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Abstract

This paper reports results with ABI, a portable non-
invasive brain-computer interface. It uses 8 scalp elec-
trodes to measure spontaneous EEG signals from which
we extract simple power spectral features. The features
are fed to a simple local neural network that recognizes
reliably 3 different mental states. We compare the
performance of this local classifier to more complex
time-processing neural networks. We also illustrate the
control of a complex brain-actuated device; i.e., a robot
moving along smooth and safe paths between rooms.

1 TIntroduction

There is a growing interest in the use of
physiological signals for communication and operation
of devices for the severely motor disabled as well as for
able-bodied people. Over the last years evidence has
accumulated to show the possibility to analyze
brainwaves on-line to derive information about the
subjects’ mental state that is then mapped into some
external action such as selecting a letter from a virtual
keyboard or moving a robotics device [1], (2], [3], [4],
[5, [6], [7], [8], [9], [10]. This alternative
communication and control channel is called a brain-
computer interface (BCI).

A BCI may monitor a variety of brainwave
phenomena. Some groups exploit evoked potentials
generated in response to external stimuli (see [1] for a
review). Evoked potentials are, in principle, easy to pick
up but constrain the subject to get synchronized to the
external machinery. A more natural and practical
alternative is to rely upon components associated with
spontaneous mental activity. Thus, [4] measures slow
cortical potentials of the EEG over the top of the scalp,
which indicate the overall preparatory excitation level of
a cortical network. Other groups look at local variations
of EEG rhythms. The most used of such rhythms are
related to the imagination of movements and are
recorded from the central region of the scalp overlying
the sensorimotor cortex [3], [6]. But, in addition to
motor-related rhythms, other cognitive mental tasks are
being explored [5], [7] as a number of neurocognitive
studies have found that different mental tasks—such as
imagination of movements, arithmetic operations, or
language—activate local cortical areas at different
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extents. In this latter case, rather than looking for
predefined EEG phenomena as in the previous
paradigms, the approach aims at discovering EEG
patterns embedded in the continuous EEG signal
associated with different mental states. Finally, another
kind of spontaneous signals is the direct activity of
neurons in the motor cortex [8], [9], [10].

[3] and [4] have demonstrated that some subjects
can learn to control their brain activity through
appropriate, but lengthy, training in order to generate
fixed EEG patterns that the BCI transforms into external
actions. Other groups follow machine-leaming
approaches to train the classifier embedded in the BCI
[S1, [6], [7], [11]. Most of these approaches are based on
a mutual learning process where the user and the brain
interface are coupled together and adapt to each other
[51, [6), [7}. This should accelerate the training time.
Thus, [7] has allowed subjects to achieve good
performances in just a few hours of training in the
presence of feedback.

Most of these works deal with the recognition of
just 2 mental states [3], [4], [5], [6] or report
classification errors bigger than 15% for 3 or more tasks
[6], [11]. An exception is the approach called Adaptive
Brain Interface (ABI) [7] that achieves error rates below
5% for 3 mental tasks, while correct recognition is 70%.
Contrarily to almost all other BCls, ABI relies upon an
asynchronous protocol where the subject makes self-
paced decisions on when to stop doing a mental task and
start immediately the next one'. This makes ABI very
flexible and natural to operate, and yields rapid response
times—the system tries to recognize what mental task
the subject is concentrated on every 1/2 second.

ABI has a simple local neural classifier where
every RBF unit represents a prototype of one of the
mental tasks to be recognized. Experimental results have
shown that this local network performs much better than

! In the case of synchronous protocols, the subject must
follow a fixed repetitive scheme to switch from a mental task
to the next [3], [4], 6]. A trial consists of two parts. A first cue
warns the subject to get ready and, after a fixed period of
several seconds, a second cue tells the subject to undertake the
desired mental task for a predefined time. The EEG
phenomena to be recognized are time-locked to the last cue
and the BCI responds with the average decision over the
second period of time. In these synchronous BCI systems, a
trial lasts from 4 to 10 or more seconds.
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more sophisticated approaches such as support vector
machines and equally well (or slightly better) than
temporal-processing neural networks such as time-delay
neural networks (TDNN) [12] and Elman-like recurrent
networks [13]. This is achieved by simply averaging the
outputs of the network for 8 consecutive EEG samples
(and still yielding a global response every 1/2 seconds).
The first part of this paper summarizes the results of this
comparative study among these three common strategies
to incorporate temporal dynamics of brain activity into
the classifier.

With this embedded local network, ABI is being
used to operate several brain-actuated devices; namely,
a virtual keyboard, a computer game and a mobile robot
(see [2] for a brief discussion). In the second part of this
paper, we briefly describe this latter application.

2 Experimental Protocol

In the comparative study, five volunteer healthy
subjects concentrate on 3 mental tasks out of a set of 5
possible. These are: “relax”, imagination of “left” and
“right”  hand movements, “cube rotation”, and
“subtraction”. The tasks consist on getting relaxed,
imagining repetitive movements of the hand, visualizing
a cube rotating around one of its axis, and performing
successive elementary subtractions by a fixed number
(e.g., 64-3=61, 61-3=58, 58-3=55, etc.). In a recording
session, the subject performs the selected task during 10
to 15 seconds, and he/she chooses when to stop doing it
and the next to be undertaken. For the training and
testing of the classifier, the user tells an operator which
task is going to perform so that the operator can label
the corresponding sequence of EEG samples. Each
recording session lasts about 5 minutes.

During the sessions users receive feedback as
follows. There are three buttons on the computer screen,
each of a different color and associated to one of the
mental tasks to be recognized. A button lights up when
an arriving EEG sample is classified as belonging to the
corresponding mental task.

EEG potentials are recorded at the 8 standard
fronto-centro-parietal locations F3, F4, C3, Cz, C4, P3,
Pz, and P4. The sampling rate is 128 Hz. We use the
Welch periodogram algorithm to estimate the power
spectrum of each channel over the last second. Epochs
are 0.5 seconds long. The values in the frequency band
8-30 Hz are normalized according to the total energy in
that band. Thus an EEG sample has 96 features (8
channels times 12 components each). The periodogram,
and hence an EEG sample, is computed every 62.5 ms
(i.e., 16 times per second). In separate studies we have
found that these simple power spectral features lead to
better or similar performances than more elaborated
features such as parameters of autoregressive models
and wavelets [14].

In the case of the brain-controlled mobile robot, a
volunteer healthy subject concentrates on the 3 mental
tasks “relax”, imagination of “left” hand movements and
“cube rotation”. The subject was moderately trained
during a few consecutive days, around 1/2 daily. After

that, the subject tried to control mentally the mobile
platform described below for 2 days.

3 Temporal Processing of Brain Activity

In this section we compare three neural network
architectures in the recognition of 3 mental tasks from
spontaneous EEG signals for five subjects. The per-
formance of the different networks have been measured
in a hard experimental setup; namely, generalization
over different sessions while analyzing short-time
windows. The difficulty lies in that brain activity
changes from a session (with which data the classifier is
trained) to the next (where the classifier is applied).

Subjects MJ, MJR and CGS are advanced users of
the interface, while subjects FM and MC are beginners.
The performance is measured by the accuracy, defined
as the number of correct classifications divided by the
total number of samples, and the error, defined as the
number of incorrect classifications divided by the total
number of samples. It is worth noting that accuracy and
error do not always sum to 100% because the networks
may give “unknown” responses to uncertain samples.
The incorporation of rejection criteria to avoid making
risky decisions is an important concern in BCL. From a
practical point of view, a low classification error is a
critical performance criterion for a BCIL, for otherwise
users would frustrate and stop utilizing the interface.

Table 1 gives, for each of the subjects, the
performances of TDNN, Elman and local networks that
average the response to 8 consecutive EEG samples. In
this case, we use a confidence probability threshold, as
the output of these networks is the posterior probability
distribution for a sample to belong to the different
classes. For each subject, the first row gives the
accuracy while the second row reports the error, for the
corresponding probability threshold (from 0.70 to 0.95).
Averaging is a simple method to combine consecutive
responses and, in our case, yields similar or better
results than other techniques (e.g., product
combination). Space limitations prevent the discussion
of these alternatives. [5] and [11] report significant
improvements in the classification of EEG signals when
averaging over several seconds (from 2.5 to 5 seconds).

Regarding the TDNN and Elman networks, we
have explored architectures with different numbers of
hidden units. It seems that networks with in between 10
and 50 units perform equally well. In the case of TDNN
the time delay is 8 samples, for compatibility with the
averaging technique. As for the local networks, they
have a small number of prototypes per mental task,
namely 4 units. Thus the classifier consists of just 12
units. Interestingly, Table 1 points out that these simple
local networks achieve lower relative errors than TDNN
and Elman networks and even better accuracy.
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Table 1. Performances of TDNN, Elman and local networks for differcnt probability thresholds. Shadowed figures indicate the best
performance for each network. The response of the networks is the average of 8 consecutive EEG samples. For each subject, the first

row gives the accuracy and the second reports the error.

- TDNN Elman Local
Subject 0.70 0.75 080 0.85 0.90 0.9510.70 0.75 0.80 0.85 0.90 0.9510.70 0.75 0.80 0.85 0.90 0.95
52.4 47.6 63.4 60.3 61.6 57.8 53.7 48.6
M 10.6 08.6 11.6 08.2 09.6 08.2 062 055
75.6 71.5 733 69.6 67.8 64.1 51.5
MR 14.8 12.6 14.8 11.8 07.1 05.5  02.2
61.2 68.6 64.0 56.8 54.2 48.7
cos 08.7 06.5 149 11.3 06.9 04.7 01.5
28.6 19.8 27.8 22.2 51.6 47.6 43.7 39.7
™ 12.7 15.1 111 08.7 063 063 04.8
055 045 034 01.8|21.4 137 383 33.5 282 219
Me 00.8 00.3 00.3 00.015.0 05.8 174 15.6 11.3 06.3

These experiments illustrate that neither the
advanced users nor the beginners achieve high
recognition rates. However, the modest accuracy figures
achieved by advanced users (MJ, MJR and CGS) are
compensated by the low percentages of wrong decisions.
For the best networks and probability thresholds, the
accuracy is 60% for MIJR, 52% for CGS, 40% for MJ,
while the error is always below 4%. Thus, errors are, at
least, 15 times smaller than the classification accuracy.
These absolute and relative classification errors are also
achieved by the beginner users (FM and MC) who,
however, reach lower accuracies (33% and 17%,
respectively). In addition to the appealing property of
low classification errors, the system exhibits another key
feature. Since it makes decisions every 1/2, a modest
classification accuracy (in combination with low errors)
does not preclude practical operation. In fact,
recognition of a desired mental task takes in between 1
and 1.5 seconds on average. It is worth noting that 1
second is the shortest time necessary for recognition as
EEG samples are derived from sequences that are I-
second long—and so subjects must stay concentrated on
the task during that time to obtain a good codification.

4 Brain-Actuated Control of a Mobile Robot

The task is to drive a mobile robot among different
rooms in a house-like environment (see Figurel). The
robot is a Khepera mobile platform. This mobile
platform closely mimics the operation of a motorized
wheelchair. The robot moves at a speed of one-third its
diameter per second, similar to the speed of a
wheelchair in indoor environments.

To make the robot move along a given trajectory it
is necessary to determine the speed of the motors
controlling the wheels at each time step. Obviously, this
is impossible by means of just three mental commands.
The key idea is that the user’s mental states are
associated to high-level commands that the robot
executes autonomously using the readings of its on-
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board sensors. Also, once a mental state is recognized
and the associated high-level command is sent to the
mobile platform, the subject does not need to keep that
mental state (which would be exhaustive). Another
critical aspect for the continuous control of the robot is
that subjects can issue high-level commands at any
moment as the operation of the BCI is self-paced and
does not require waiting for external cues (as compared
to synchronous approaches). The robot will continue
executing a high-level command until the next is
received or the intended goal is reached. In this way a
given mental state, for instance “left”, will be associated
to make the robot turn left and cross a doorway.

Finally, an essential element for the correct control
of the robot is to give an appropriate feedback to the
user to inform him/her of what the robot is doing (or
about to do next). This is done by means of three lights
on top of the robot, with the same colors as the buttons
used during the training phase. This simple feedback, in
combination with the user’s knowledge of the control
system, allows the user to correct rapidly the trajectory
of the robot in case of errors in the recognition of the
mental states or errors in the execution of the desired
behavior (due to the limitations of the robot’s sensors).
Testing has put forward the essential role of feedback.

Figure 1. The working environment [or the robot made of
different connected rooms.

After a few days of consecutive training, less than
4 hours in total, the subject achieved a satisfactory
control of his individual brain interface. Correct
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recognition was around 85% while errors were slightly
below 5%. For the remaining 10% of EEG samples,
there was no response.

Then, the subject started to use the learned neural
classifier to control the mobile robot. This is
considerably harder than the problem faced during the
first phase of training. Indeed, now the subject has to
tackle two tasks: concentration on the desired mental
state as before, and determination of the appropriate
behavior of the robot to drive it to the target destination.
This second task requires, in turn, observing the current
situation of the robot (position and active behavior) as
well as remembering the how the controller works.

Figure 2. Trajectory followed by the robot under the mental
control of the subject. The robot started in the bottom left
room and then visited 3 other rooms, top center, top right and
bottom right, sequentially.

After two days of practice (around 2 hours in
total), the subject was able to drive the robot along a
non-trivial trajectory. Figure 2 shows this trajectory that
made the robot visit 4 different rooms. This was
obtained at the end of the second day of training with
the robot. It is worth noting that this was achieved
during a public demo, with the corresponding increase
of stress for the subject. To generate this trajectory the
subject was driving the robot for about 10 minutes
continuously. Although the subject brought the robot to
the desired rooms each time, there were a few occasions
where the robot did not follow the optimal trajectory.
This was mainly because the interface took a longer time
than usual to recognize the subject's mental state. In
other couple of situations, the robot’s sensors were not
working properly and perceived an object too close, thus
making the robot stop to avoid collisions. In this case,
the subject neceded to turn the robot against the
offending wall and then resume the trajectory.

5 Conclusions

In this paper we have explored different neural
networks for the classification of 3 mental tasks from
spontaneous EEG signals. From these signals we extract
simple power spectral features, and the neural classifiers
make decisions every 1/2 second. It turns out that a
simple local neural classifier, which averages the
response to 8 consecutive EEG samples, is to be
preferred to more complex time-processing networks. It

is then possible, for users with some hours of training, to
operate different brain-actuated applications. We have
described one of them, namely a brain-controlled robot
emulating a motorized wheelchair. This demonstrates
the feasibility of controlling non-trivial robotics devices
by means of a portable non-invasive BCI.

We have tested the above networks in a hard
experimental setup; namely, generalization over sessions
while analyzing short-time windows. A current area of
research is to adapt on-line the classifier while the
subject operates a brain-actuated application. In this
respect, the current local neural classifier is better suited
than other methods due to its robustness against
catastrophic interference and simple learning rule.
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