
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 11, NO. 2, JUNE 2003 177

REFERENCES

[1] A. Kramer and J. Spinks, “Capacity views of information processing,”
in Psychophysiology of Human Information Processing: An Integration
of Central and Autonomic Nervous System Approaches, R. Jennings and
M. Coles, Eds. New York: Wiley, 1991, pp. 179–250.

[2] J. Beatty, “Task-evoked pupillary responses, processing load, and the
structure of processing resources,”Psych. Bull., pp. 276–292, 1982.

[3] A. Gevins, M. Smith, L. McEvoy, H. Leong, and J. Le, “Electroen-
cephalographic imaging of higher brain function,” inPhilosophical
Transactions of the Royal Society, ser. B London, U.K., 1999, vol.
354, pp. 1125–1134.

[4] C. Tallon-Baudry, O. Bertrand, F. Peronnet, and J. Pernier, “Induced
gamma-band activity during the delay of a visual short-term memory
task in humans,”J. Neurosci., no. 11, pp. 4244–4254, 1998.

[5] F. Babiloni et al., “Linear classification of low-resolution eeg patterns
produced by imagined hand movements,”IEEE Trans. Rehab. Eng., vol.
8, pp. 186–188, June 2000.

[6] W. H. R. Miltner, C. H. Braun, and M. G. H. Coles, “Event-related brain
potentials following incorrect feedback in a time estimation task: Evi-
dence for a generic neural system for error detection,”J. Cog. Neurosci.,
pp. 788–798, 1997.

[7] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
viusal system,”Nature, pp. 520–522, 1996.

[8] L. Parra, C. Alvino, A. C. Tang, B. A. Pearlmutter, N. Yeung, A. Osman,
and P. Sajda, “Linear spatial integration for single trial detection in en-
cephalography,”NeuroImage, to be published.

[9] M. Falkenstein, J. Hoorman, S. Christ, and J. Hohnsbein, “ERP com-
ponents on reaction errors and their functional significance: A tutorial,”
Biolog. Psych., vol. 52, pp. 87–107, 2000.

[10] G. Schalk, J. Wolpaw, D. McFarland, and G. Pfurtscheller, “EEG-based
communication: Presence of an error potential,”Clin. Neurophysiol.,
vol. 111, pp. 2138–2144, 2000.

[11] P. Sajda, A. Gerson, and L. Parra, “High-throughput image search via
single-trial event detection in a rapid serial visual presentation task,” in
Proc. 1st Int. IEEE EMBS Conf. Neural Engineering, Capri, Italy, Mar.
2003.

[12] J. C. Woestenburg, M. N. Verbaten, and J. L. Slangen, “The removal of
the eye-movement artefact from the EEG by regression analysis in the
frequency domain,”Biolog. Psych., vol. 16, no. 1–2, pp. 127–147, 1983.

[13] T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown, V.
Iragui, and T. J. Sejnowski, “Removing electroencephalographic arti-
facts by blind source separation,”Psychophysiol., vol. 37, pp. 163–178,
2000.

[14] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based sta-
tistical signal processing using hidden Markov models,”IEEE Trans.
Signal Processing, vol. 46, pp. 886–902, Apr. 1998.

[15] H. Coi and R. G. Baraniuk, “Multiscale imaage segmentation using
wavelet-domain hidden markov models,”IEEE Trans. Image Pro-
cessing, vol. 10, pp. 1309–1321, Sept. 2001.

[16] H. Cheng and C. A. Bouman, “Multiscale bayesian segmentation using
a trainable context model,”IEEE Trans. Image Processing, vol. 10, pp.
511–525, Apr. 2001.

[17] J. K. Romberg, H. Coi, and R. G. Baraniuk, “Bayesian tree-stuctured
image modeling using wavelet domain hidden markov models,”IEEE
Trans. Image Processing, vol. 10, pp. 1056–1068, July 2001.

[18] C. D. Spence, L. Parra, and P. Sajda, “Detection, synthesis and compres-
sion in mammographic image analysis using a hierarchical image proba-
bility model,” in Mathematical Methods in Biomedical Image Analysis,
M. Staib, Ed. Piscataway, NJ: IEEE Press, 2001, pp. 3–10.

[19] L. Rabiner, “A tutorial on hidden markov models and selected appli-
cations in speech recognition,”Proc. IEEE, vol. 77, pp. 257–285, Feb.
1989.

Graz-BCI: State of the Art and Clinical Applications
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Abstract—The Graz-brain–computer interface (BCI) is a cue-based
system using the imagery of motor action as the appropriate mental
task. Relevant clinical applications of BCI-based systems for control of a
virtual keyboard device and operations of a hand orthosis are reported.
Additionally, it is demonstrated how information transfer rates of 17 b/min
can be acquired by real time classification of oscillatory activity.

Index Terms—Brain–computer interface (BCI), event-related desyn-
chronization/synchronization (ERD/ERS), motor imagery, rehabilitation,
sensorimotor rhythms, virtual keyboard.

I. INTRODUCTION

Currently available brain–computer interfaces (BCIs) can be
grouped according to the kind of brain signals they process or the
mode of operation they depend on. Within brain signals, we can,
for example, differentiate between evoked potentials (EPs), slow
cortical potential shifts, and oscillatory electroencephalogram (EEG)
components. There are two main categories of mode-of-operation
implemented by BCI systems. Within the first category, brain signals
are analyzed in cue- or stimulus-triggered time windows either by
identifying changes in EPs [1] and slow cortical potentials shifts [2],
or quantifying oscillatory EEG components [3], [4]. These types
of BCIs, operating with predefined time windows, are generally
gathered under the term “cue-based” or “synchronous” BCI systems.
Within the second category, a continuous analysis of brain signals is
performed either with the purpose of detecting event-related potentials
or transient changes in oscillatory EEG components. This type of
BCI operates in an asynchronous mode. These are “noncue-based” or
“asynchronous” BCI systems and, therefore, have been referred to as
“asynchronous detectors” in as much as they operate on the basis of
movement-related potentials [5], [6].

In the last decade, work on the Graz-BCI has focused predominately
on characterizing and differentiating two or more brain states or EEG
patterns, respectively, associated with motor imagery in predefined
time windows (cue-based or synchronous BCI). Our research has
been focused on methods of parameter estimation and on testing a
considerable number of classifiers [7]–[9]. The currently implemented
discrimination method is capable of differentiating between two
brain states associated, in our case, with two different types of
motor imagery in defined time windows. It can achieve classification
accuracies from 80% up to 100% [4]. The neurophysiological basis for
the Graz-BCI is the fact that actual performance of a limb movement
and the imagination of the same movement activates similar cortical
areas, as abundantly demonstrated by functional magnetic resonance
imaging (fMRI) [10] and positron emission tomography (PET)
investigations [11]. Similarly, the quantification of sensorimotor
rhythms has shown that the spatiotemporal patterns of event-related
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desynchronization (ERD) are very similar during actual movement
performance and imagination of respective limb (hand or foot)
movements [12]. In the following sections, four projects are described
in some detail, including the development of: 1) a “virtual keyboard”
(VK) controlled by oscillatory EEG signals; 2) a BCI-based operation
of a hand orthosis applied by a tetraplegic patient; 3) performance
of long-term BCI training of a patient by means of telesupport; and
finally, 4) probing the limits of information transfer characterizing the
application of the Graz-BCI.

II. V IRTUAL KEYBOARD CONTROLLED BY EEG

Synchronous BCI systems can be used to operate a spelling device
or a virtual keyboard. Recently, Birbaumeret al. reported [2] on a
spelling system utilized by three patients [all affected by amyotrophic
lateral sclerosis (ALS)] that rests on slow cortical potentials. Two of
the three patients achieved a classification accuracy of 70%–80%,
which enabled them to achieve a spelling rate of approximately
0.5 letters/min. In contrast to the method applied by Birbaumeret
al., we chose oscillatory EEG components as input signals for the
BCI and studied the spelling rate in three able-bodied subjects while
operating a VK [13]. For this reason, the signals from two bipolar
EEG channels were separated in subject-specific alpha and beta bands
and subsequently analyzed during the performance of two types of
motor imagery. Each subject used different motor imagery strategies,
i.e., right versus left hand, right hand versus tongue, and left hand
versus foot. Two hidden Markov models (HMM), one for each type of
motor imagery, were trained by the trials resulting from the training
session. The appropriate classification of the ongoing EEG was then
performed by selection of the class with maximal probability achieved
by the respective HMM-model [7]. The required spelling process
consisted of the selection of one particular letter out of the whole
alphabet through successive steps of isolation. The overall structure of
our VK contains five consecutive levels of selection and two further
levels of confirmation and correction. The subject’s goal was to write
the phrase “VIRTUAL KEYBOARD.” The three subjects achieved
spelling rates of 0.85, 1.02, and 0.67 letters/min, respectively. These
values correspond approximately to seven decisions per minute.
Generally, there are several complementary ways to increase the
number of letters spelled per minute: 1) shortening the trial length
and, thereby, the time between two imaginations (currently, this
interval lasts for 8 s); 2) expanding the number of movement types
to be imagined(n > 2); 3) considering the probability rate of the
occurrence of specific letters.

A newly developed VK, called the VK-T8, is based on a dictio-
nary developed for use with cell phones using T9 technology [14]. The
VK-T8 has eight buttons, six of eight buttons represent four letters, i.e.,
the first button refers to “A, B, C, D,” the second to “E, F, G, H.” In con-
trast, the next to last button represents “Y, Z”, and finally, the last button
represents only the symbol “.”. Each button is also associated with a
specific number, so that each word within the wordlist is numerically
coded. Accordingly, the German word “KAUFEN” (“BUY”) can also
be expressed by the number code “316 224”. The wordlist is comprised
of 145 words that are expected to be useful for basic communication.
Ultimately, the VK-T8 system uses four steps to select a letter. To de-
termine the theoretical average spelling rate characterizing the use of
the VK-T8 BCI system, the selection of 40 randomly chosen words
was simulated under the assumption of 100% correct decisions and
based on a trial length of 7.5 s. The resulting theoretical spelling rate
for the BCI-VK-T8 was in average 2.73(SD= 0:94) letters/min. In a
first study, three subjects were instructed to write five predefined words
using the VK-T8 system. The achieved spelling rate varied from 1.06 to
4.24 letters/min. However, it should be underlined that the spelling rates

TABLE I
PROBABILITY OF CORRECT LETTER SELECTION DEPENDENT

ON CHANGING CLASSIFICATION ACCURACIES

Fig. 1. Operation times (for seven operations, i.e., opening/closing the
orthosis) for six consecutive training days comparing EEG and EMG used
for inspection. After six days the performance is about the same (about
6 operations/min) with EEG and EMG.

of the VK-T8 directly depend on the amount of entries in the wordlist
which was limited to 145 words in the current experimental setup. A
general problem using of a VK controlled by a BCI is the relation be-
tween the required decisions per letter and the classification accuracy
reached by the BCI. Some illustrative examples are given in Table I.

Using the standard VK, the theoretical probability of typing the
correct character is 53% (with six decisions/letter and an accuracy of
90%). Using the VK-T8 (with four decisions/letter) resulted in a value
of 66%. The probability of typing the correct character increases as
the number of decisions per letter decreases or accuracy on the BCI
increases. Correspondingly, future work is focused on developing
“intelligent” VKs by improving the classification accuracy of the BCI
system to reach an optimal performance.

III. BCI-B ASED MANIPULATION OF HAND ORTHOSIS

In a pilot project with a tetraplegic patient, a mechanical-hand or-
thosis was controlled by ongoing EEG activity based on a synchronous
BCI design and two types of motor imagery (Fig. 1). After a number of
training sessions with varying types of motor imagery strategies over a
period of several months, motor imagery of foot movement versus right
hand movement achieved a classification accuracy of close to 100%
[15].

The inspection of the EEG signals revealed that foot motor imagery
induced long trains of 17-Hz beta oscillations focused on the electrode
position near the vertex (Cz). The assumed underlying processes may
be conceptualized as follows: by repetitive imaginations of foot move-
ment, the oscillatory behavior of neuronal networks close to the foot
representation and/or supplementary motor areas, both localized near
to the midcentral electrode position (Cz), is modified and, therefore,
reinforces the generation of activity in the beta band. This concept un-
derlines the necessary application of repeated BCI-sessions associated
with feedback to the subject on the one side, and at the same time
making use of the plasticity of the brain on the other side [15]. Coming
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Fig. 2. Schematic model of the telemonitoring system. At the right, there is
the Monitor PC placed at our lab by which the BCI is controlled. The left side
represents a rough schema of the BCI system (BCI-PC) and a multimedia PC
used for video conferences with patient and caretaker. Double arrow (light grey)
symbolizes the connection needed for the video conference. The other double
arrow (black) depicts the connection the remote control is based on.

to our concrete application, by using mentally-induced 17-Hz oscilla-
tions as a simple brain switch, a hand orthosis was constructed that can
operate in an asynchronous mode. After a training period of six days,
the patient was able to perform about six opening/closing operations in
1 min (Fig. 1).

IV. BCI TRAINING OF A PATIENT VIA TELESUPPORT

BCI training requires continual interaction between the patient
using the BCI and an expert familiar with the system and can go on
for weeks or even months. A patient’s BCI training can take place
under three conditions: 1) the patient stays at home and a BCI expert
is there to assist him or her during the performance of the BCI
training; 2) the patient has to be present in the laboratory during the
required training sessions; and, finally, 3) the patient stays at home
and participates in BCI training via a remote control system managed
from the laboratory (as described beyond). Our telemonitoring system
includes a remote-control function connecting the patient and his or
her caretaker on the one side with the BCI instructor on the other. The
BCI is controlled on-site by direct access to the system, whereby new
paradigms can be created, adjusted, or simply recompiled. Observing
the flow of paradigms and a parallel projection of the patient on a video
monitor provides direct impressions to the supervisor concerning
important technical and social aspects of training. If new aspects
emerge in the course of the session, the respective EEG data can be
transferred to the laboratory, be analyzed there, and subsequently
results can be used to make immediate changes in the ongoing
running paradigm during the same session. The connection between
the systems is performed on the basis of an ISDN telephone line
[16] (Fig. 2).

The system described previously is currently in use by a completely
paralyzed patient (K., aged 32 yrs) who lives in Bad Kreuznach (Ger-
many). He was trained to use the BCI system and to exert control
on a corresponding VK. By adapting our standard BCI paradigm [4],
starting with simple feedback training, the patient learned to control
the classifier based BCI system. Subsequently, the VK device was in-
troduced. At the beginning of the training with the VK, the patient had
to select one out of two letters, in subsequent sessions the number of
letters was increased stepwise up to eight symbols. “Copy spelling”
of short words was performed with a rate of approximately 1 letter/min
[17]. More details of the applied VK are reported in [16]. These system
features together made it possible to train a patient at a great distance
from our laboratory as intensively and as frequently as a patient who

Fig. 3. “Basket-paradigm.” (a) The subject has to direct the ball to the
indicated goal (“basket”). The trial length varied across the different runs.
(b) ITR for subject C1 in relation to trial length is depicted. The black line
represents the maximum possible ITR for an error-free classification. (� . . .

single runs,� . . . averages for specific trial lengths).

had personal contact with the supervisor. This has increased the number
of patients applying for and under consideration for BCI. In conclu-
sion, we have successfully demonstrated that a BCI used with a tele-
monitoring system offers all the crucial functions needed to perform a
successful BCI training in distance from the laboratory.

V. LIMITS OF INFORMATION TRANSFER STUDIED

IN PARAPLEGIC PATIENTS

In this study, two different types of motor imagery (movement of the
right versus left hand and movement of the right hand versus both feet)
were classified by processing the signals of two bipolar EEG-channels.
Over the course of some weeks, four young paraplegic patients learned
to control the BCI device [18]. The challenge was to find a minimal
trial length enabling a maximum information transfer rate [19]. The
two EEG-channels were recorded using gold disk electrodes located
2.5 cm anterior and posterior to electrode positions C3 and C4, respec-
tively. For each EEG channel two features were extracted by computing
the natural logarithm of band-power values of the 10–12-Hz alpha band
and the 16–24-Hz beta band. Classification of training data (offline)
was performed by linear discriminant analysis (LDA). Classifiers, i.e.
LDA-weight vectors, were computed and proofed by a 10� 10-cross
validation for every 0.5 s of the trials. The best classifiers were then
used in online feedback sessions. These feedback-sessions used the
so-called basket-paradigm [see Fig. 3(a)]. In this paradigm, the patient
watches a black screen that is divided in half vertically by a dotted line.
There is one red and one green basket at the bottom of the screen. After
a pause with a fixed length of 1 s, a red “ball” appears at the top of the
screen. The red ball moves down the screen with a constant speed. The
speed of the ball, expressed by the time the ball took to travel from
the top to the bottom of the screen, varied from run to run. The sub-
ject’s task was to put the downwardly moving ball in the red basket,
which changed sides randomly across trials. The horizontal position of
the ball was directly controlled by the BCI-classification output signal.
This signal was weighted by offline-calculated gain factors to lead the
mean deflection for each direction to the middle of the basket. Each run
consisted of 40 trials and trial length varied from 5 to 1.5 s per com-
plete trial. In the latter case, the patients had only 0.5 s of feedback to
hit the correct basket.

Three out of four subjects participating in this study achieved
promising results after a few runs [see Table II, subject C1 in
Fig. 3(b)]. Analysis of their last two experimental sessions (between
10 and 16 runs) revealed that the trial length can be reduced to values
of around 2 s, thus providing the maximum information transfer.
Accessible information transfer rates (ITRs) reached values between
5 and 17 b/min depending on the subject’s performance and mental
shape. Table II shows the results gathered for all participants in the
experiment described previously.
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TABLE II
SUMMARIZED RESULTSOBTAINED BY ALL SUBJECTS. THE “OFFLINE ERROR”

REPRESENTS THECLASSIFICATION ERROR OF THEBEST TRAINING RUN

(ESTIMATED BY 10� 10-CROSS-VALIDATION ). THESECLASSIFIERSWERE

SUBSEQUENTLY USED FOR THE“BASKET-PARADIGM”

VI. CONCLUSION

A number of studies on the Graz-BCI has shown that motor imagery
is a suitable task to operate a BCI system in able-bodied subjects as well
as in patients [4], [15], [17]. Of special interest is that the repetition of
hundreds of imagery tasks over a period of some weeks/months can in-
duce beta oscillation of a very stable frequency (see Section III). The
occurrence of these oscillations can be used as a simple brain switch.
This phenomenon underlines the plasticity of the brain and the impor-
tant role of training- and feedback sessions in establishing new cir-
cuitries in the cortex capable of generating beta oscillations.

The information transfer rate defined in bits per minute strongly
depends on the classification accuracy and the trial length in a
synchronous BCI system. In a study with patients in a rehabilitation
center (see Section V) trial length was successively reduced to 2 s.
Theoretically, this implies that without any error an information
transfer rate of 30 b/min could be realized. It is important to note
that under this approach, all training and feedback sessions were
organized as a kind of game (“basket game”) and therefore, the
engagement and attention of the participants was kept high during the
experiment [18]. More patients with locked-in syndrome may benefit
from the application of BCI-based spelling systems, if the tele-support
concept is widely introduced. The feasibility and reliability of such
a concept was demonstrated recently between our laboratory at the
Graz University of Technology and a patient in Germany at a distance
of about 700 km (see Section IV).

At the moment, we are working on a “noncue-based” BCI with the
goal to detect specific brain states associated with mental activity in the
ongoing EEG signals in real time. In some preliminary experiments, we
analyzed 10 min of EEG recorded during 60 self-paced finger move-
ments and obtained a HF difference of 77% [the HF difference results
from a subtraction, whereby the false positive rate (FPR) is subtracted
from the true positive rate (TPR)] [6]. In the case of self-paced foot
movements, an HF difference of 85% could be obtained [20]. These re-
sults are very promising and demonstrate that prediction of movement
execution can be revealed not only by analyzing movement-related po-
tentials [5], [6], but also by considering the dynamics of oscillatory
brain activity.
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