.4(3.8—7.6) 68.9(3.8—7.1) 69.0(4.0—6.9)

17 –.-(-.-—-.-) 68.9(3.7—7.7) 69.3(3.8—7.2) 69.8(3.8—6.7) 69.9(4.0—6.5)

18 –.-(-.-—-.-) 69.6(3.7—7.2) 70.0(3.9—6.8) 70.3(4.0—6.5) 70.5(4.2—6.1)

19 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 70.7(4.1—6.3) 71.1(4.2—5.9)

20 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 71.2(4.2—6.1) 71.5(4.3—5.8)

21 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 72.1(4.2—5.7) 72.0(4.3—5.7)

22 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) 72.2(4.2—5.7) 72.3(4.3—5.7)

23 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

24 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

25 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

26 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

z\p 2 3 4 5 6

15 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

16 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

17 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

18 –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-) –.-(-.-—-.-)

19 71.2(4.3—5.9) 71.2(4.5—5.5) 71.4(4.6—5.2) –.-(-.-—-.-) –.-(-.-—-.-)

20 71.7(4.4—5.6) 71.9(4.5—5.4) 72.1(4.6—5.0) –.-(-.-—-.-) –.-(-.-—-.-)

21 72.1(4.4—5.5) 72.2(4.5—5.4) 72.5(4.5—5.0) –.-(-.-—-.-) –.-(-.-—-.-)

22 72.4(4.3—5.4) 72.6(4.5—5.2) 72.7(4.7—5.0) –.-(-.-—-.-) –.-(-.-—-.-)

23 –.-(-.-—-.-) 72.7(4.7—5.1) 72.9(4.8—4.8) 72.9(4.9—4.7) –.-(-.-—-.-)

24 –.-(-.-—-.-) 72.9(4.8—5.0) 73.0(4.8—4.8) 73.2(4.9—4.7) 73.3(5.0—4.4)

25 –.-(-.-—-.-) 73.0(4.8—4.9) 73.0(4.8—4.8) 73.2(5.0|4.6) 73.3(5.2—4.3)

26 –.-(-.-—-.-) 72.9(4.9—4.8) 73.0(4.9—4.6) 73.0(5.0—4.5) –.-(-.-—-.-)

Table A.7: Language parameter adaptation for the most promising Spanish recognizer

91

Appendix B

Script Files

All Scripts marked by • will be handed in on CD at the end of this Diplomarbeit.

Scripts marked by - are censored due to the JANUS license agreement.

B.1 Dictionary Creation

B.1.1 German

• makeDictDE.tcl

• makeGraphemeSetDE.tcl

• DictCleanDE.tcl

• DictCleanDE2.tcl

• DictCleanDE3.tcl

B.1.2 English

• makeDictEN.tcl

B.1.3 Spanish

• makeDictSP.tcl

92

Script Files B.2 Question Generation

• makeGraphemeSetSP.tcl

• DictCleanSP.tcl

• extractNbr.tcl

• zahl2word SP.tcl

• zahlpron2J3.tcl

B.1.4 Swedish

• makeDictSW.tcl

• DictCleanSW.tcl

• makeGraphemeSetSW.tcl

B.1.5 Three-Lingual

• makeDictML3Mix.tcl

• insertMix.tcl

• makeDictML3.tcl

B.2 Question Generation

B.2.1 Grapheme-Phoneme Mapping

• phonemeToGraphemeDE.tcl

• phonemeToGraphemeSP.tcl

• phonemeToGraphemeEN.tcl

The phoneme notation is derived from Tanja Schultz’s Ph.D. thesis [14].

93

Script Files B.2 Question Generation

English

See Table B.1

A → M ale M etu M ab M eI M ETr M ae M aIp M oVs M aVs

B → M b

C → M tS M s M kh M S M z M h

D → M d M dZ M rfd

E → M ip M il M i2 M ae M eI M aIp M ETr M ab M etu

F → M f

G → M g M dZ M Z M kh

H → M h M u M r3

I → M ip M i2 M aIp M il

J → M dZ M w M Z

K → M kh M g

L → M l

M → M m

N → M n M g M ng

O → M etu M oVs M ocI M aVs M ov M oc M u M ETr

P → M ph M f

Q → M kh

R → M r9

S → M s M S M z

T → M D M th M T M d M tS

U → M etu M ov M u M vst M ip

V → M v

W → M w M h M v

X → M z M Z M kh

Y → M j M i2 M w M ip M il

Z → M z M Z

Table B.1: English Phoneme-Grapheme mapping for the creation of phoneme-grapheme

questions

94

Script Files B.3 Training

Spanish

See Table B.2.

German

See Table B.3.

B.3 Training

• samplesDE.tcl

• samplesSP.tcl

• samplesEN.tcl

• samplesSW.tcl

• samplesML3.tcl

- kmeans-lib.tcl

- kmeans.tcl

- DO.labels

- labels.tcl

- DO.ci

- lda.tcl

- samples.tcl

- train.tcl

- DO.cd

- ptree.tcl

95

Script Files B.3 Training

a → M a M aI M aU

a+ → M a+

b → M b M V

c → M k M s M T M tS

d → M D M d

e → M e M eI M eU

e+ → M e+

f → M f

g → M G M g M x

h →

i → M i M j M aI M eI M oI

i+ → M i+

j → M x

k → M k

l → M L M l

m → M m

n → M n M ng

n5 → M nj

o → M o M oI

o+ → M o+

p → M p

q → M k

r → M r M rf

s → M s M z

t → M t

u → M u M W M aU M eU

u+ → M u+

u∼ → M W

v → M b M V

w → M W

x → M k M s

y → M j M L M aI M eI M oI

z → M s M T

Table B.2: Spanish Phoneme-Grapheme mapping for the creation of phoneme-

grapheme questions

96

Script Files B.3 Training

a → M a M ae M aI M al M aU

∼a → M ae M e

b → M b M p

c → M C M x M S

d → M d M t M ts

e → M a M aI M atu M e M el M etu M eU M il M oel

f → M f M v

g → M g M k M ng M x

h → M h

i → M aI M i M il M j

j → M j

k → M k

l → M l

m → M m

n → M n M ng

o → M o M ol

∼o → M oel

p → M f M p

q → M k

r → M atu M r

s → M S M s M ts M z

t → M t M ts

u → M aU M eU M oel M u M ul M v

∼u → M ue M uel

v → M f M v

w → M f M v

x → M k M s M x

y → M ue M uel

z → M s M ts M z

Table B.3: German Phoneme-Grapheme mapping for the creation of phoneme-

grapheme questions

97

Script Files B.4 Questions

- trainPT.tcl

- clusterCB.tcl

- splitCB.tcl

- trainVTLN.tcl

B.4 Questions

• searchQuestionHybrid.tcl

• searchQuestionPtree.tcl

• DO.questions

B.5 Bootstrapping

• mapping.ML3

• rewrite.tcl

B.6 Language Model

• DO.normalize

• filterHTML.tcl

• romanHTML.tcl

• finishHTML.tcl

• vocabExtract.tcl

• devExtract.tcl

98

Appendix C

The JANUS Recognition Toolkit

C.1 JRTk and Ibis

JANUS is a reasearch project for building multi-lingual machine translation systems for

spontaneous human-human dialogs. JRTk stands for Janus Recognition Toolkit used

for the development of speech recognition systems. It was and still is developed at the

University of Karlsruhe in Germany and the Carnegie Mellon University in Pittsburgh,

USA. It’s current version is IBIS V5/0 P011 which also includes the Ibis decoder which

is integrated into the JRTk. Documentation is maninly available online [24, 25]. During

this project the JRTk Version 4.0 was used. JANUS is implemented in C code with an

interface in Tcl\Tk ([26]). This allows the creation of state-of-the-art speech recognizers

and a platform that enables reasearchers to easely perform new experiments. Janus

can be HMM based and combined with any kind of Gaussian mixtures or it can be

based on neural nets.

A How-to built a speech recognizer with JANUS is attached in the Appendix D.1.

99

Appendix D

JANUS Howto

D.1 Starting Janus

You can either install the JANUS binaries and alter the Tcl-scripts or compile the

source code. For this work the Sun and Linux binaries were used and most of the

testing and training was performed on various dual processor machines. If JANUS is

installed in $HOME/bin/Linux/janus and Linux is the operating system (Red Hat 7.1

in the case of this Diplomarbeit) the environmental variables can be set as follows in

your .cshrc file:

setenv PATH "${PATH}:${HOME}/bin:${HOME}/janus/bin/Linux/janus:${HOME}/bin/Linux/align/"

setenv JanusHome ${HOME}/janus/

setenv LD_LIBRARY_PATH ${JanusHome}/lib

#set Site-Dependent Environment Vars

setenv JanusBin ${JanusHome}/bin

setenv JANUS_LIBRARY ${JanusHome}/library

#set architecture-depen evn vars

setenv TCL_LIBRARY ${JanusHome}/lib/tcl8.3

setenv TK_LIBRARY ${JanusHome}/lib/tk8.3

setenv TCLTK_INCLUDE "-I${JanusHome}/lib/include"

setenv TCLTK_LIB "-L${JanusHome}/lib -ltcl8.3 -ltk8.3"

100

JANUS Howto D.2 Getting Started

bin gui−tcl library tcl−lib doc lib src

janus

Figure D.1: How you should organize your JANUS directory

setenv CPU linux

setenv LOCALINCLUDE "${TCLTK_INCLUDE}"

setenv LOCALLIBS "${TCLTK_LIB} -L/usr/X11R6/lib -lX11"

You also need a .janusrc file which you can copy into your home directory (in our

example) and alter if necessary a few environmental variables descriptions. A typical

JANUS installation uses a tree structure like in Figure D.1. In gui-tcl are a lot of scripts

to help JANUS display its results. The scripts tcl-lib provide the user with a number

of extensively used functions. After you installed everything and set the environmental

variables, you can start JANUS by simply typing janus into a shell.

D.2 Getting Started

What does JANUS need to start training a speech recognizer? See Figure D.2 for a

overview of the development of a speech recognizer in JANUS. First of all we need the

recordings (either a wave-file or ADCs) and their transcriptions. This and a pronunci-

ation dictionary are mandatory things to start working. Further it is of great help to

have labels at hand and a language model for the recognition. The database with all

the recordings and transcription as well as the dictionary have to be JANUS -readable.

That means they have to be in a certain form and special characters that mean some-

thing to Tcl have to be dealt with. A JANUS readable dictionary looks like in Table

D.1. The database has to be divided into a test set, a training set and a cross validation

set.

101

JANUS Howto D.2 Getting Started

JRTk

Datenbasis

Aussprache−
w"orterbuch

Fragen−
katalog

Initialisierung

Sprach−
modell

Evaluation

Quickboot

Initiale HMM

Sprachenspezifische
Besonderheiten

Feineinstellungen

Finale HMM

GlobalPhone
Vorverarbeitung

GlobalPhone
HMM−Topologie

Label−
Dateien

Sub−Polyphonen
CDHMM auf

Sub−Monophonen
CDHMM auf

Viterbi−Training

Figure D.2: System development of a speech recognizer in JANUS (taken from [14])

102

JANUS Howto D.2 Getting Started

{SIL} {{SIL WB}}

{EN=+BEEP+} {{+QK EN WB}}

{EN=+CHAIR SQUEAK+} {{+QK EN WB}}

{EN=+TONGUE CLICK+} {{+hGH EN WB}}

{EN=A} {{A EN WB}}

{EN=ABANDON} {{A EN WB} B EN A EN N EN D EN O EN {N EN WB}}

{EN=ABANDONED} {{A EN WB} B EN A EN N EN D EN O EN N EN E EN {D EN WB}}

{EN=ABANTO} {{A EN WB} B EN A EN N EN T EN {O EN WB}}

{EN=ABBENHAUS} {{A EN WB} B EN B EN E EN N EN H EN A EN U EN {S EN WB}}

{EN=ABBOUD} {{A EN WB} B EN B EN O EN U EN {D EN WB}}

{EN=ABBREVIATED} {{A EN WB} B EN B EN R EN E EN V EN I EN A EN T EN E EN {D EN WB}}
...

...

{EN=ZONES} {{Z EN WB} O EN N EN E EN {S EN WB}}

{EN=ZORZI} {{Z EN WB} O EN R EN Z EN {I EN WB}}

{EN=ZUCKERMAN+S} {{Z EN WB} U EN C EN K EN E EN R EN M EN A EN N EN {S EN WB}}

{EN=ZURICH} {{Z EN WB} U EN R EN I EN C EN {H EN WB}}

Table D.1: An example of how a dictionary in JANUS is supposed to look like. EN

marks the corresponding language and WB is the word boundary tag

103

JANUS Howto D.2 Getting Started

So far we have a database with the utterances and their transcription and an ap-

propriate dictionary. We further need a few files that describe the architecture of the

recognizer itself and provide additional information for it. The initCD.tcl script gener-

ates us some of them, namely: A codebookSet, a distributionSet, a distributionTree, a

phonesSet and feature description and access files.

The CodebookSet tells the recognizer how a codebook looks like. For each code-

book we thus have the description of its feature (e.g. LDA), the number of its Gaussian

mixture components (e.g. 32) and the number of dimensions of the covariance and mean

value matrix (e.g. 32) as well as their type (e.g. DIAGONAL).

The DistribSet file tells the recognizer which distribution uses which codebook.

The DistributionTree describes a context independent tree in the beginning which

after traversing and ending in a leaf tells which distribution to use in that specific case.

The phonesSet is the list of phones that can be used. They might be grouped into

classes as used for a context dependent recognizer.

The ptreeSet defines the polyphone trees. This is only used for context dependent

recognizers.

The tags file lists all allowed modifiers for phones that can be used in the dictionary.

WB for Word boundary is probably the most common.

The tmSet describes the transition probabilities of a HMM state.

In the topoSet file the HMM structure itself is described.

The topoTree tells which HMM model has to be used for which phones.

The featAccess file tells the featDesc file (look below) where to find the data.

104

JANUS Howto D.3 Training with JRTk

In the featDesc file the recognizer gets to know how to process the wave files and

which features should be extracted.

The desc.tcl script is the glue to all those files. It tells the recognizers where the

created objects can find the information on how they look like.

Now we are all set to start the training step.

D.3 Training with JRTk

For each training step it is best to create a directory. The variable $SID in the desc.tcl

scripts are usually set to the name of the directory. It is common to use e.g. EN

as a language tag for English and set $SID to EN0, EN1, EN2, EN3 . . . where the

number stands for the iteration step number. In this directory create another two sub

directories. First desc which holds the desc.tcl file and second a sub directory called

train which will hold a script calling all necessary training methods and eventually at

the end of a training cycle all data. This so called data are the weights files produced

by JANUS that hold e.g. the parameters calculated for the Gaussian mixtures.

There are multiple ways to build recognizers, but they all have a few steps in com-

mon:

Labels: It is possible to start with a random initialization of the parameters but it

might take the recognizer a long time to learn the appropriate dependencies. It is

desirable to have some precomputed labels ready at hand. Labels tell us which feature

vectors are assigned to which HMM state. This can be calculated by the Viterbi or

Forward-Backward algorithm. We usually compute new labels after every 4-6 training

iterations. The scripts needed to do the job are the labels.tcl and the DO.labels script.

The latter simply starts up JANUS and tells it to source the labels.tcl.

Kmeans-Initialization: With the provided labels the feature vectors from the train-

ing set are extracted and the LDA matrix is computed. This is done by the lda.tcl and

the samples.tcl script. For each defined class JANUS initializes a codebook and a cor-

105

JANUS Howto D.3 Training with JRTk

responding Gaussian mixture distribution. A fully continuous HMM is now ready. The

kmeans.tcl script does this last part of the work.

Training: After a first initialization of all the models we are ready to optimize

the HMM parameters with the EM -Algorithm and the training data. In a training

iteration we fully work through all the training data. Per training step we usually

perform 4-6 training iterations. A call to train.tcl will start the process.

So if you have everything ready and want to start training a recognizer, let’s

say you do have initial labels, created the directories like explained above with a $SID

of EN0 in case of English. Alter the paths in the EN0/desc/desc.tcl file (copy it from

somewhere into the newly created directory) and change into the EN0/train directory.

You should either copy and alter or create yourself a DO.ci script that tells JANUS

to start up and source the lda.tcl, samples.tcl, kmeans.tcl and train.tcl scripts in this

order. There are options that allow you to tell JANUS how many training iterations

you would like to perform. After completion you should end up with an LDA-matrix

(look in 2.1.4 for explanation) and a codebook as well as distribution parameters. Now

it’s time to write new labels. Create like above another directory, in our case here that

would be EN1 and its two sub directories. Copy the desc.tcl into the EN1/desc/ and

the DO.labels into the EN1/train directory. Alter the path in desc.tcl. For example

you need to tell JANUS where to store the labels and where it can find the just

recently calculated parameter files from the training step. Repeat this training and

label writing cycle until your recognizer produces satisfactionary results. You can

test your results after each training step by calling the test$SID.tcl. Create another

special directory to do the tests. You also need a desc$SID.tcl file and again a DO-file,

the DO.test.$SID.dev. Of course $SID has to be replace by the current system ID,

meaning EN0, EN2, . . . When you are content with your current context independent

recognizer you can start building a context dependent one.

106

JANUS Howto D.3 Training with JRTk

Introduction of Subpolyphones: The initial context independent systems are

build with subphone units. To get a context dependent recognizer the modeling with

subpolyphones has to be prepared by allocating mixture distributions for each subpoly-

phone and train its parameters. All the subpolyphones of the same subphones share

a codebook at this state of development. This provides us with a SCHMM. Set the

variable $pcluster in initCD.tcl to 1 and recreate the codebookSet, distributionSet,

distributionTree and newly create the ptreeSet file. Your phonesSet should not only

consist of all possible phones, but should provide information about groups of phones.

For example which phones are vowels which are not. These groups can be used as

questions in the clustering process described bellow.

Clustering: With the clustering method described in 2.2.2 the subpolyphones are

clustered into a specific amount of classes. The decision which subpolyphone belongs

to which class is made by traversing the context decision tree. For this step you need to

call ptree.tcl, trainPT.tcl, ClusterCB.tcl and splitCB.tcl in this order. An appropriate

DO.cd will do the job. By the way .cd stands for context dependent now. Use the

labels as well as the LDA-matrix computed by the best context independent system.

Kmeans-Initialization and Training of the new Classes: With the kmeans-

initialization the codebooks and the mixture weights of the new classes are initialized

and are then trained for 4 to 6 iterations with the EM -Algorithm. The resulting

recognizer is then again a fully continuous system, but this time for subpolyphone-

instead of subphone-classes.

The training of the context dependent recognizer is basically analogous to the context

independent one. Labels are written with a call to labels.tcl, the lda.tcl and samples.tcl

calculate the LDA matrix and extract the feature vectors and the kmeans.tcl initializes

the codebooks and models. The only difference is that we use the trainVTLN.tcl script

for the training iterations that additionally does a vocal tract length normalization.

107

Index

Abjads, 7

Acoustic Model, 14

Acoustic Modeling, 17

Alphabets, 7

Ambiguity of Words, 13

Amplitude Resolution, 15

Arabic, 7

Audible Frequency Range, 15

Baselines, 34

Bootstrapping, 56

Bottom-Up Entropy, 51

Braille, 10

Burmese, 8

CDHMM, 19

Chinese, 10

Clustering, 22, 43

Coarticulation Effects, 17

Codebook, 19

Colloquial Speech, 13

Context Dependent System, 43

Context Independent Systems, 41

Continuous HMMs, 18

Critical Bands, 16

Data Sharing, 28

Decision Tree, 44

Decoding Continuous Speech, 26

Decoding Problem, 20

Deletion, 27

Dialect, 6

Dictionary, 40, 101

Digitalization, 14, 15

Dimension Reduction, 17

Discrete HMMs, 18

Dynamic Features, 16

Entropy Distance, 22, 47

Environment Variables, 100

Error Rates, 26

Evaluation Problem, 20

Flatstart, 56

Forward Algorithm, 20

Forward-Backward Algorithm, 20

Fundamental Equation of Speech

Recognition, 13

Gaussian Mixture Distribution, 19

GlobalPhone Project, 32

108

INDEX INDEX

Hamming-Window, 15

HMM, 99

Grahpeme Model, 25

Hidden Markov Models, 17, 18

Silence Model, 25

Hybrid Entropy, 52

Ibis, 99

Ideograms, 10

Initial Labels, 41

Insertion, 27

Installing JANUS, 100

IPA, 34

JANUS, 99

Japanese, 8

JRTk, 99

K-Means, 42

Language Identification, 29

Language Model, 14

Parameters, 24

Language Modeling, 22

Language-Mixed Context Modeling

ML3-Mix, 54

Language-Tagged Context Modeling

ML3-Tag, 55

Languages of the World, 5

Lattices, 26

LDA, 42

Linear Discriminant Analysis, 16

LID Component, 29

Likelihood Distance, 49

Logograms, 10

Logographic Writing Systems, 10

LVCSR, 2

Mel-Scale Filterbank, 16

Mixture Components, 19

ML3-Mix, 54

ML3-Tag, 55

Morpheme, 20

Multilingual Acoustic Model, 30

Multilingual Language Model, 31

Multilingual Pronunciation Dictionary,

31

N-Gram Models, 24

Neural Net, 99

Nyquist Theorem, 15

One-Stage-Dynamic-Time-Warping Al-

gorithm, 26

Optimization Problem, 20

P, 43

Phoneme-Grapheme Question Genera-

tion, 49

Polygrapheme, 43

Polyphones, 21

Porting, 56

Pragmatism, 13

Preprocessing, 14

109

INDEX INDEX

Ptree, 43

Ptrees, 43

Q, 43

Quasi-Stationary, 15

Recognition Accuracy, 26

Roman, 8

Sampling Rate, 15

SCHMM, 19

Search, 14

Seed Models, 56

Segmenting Data, 13

Semantic-Phonetic Compounds, 10

Semantics, 13

Single Word Recognizers, 13

Singleton, 51

Software Sharing, 28

Speaker Authentication, 12

Speaker Identification, 12

Speaker-Dependent, 13

Split, 22

Spontaneous Speech, 13

Subgrapheme, 25

Subphoneme, 21

Subunits, 20

Syllabaries, 8

Syllabic alphabets, 8

Syllables, 21

Syntax, 13

The European Language Resources As-

sociation, 37

Tonal Languages, 17

Training Iteration, 42

Trigram Models, 24

Triphones, 21

Variability of Speakers, 13

Viterbi Algorithm, 20

VTLN: Vocal Tract Length Normaliza-

tion, 15

Wall Street Journal Corpus, 36

Word Accuracy WA, 27

Word Error Rate WE, 27

Word Transition Penalty, 24

Writing Systems, 6

110

