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Abstract— A Brain Computer Interface (BCI) utilizes signals
derived from electroencephalography (EEG) to establish a
connection between a person’s state of mind and a computer
based signal procession system that interprets the EEG signals.
The choice of suitable features of the available EEG signals
is crucial for good BCI communication. The optimal set of
features is strongly dependent on the subjects and on the used
experimental paradigm. Based upon EEG data of an existing
BCI system we present a wrapper method for the automated
selection of features. The proposed method combines a genetic
algorithm (GA) for the selection of feature with a support
vector machine (SVM) for their evaluation. Applying this
GA-SVM method to data of several subjects and two different
experimental paradigms, we show that our approach leads to
enhanced or even optimal classification accuracy.
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I. INTRODUCTION

Signals derived by electroencephalographic (EEG) record-
ings of the scull surface reflect the electric activity of large
neuron ensembles of the cortex. Most current research projects
on the field of Brain Computer Interfaces (BCI) utilize these
signals to detect distinguishable brain states of human subjects.

A. Feedback Training and BCI Systems for Communication

The Thought Translation Device (TTD) [1] is a realtime
BCI system developed for severely paralysed patients who are
not in control of any voluntary motor actions, e.g. patients
suffering from amyotrophic lateral sclerosis (ALS). In an
operant conditioning paradigm using visual, auditive or haptic
feedback, those Locked-In patients are trained with the TTD in
order to gain voluntary control over certain characteristics of
their EEG-signals. The underlying feedback training principles
are well established and have been used since the 1960s for
the self regulation of muscle tone and blood pressure, for the
treatment of migraine, chronic or phantom pain, the attention
deficit hyperactivity disorder and for the prediction and avoid-
ance of epileptic seizures [2]. Using the TTD system, trained
Locked-In patients can voluntarily generate EEG signals which
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are interpreted by the TTD as bits of communication. A built-
in spelling device enables the patients to communicate with
their social environment or to control external devices.

Studies [1] have shown, that the self control of EEG signals
can be learned solely based on feedback training. Nevertheless,
introducing learning capabilities also for signal processing and
classification offers advantages: The often time consuming
feedback training of the patient can undergo a significant initial
speedup when machine learning algorithms are applied.

The discrimination of brain states is performed in general
by the classification of two or more types of EEG signals. This
is a difficult task for a BCI system as single trials have to be
classified which may contain various artifacts and intensive
background activity.

B. Feature Selection for BCI Classification

In a BCI experiment every single trial delivers time series
from several EEG channels that are sampled with at least
100Hz. In order to avoid dealing with this very high dimen-
sional and noisy data, certain features can be selected or calcu-
lated from the all-channel time series before the classification
starts. Ideally, those features meaningful for classification
are identified and chosen, while others (including outliers
and artifacts) are omitted. In existing BCI systems, various
features are used. A common way of selecting them is based
on physiological expert knowledge or a priori expectations
that strongly depend on the nature of the imagination tasks
the subject performs. In a feedback paradigm the pure or
band pass filtered time series [1] of slow cortical potentials
(SCP) can be used without asking the subject to perform
a specific imagination task. The band power coefficients of
(motor) rhythms [3] are used for the discrimination of motor
imagination tasks. Coefficients derived from AR or AAR
models of the time series or principal components are used
for various mental imagination tasks [4].

The choice of a subset of all available EEG channels also
affects the classification performance. This choice usually
precedes the calculation of any features, but in a broader
sense the choice of channels itself can be considered a feature
selection. Usually the assortment of appropriate channels is
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either physiologically justified or it is calculated based on the
statistics of example data, e.g. using the method of common
spatial patterns [S]. For different applications, variants of
independent component analysis were successfully applied for
this spatial filtering of EEG data.

Once the feature vectors are calculated, the actual classifi-
cation problem can be solved by linear or kernel discriminant
analysis [6], artificial neural networks [7], decision trees and
various other methods.

In this paper we propose a feature selection approach based
on a genetic algorithm (GA) to pick most promising channels
of EEG signals for the classification via support vector ma-
chines (SVM). The next section will describe the data used
for our experiments before the GA-SVM method is explained
in detail. The results of this method are then compared to
physiologically motivated feature selection methods and -
where applicable - also to the brute force choice of channels.

I1. DATA
A. Data Sets Recorded with the TTD

This data was recorded during feedback training sessions
of four healthy subjects (VP03, VP16, VP17 and VP18)
using the TTD system. The subjects were asked to move a
feedback cursor up and down on a computer screen, while
their cortical potentials and EOG were recorded using a
PsyLab EEG8 amplifier. The data was sampled by a Computer
Boards PCIM-DAS1602/16 bit A/D-converter with 256 Hz
sampling frequency. Previous work [1] has shown that healthy
subjects as well as Locked-In patients are in general able
to gain voluntary control of their slow cortical potentials
(SCP) by feedback training. During the recording, the subjects
received visual feedback of their SCP taken from the Cz-
Mastoids: cortical positivity lead to a downward movement
of the feedback cursor, whereas cortical negativity lead to
an upward movement. The following channels of EEG were
recorded (denotation follows the 10/20 system):

o Chl: Al(left mastoid)-Cz

« Ch2: A2(right mastoid)-Cz

o Ch3: (2 cm frontal of C3)-Cz

o Ch4: (2 cm parietal of C3)-Cz

o Ch5: (2 cm frontal of C4)-Cz

o Ch6: (2 cm parietal of C4)-Cz
After EOG correction, the position of the feedback cursor was
calculated based on the average potential of Chl and Ch2.
Channels 3 to 6 were not used for feedback. The subjects were
trained during at least five sessions (on different days). Every
session covered several runs of 50 trials each. Positive and
negative trials were presented in random order. One trial lasted
6s. From second 0.5 until the end of the trial, the associated
task was visually presented by a highlighted goal at either the
top or the bottom of the screen in order to indicate either
negativity or positivity. The visual feedback was presented
from second 2 to second 5.5.

The GA-SVM feature selection analysis described in this
paper was performed offline. Only the feedback interval of

TABLE I
OVERVIEW OF THE TTD DATA SETS

[ Subject [[ used session [ total trials | pos. trials | neg. trials
VP03 S1 350 176 174
S2 350 176 174
S5 150 75 75
VP16 S1 300 151 149
S3 250 126 124
VP17 S1 150 73 77
S5 250 124 126
VP18 S3 200 101 99
S5 300 151 149

3.5s duration of every trial was considered for our experiments.
Thus the data of every trial resulted in 6 channels containing
896 samples each. Sessions that showed strong EOG activity
were omitted. No further artifact removal was performed.
The binary classification of positive and negative trials was
performed separately for every patient and every session. Table
I shows the composition of the session data.

B. NIPS 2001 Data Set

This data set was submitted by Blanckertz et al. [8] as
part of the classification contest of the Neural Information
Processing Systems (NIPS) Conference in 2001. The 27-
channel EEG data was recorded in a free running left-right
finger tapping paradigm of a healthy subject and sampled with
100Hz. Every trial contains 27 time series of 1.51s duration
each. The data set comprehends 413 trials with 194 trials
belonging to class 1 and 219 to class -1.

III. ALGORITHMS
A. SVM Classification

The binary classification of any data set was carried out
by the mySVM implementation of the support vector machine
(SVM) which is based on the SVMlight algorithm [9]. The
SVM as a classifier was chosen for several reasons. First,
the fine tuning of learning parameters turned out to be quite
simple for the TTD and NIPS data. Second, the SVM can
deal with high dimensional data. Third, the SVM is a very
reliable classifier that - given a certain function class - finds
the best class separating function, i.e. the one that will have
the lowest expected classification error on further data of the
same kind. For an introduction into support vector learning see
[6]. All SVM results presented are averaged values based on
cross validation and the dot product kernel. Further mySVM
parameters have been optimised beforehand but were kept
constant for all results.

For our purposes, the channels of the EEG data are consid-
ered interesting features. The feature selection determines for
each of the channels if its time series is used for classification
or not. A possible outcome of such a choice of features can
be coded in a binary string. It contains as many elements as
channels are available. For the 6-channel TTD data described
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above, the example string *100011° would code for the selec-
tion of channels 1, 5 and 6 whereas the time series of channels
2, 3 and 4 are not used for classification. Likewise a binary
string for the NIPS data contains 27 elements.

B. GA Feature Selection

For evolutionary optimization with a genetic algorithm (GA)
[10], such a binary string can be considered the genetic
information of an individual. Initially a whole population
consisting of several individuals are randomly initialised. For
simplification, the characteristics of such an individual is
completely determined by its string. A so called fitness value is
assigned to every individual by generating the corresponding
data set and classifying it. Therefore, the time series of selected
channels (defined by ones in the string) are concatenated, the
’0’~channels are omitted. The resulting data set is then used
for SVM training. The classification accuracy is considered
the fitness of the individual.

After the fitness values of every individual of a population
has been calculated, the next generation of individuals (i.e.
the next population) can be created. This next population is
derived from the previous one by applying the evolutionary
operators selection, recombination (with cross over) and mu-
tation. They operate directly on the binary strings and imitate
the sexual reproduction. The chance of reproduction for an
individual of the parent generation is correlated to its fitness
value. Thus the genetic strings of very fit individuals are
likely to influence the strings contained in the next generation
whereas the strings of individuals with lower fitness are not
likely to do so. For the genetic algorithm used on the TTD
data sets, we chose populations of 13 individuals each and
evolved them over 40 generations. Due to the higher number
of channels in the NIPS data set a population size of 29
individuals was chosen and evolved for 80 generations. The
selection scheme of both settings allowed elitism, i.e. the fittest
individual was taken over directly into the next generation.

C. Expert Feature Selection

For the TTD training paradigm there exists a clear expert
choice of channels that is used for the feedback training. This
choice comprehends the first two channels omitting channels 3
to 6. This choice is physiologically motivated and has proven
to be very successful in the long run when subjects or patients
are trained over many sessions. For the special situation of the
first few training sessions, this choice must not necessarily be
optimal as the subjects usually have not yet acquired good
control of their SCP signals. For the NIPS data set with 27
EEG channels, no such physiologically motivated expert rating
was available.

IV. EXPERIMENTS

The GA optimises the feature selection as it evolves good
combinations of EEG channels. Since it is wrapped around the
SVM which classifies and thus calculates the fitness values
of the individuals, this GA-SVM combination is called a
wrapper method for feature selection. In order to make this
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Fig. 1. Classification accuracy for 3 sessions of VP03. Boxes show average
accuracy, lines show confidence intervals for p <0.05. Comparison of channel
selection modes all channels (A), best channels found by brute force search
(B), good channels determined by GA (G) and physiologically determined
channel selection (P). If B results were identical to G results then only one
box (B=G) is shown. Note the different scalings of the Y-axis (accuracy).

wrapper method practical, all the fitness values of individuals
that belong to one generation are evaluated in paraliel on a
linux cluster. The fitness of every individual is determined by
applying 10-fold cross validation during SVM training.

The GA-SVM terminates with a selection of good individuals,
e.g. channel combinations that produce high classification
scores in SVM training. The classification accuracy of the best
GA individual (from now on referred to as G) is investigated
in more detail: After the channel information was reduced
to the channels specified by the according string, the trials
contained in the data set were permuted ten times. For each
permutation, a 11-fold and a 13-fold cross validation SVM
training was performed. Thus for every G-individual twenty
cross validations were calculated. This corresponds to 240
single SVM evaluations. In section V we show the average
accuracy values of these cross validations. The classification
performance of the physiologically motivated 2-channel expert
choice for the TTD data (from now on referred to as P) was
investigated in the same manner.

For the case of the TTD data, which provides only 6
channels, the total number of possible channel combinations
is 26 — 1 = 63. As this search space is rather small, we
additionally performed a brute force test. For the evaluation of
every possible channel combination (including the all-channel
combination A, a 10-fold cross validation was performed.
Based on these results, the best brute force individual (from
now on referred to as B) was chosen. The accuracy values for
the A and B channel choices were also consolidated by ten
11-fold and ten 13-fold cross validations.

V. RESULTS
A. TTD data sets

Over all subjects and sessions (see figures 1, 2 and 3)
the classification accuracy of the all-channel training (A)
is significantly better than for the physiologically motivated
P-choice. On average, an improvement of 8.11% absolute
accuracy was gained. As this result is derived from data that
was recorded during the first five sessions only, no conclusions
about the subsequent feedback training sessions can be drawn,
although the initial training with the TTD system might be
enhanced by the all-channel choice.
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VP16 Session 1 VP16 Session 3 VP17 Session 1 VP17 Session

Fig. 2. Classification accuracy for 2 sessions of VP16 and VP17. Boxes
show average accuracy, lines show confidence intervals for p <0.05. Note the
different scalings of the Y-axis (accuracy).

On average, the best individuals generated by the GA-
SVM for the nine data sets use 3.67 channels while the
nine best individuals generated by the brute force search
use 3.78 channels. None of these individuals uses all 6
channels. Only 2 individuals contain (besides other channels)
both P-channels 1 and 2. Except for two cases, the channel
combinations calculated by the GA-SVM are identical with
the best channel combinations derived from brute force search
under all possible combinations. The best GA-SVM individual
of VP03 Session 5 is not identical with the best brute force
individual. Although not statistically significant, its average
accuracy is evem higher than that of the best brute force
individual. This difference is explained by the fact that the
final average accuracy values plotted in figure 1 are based on
20 cross validations whereas the brute force algorithm and
the GA search internally only used one cross validation. The
data of VP18 session 3 in figure 3 is the only example where
the GA-SVM is outperformed by the brute force algorithm
by 0.27% (although this difference is also not statistically
significant). Compared to the all-channel choice, the GA-SVM
choice on average improves the classification accuracy over all
nine TTD data sets about 2.08%, and the comparison of the
GA-SVM with the physiologically motivated channel choice
thus reveals an average improvement of 10.19%. Please note
that the best GA individuals are significantly better than the
all-channel choice for seven of the nine data sets.

B. NIPS data set

The best individual that resulted from the GA-SVM method
applied to the NIPS data set only used 13 out of 27 channels.
Compared to the all-channel selection, the average classifi-
cation accuracy was significantly improved by the GA-SVM.
The wrapper method raised the overall classification accuracy
for 3.15% to 0.8527. A comparison of the corresponding
confidence intervals for p<0.05 is shown in figure 3.

V1. CONCLUSION

The presented results base on the time series of EEG
recordings that contained various artifacts as well as redundant
information. Although no hand optimised data preprocessing
or feature definition steps were undertaken, the presented GA-
SVM method allowed for good improvement of classification
accuracy compared to the all-channel feature choice and -
even better - compared to the physiologically motivated feature

A
VP18 Session 5

VP18 Session 3 NIPS data

Fig. 3. Classification accuracy for 2 sessions of VP18 and for the NIPS
data set. Boxes show average accuracy, lines show confidence intervals for
p <0.05. For VP18 Session 3 the GA could not detected the best possible
channel combination. Note the different scalings of the Y-axis (accuracy).

choice. As the TTD data sets are simple enough to allow the
application of a brute force search, we could show that the
GA-SVM feature selection is optimal for most of the studied
sessions. Also for the NIPS data set that possessed more
channels the application of GA-SVM achieved a significant
improvement although the overall classification performance
level for the all-channel selection was already quite high.

In future experiments, the GA-SVM method will be tested
with more high-level features than time series and compared to
other algorithms for feature selection. For the TTD paradigm it
is also an interesting question if the optimal choice of features
derived for one session stays a reliable and stable choice for
following training sessions. Our further research work will
investigate on this question.
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