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Brain–Computer Interfaces Based on the Steady-State
Visual-Evoked Response

Matthew Middendorf, Grant McMillan, Gloria Calhoun, and
Keith S. Jones

Abstract—The Air Force Research Laboratory has implemented and
evaluated two brain–computer interfaces (BCI’s) that translate the steady-
state visual evoked response into a control signal for operating a physical
device or computer program. In one approach, operators self-regulate the
brain response; the other approach uses multiple evoked responses.

Index Terms—Brain–computer interface (BCI), human–computer inter-
face, neural self-regulation.

I. INTRODUCTION

The Alternative Control Technology (ACT) program of the Air Force
Research Laboratory is engaged in the design and evaluation of a va-
riety of hands-free controls. These include eye, head, speech, elec-
tromyographic and electroencephalographic (EEG) systems that allow
communication with computers while the operators’ hands remain en-
gaged in other activities. For example, alternative controls may enable
maintenance technicians to manually operate test equipment while ac-
cessing schematics on a head-mounted display.

In general, EEG-based control uses selected aspects of the brain’s
electrical activity. However, this definition does not dictate a specific
control methodology. Interestingly, several different EEG-based con-
trol devices based on visual evoked responses have been developed
in parallel at various research institutions. For example, Farwell and
Donchin [1] developed a control based on the “P300,” a brain response
that varies as a function of stimulus probability and task relevance [1].
Careful design of the task format and procedures allowed these authors
to use the natural variance of the P300 for task control. Sutter [2], [3]
developed a control device based on the natural variation in cortical vi-
sual evoked potentials to determine the user’s direction of gaze relative
to a matrix of flickering stimuli [2], [3]. This system capitalizes on the
cortical magnification that occurs when a flickering stimulus is visu-
ally fixated.

EEG-based research in the ACT program has harnessed the steady-
state visual-evoked response (SSVER) as an effective communication
medium for brain–computer interfaces (BCI’s) [4]. Two methods of
using the SSVER for control have been employed. In one, operators
are trained to exert voluntary control over the strength of their SSVER.
In the second, multiple SSVER’s are used for control. The latter re-
quires little or no training because the system capitalizes on the natu-
rally occurring responses. The purpose of this paper is to describe these
SSVER-based BCI’s and to summarize research findings.

II. BCI BASED ON SELF-REGULATION OF THESSVER

A. Communication Task

Communication between the operator and the computer is binary in
the sense that only two control actions are possible. For example, a
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device can be turned on or off, moved left or right, etc. It is also appro-
priate to describe this BCI as a discrete controller. That is, changes in
the SSVER result in control actions occurring at fixed intervals of time.
B. EEG Component

The SSVER is elicited using a visual stimulus that is modulated at a
fixed frequency. The SSVER is characterized as an increase in EEG ac-
tivity at the stimulus frequency [5]. Typically, the stimulus is generated
using white fluorescent tubes that are luminance modulated at 13.25 Hz
and mounted behind a translucent diffusing panel. With biofeedback
training, operators learn to willfully control their SSVER amplitude.

C. Communication Protocol

The EEG is acquired using gold-cup electrodes located over occip-
ital sites O1 and O2 (left mastoid as ground). The differential signal be-
tween O1 and O2 is amplified, filtered, and then processed by a lock-in
amplifier system (LAS) that provides a measure of the SSVER ampli-
tude. This information is sampled by a computer for feedback and con-
trol. Control logic based on thresholds and duration requirements trans-
forms the noisy SSVER into smooth, stable control. The threshold and
duration parameters are adjustable for individual operators and specific
applications. Typically, two thresholds are employed to achieve binary
control; raising the SSVER above the upper threshold for the required
duration results in one control action and lowering the SSVER below
the lower threshold for the required duration results in a different con-
trol action.

D. Results

In general, all operators perform above chance level, although there
are large individual differences between operators. While some oper-
ators experience difficulty, others achieve nearly perfect control. Spe-
cific results are reported below.

1) Flight Simulator Control: The roll position of a simple flight
simulator was controlled with this BCI. A display in the simulator pre-
sented a series of commands (in 10� increments) requiring the oper-
ator to roll right or left. When operators increased their SSVER ampli-
tude above an upper threshold for 75% of the samples in a one-half
second interval, the simulator would roll one-half of one degree to
the right. When similar duration requirements were met for a lower
threshold, the simulator would roll one-half of one degree to the left.
When the commanded roll position was reached, a new commanded
position was presented. This process continued for two minutes. Most
new operators were able to achieve some level and sense of control after
a single 30-min training session, and typically demonstrated fairly dra-
matic learning curves over the course of the next few training sessions.
Trained operators were typically able to roll the simulator in the com-
manded direction 80–95% of the time.

For feedback and control purposes, the simulator display contained a
horizontal bar that presented real-time SSVER amplitude. An indicator
mark on the bar would move to the right when the SSVER amplitude
increased and to the left when it decreased.

2) Muscle Stimulator Operation:A functional electrical stimulator
(FES), a rehabilitation device designed to exercise paralyzed limbs,
was integrated with this BCI. Operators held their SSVER amplitude
above the “on” threshold for one second to activate the FES. Then, the
current began increasing, gradually recruiting additional muscle fibers
to cause knee extension. Decreasing the SSVER amplitude below the
“off” threshold resulted in a ramp-down of the current and lowering of
the limb. The control algorithm parameters were adjusted to emphasize
accuracy over speed.

Three able-bodied participants with previous SSVER self-regula-
tion experience participated in 3–5 one-hour sessions. A display pro-
vided SSVER amplitude feedback, knee angle commands and actual

Fig. 1. Learning curves for an SSVER-based switch selection task under
two feedback conditions (n = 4 per group). There was no overall difference
between the feedback groups. However, the data for sessions 1–5 suggest that
the continuous feedback may have supported more rapid initial learning.

knee angle. Time history data were examined to confirm that the able-
bodied participants accomplished the knee extension by controlling the
brain—FES interface, rather than voluntary muscle control. Specifi-
cally, a change in current level preceded a change in knee angle, and
onset of knee angle movement occurred at nearly the same current level
each time (i.e., threshold of contraction). Data from each participant’s
best session were examined. Participants acquired 95.8% of the com-
manded knee angles with average FES on and off latencies of 4.28 and
5.93 s, respectively [6].

3) Effects of Feedback:Eight participants were trained to perform
a switch selection task under one of two feedback conditions, discrete
or proportional. Three switches were aligned next to three target fields
on a display and the task involved selecting the switch next to the
field containing a target. To change which switch was selected, par-
ticipants increased their SSVER amplitude above a threshold to begin
cycling through the switches. To stop the progression, the participants
decreased their SSVER below the threshold. Changes in the border and
fill color of the switches indicated whether the SSVER was above or
below threshold in the discrete feedback condition. In the proportional
feedback condition, a dynamic vertical bar with a threshold mark dis-
played real-time SSVER amplitude. Both groups showed significant
learning, but there was no overall difference due to feedback type (see
Fig. 1).

4) Mechanisms of Control:The control signal in this BCI is de-
rived as a differential measure of SSVER activity at O1 and O2. As
a result, operators can change the amplitude of the control signal by
self-regulating: 1) the relative amplitude of the SSVER activity at O1
and O2; 2) the relative timing (phase) of the SSVER activity at the
two sites; or 3) a combination of both. In one experiment three partic-
ipants performed a task that required repeated 2-s periods of SSVER
enhancement or suppression. Scalp-wide EEG was recorded. Each par-
ticipant showed interhemispheric shifts of SSVER activity between the
enhance and suppress conditions. Data for one participant are shown in
Fig. 2. These results suggest that modulation of the relative amplitude
of the SSVER at O1 and O2 plays a role in SSVER self-regulation. In
a separate study with four participants, monopolar O1 and O2 signals
were recorded in addition to the bipolar control signal. Phase and am-
plitude relationships between O1 and O2 were evaluated during periods
of sustained SSVER enhancement and suppression. Each of the partic-
ipants showed evidence of phase-based control. As in the topographic
analysis above, independent regulation of O1 and O2 amplitude was
observed as well [7].

Participants were not instructed how to accomplish the self-regu-
lation, however they were not allowed to close their eyes. This was
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Fig. 2. Topographic maps of 13.5-Hz activity recorded during task-related
SSVER enhancement and suppression for Participant 2. Note the evenly
distributed activity in the O1 and O2 regions of the top map (suppression) and
the asymmetric activity in the bottom map (enhancement).

monitored by the use of a video camera or by electrooculogram (EOG)
recordings in some experiments. Interestingly, a variety of eye move-
ment and cognitive-based strategies emerged. In the switch selection
task three of the eight participants reported using subtle eye movements
to control their SSVER amplitude. These eye movements were also ev-
ident in the EOG recordings. In this experiment, the task was projected
onto a large screen and the stimulus light source was located behind
the participant to illuminate the entire screen. As a result the stimulus
covered 83� of the visual field, however, the stimulus was brightest in
the center of the screen and decreased slightly toward the edges. Al-
though three of the participants used subtle eye movement, the stim-
ulus remained in their central vision at all times. Interestingly, these
participants shifted their gaze slightly away from the brightest area of
the stimulus when they wanted to enhance their SSVER amplitude.

III. BCI B ASED ON NATURALLY OCCURRINGSSVER’s

A. Communication Task

The task is to select virtual buttons on a computer screen. A virtual
button is a small area of the screen similar to an icon that can have a
control action associated with it. The luminance of the virtual buttons is
modulated, each at a different frequency to produce the SSVER’s. The
operator selects the desired button simply by looking at it. At present,
a maximum of two virtual buttons is displayed at one time. Therefore,
the discussion regarding the binary and discrete nature of the first con-
troller is relevant to this BCI.

B. EEG Component

The SSVER is also the source of control for this system. However,
unlike the first BCI, this is a passive system in the sense that opera-

tors are not required to actively increase their SSVER amplitude. This
system uses the naturally occurring SSVER amplitude at two different
frequencies. Cortical scaling as discussed by Sutter [3] plays an im-
portant role in this system. As the subject fixates on the desired virtual
button, the SSVER amplitude increases at the button’s modulation fre-
quency.

C. Communication Protocol

The EEG is acquired using plastic, silver chloride-coated, surface
electrodes (with aloe vera gel to improve conductivity). The electrodes
are held in place over O1, O2, and Oz (ground) using a headband.
The differential (O1–O2) EEG is filtered, amplified, and sampled by
a computer. Three software LAS’s are implemented for each button.
One LAS computes amplitude at the stimulus frequency; the other two
compute amplitude at frequencies slightly above (upper frequency) and
below (lower frequency) the stimulus frequency. The control algorithm
monitors the LAS outputs to determine if a selection should be made.
The algorithm requires that two criteria be satisfied for a fixed time
duration. First, the amplitude of the center frequency must be above a
threshold value to prevent an unwanted selection due to natural fluctu-
ations in the EEG. Second, the amplitude of the center frequency must
be larger than the average of the lower and upper frequencies, by a fixed
ratio, to ensure that broadband increases in activity do not trigger the
system. When these criteria are met, a red border appears around the
corresponding button. If these criteria are maintained continuously for
0.3 s, then the button is selected. Individual threshold and amplitude
ratio criteria were determined for each operator by a calibration proce-
dure that was performed prior to using the system.

D. Results

Two virtual buttons (2.9 by 3.8 cm) were displayed on the left and
right sides of a monitor (separated by 10.3 cm) and modulated at 23.42
and 17.56 Hz, respectively. The buttons were viewed at a distance of
71 cm, resulting in visual angles of 3.0� vertically and 2.3� horizon-
tally. This system was experimentally evaluated using eight partici-
pants. Their task was to select the virtual button indicated by a yellow
command box. Participants performed 200 trials each, with no training
trials. The participants averaged 92% correct selections (range: 83–99)
with an average selection time of 2.1 s (range: 1.24–3.02) [8].

IV. FUTURE PLANS

Despite the success demonstrated with the self-regulation based
BCI, substantial training is required. For this reason, the ACT program
will focus its near-term BCI efforts on approaches that use naturally
occurring SSVER’s. The next step with this BCI will be to compare its
performance to that of a standard computer mouse using a Fitts’ Law
paradigm to evaluate the speed and accuracy of the two controllers
[9]. Other studies will explore the number of virtual buttons that can
be simultaneously presented and their spatial separation. Although
additional buttons and functions will increase usability, this BCI
appears ready for near-term application as an assistive technology.
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EEG-Based Communication: A Pattern Recognition
Approach

William D. Penny, Stephen J. Roberts, Eleanor A. Curran, and
Maria J. Stokes

Abstract—We present an overview of our research into brain–computer
interfacing (BCI). This comprises an offline study of the effect of motor
imagery on EEG and an online study that uses pattern classifiers incor-
porating parameter uncertainty and temporal information to discriminate
between different cognitive tasks in real-time.

Index Terms—Cognitive tasks, electroencephalograph (EEG), pattern
recognition.

I. INTRODUCTION

The ultimate aim of this research is to develop an electroen-
cephalograph (EEG)-based computer interface for use by people
with severe physical disabilities. This would, for example, facilitate
interaction with a word-processor package or manipulation of various
environmental controls.

Our approach relies less on biofeedback training [8] and more on
the use of pattern recognition methods where cursor movements are
generated by the output of a pattern classifier such as a neural network.
Our approach is novel in two important technical respects. First, we
infer not just the parameters of our classifiers (e.g., weights in a neural
net) but also the uncertainty on those parameters. This allows us to
estimate the uncertainty associated with each subsequent classification.
Second, we use dynamic classifiers such that the cursor movement at
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a given time step is dependent on cursor movements at previous time
steps. Both of these features lead to more robust cursor control [7].

A further aspect of our work is an exploration of the cognitive tasks
used to generate the signals which provide a starting point for com-
munication. To date, we have investigated motor imagery and mental
arithmetic tasks.

II. OFFLINE STUDIES

Our research into EEG-based communication began in 1996. At that
time, while there was some anecdotal evidence from biofeedback ex-
periments [8] to suggest that motor imagery can be identified from the
background EEG, there were no formal experiments to suggest that this
is indeed the case. Or indeed, any information on what proportion of
subjects these patterns could be detected in or with what accuracy.

To clarify the situation, we recorded EEG from seven subjects per-
forming cued imagined hand movements [5]. Control recordings were
also made to ensure we were not picking up stimulus-related activity.
The EEG was recorded using a single reference electrode and two
11-electrode arrays placed over the left and right sensorimotor cortex
(a total of 23 electrodes).

Laplacian operators were applied to estimate local activity at three
sites over left and right sensorimotor cortex. Analysis of mu-rhythm
power in the resulting signals showed that imagined hand movements
could be discriminated from background EEG in six out of seven sub-
jects with a typical accuracy of 70%. The most discriminative electrode
positions were found to be 3 cm posterior to the C3 and C4 positions
in the 10/20 system. Extraction of complexity features [6] showed that,
in four out of seven subjects, the discrimination accuracy was 80%.

This research was useful in concretely establishing that motor im-
agery signals could be detected by spectral and complexity features
and that, in principle, they could be used to drive cursor movements. It
also identified the best position to place a smaller number of electrodes.

III. ONLINE SYSTEM

The above research informed the design of our “online” EEG-based
computer interface. To keep the system as simple as possible our initial
prototype uses only three electrodes, a single isolation amplifier and a
266-MHz PC. The electrodes are placed 3 cm behind C3 and C4 and a
reference electrode is placed over the right mastoid.

Subjects move a cursor on a computer screen and attempt to hit tar-
gets appearing at the top or bottom of the screen. Cursor movements
are driven by cognitive tasks and, to date, we have studied two dif-
ferent pairs of tasks; 1) motor imagery versus a baseline task and 2)
motor imagery versus a math task. For the motor imagery tasks, sub-
jects were asked to imagine opening and closing their hand (right or left
according to handedness), and for the maths tasks subjects were asked
to serially subtract seven from a large number. We have also carried out
“stationary cursor trials” in which the cursor does not move [4].

Cursor movements were generated by extracting autoregressive
(AR) features from the EEG and classifying them using a Bayesian
logistic regression model.

A. Handling Uncertainty

The AR features are classified using a logistic regression model
trained using the Bayesian evidence framework [7]. This procedure
estimates both the classifier weights and the distribution of those
weights. The distribution captures the fact that the classifier is not
entirely certain as to how to classify some inputs. If this uncertainty
is taken into account when making a new prediction (as it should be)
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