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Abstract. This paper presents a scalable method for paral-
lel symbolic on-the-fly model checking in a distributed mem-
ory environment. Our method combines a scheme for on-the-
fly model checking for safety properties with a scheme for
scalable reachability analysis. We suggest an efficient, BDD-
based algorithm for a distributed construction of a counterex-
ample. The extra memory requirement for counterexample
generation is evenly distributed among the processes by a
memory balancing procedure. At no point during computa-
tion does the memory of a single process contain all the data.
This enhances scalability. Collaboration between the parallel
processes during counterexample generation reduces mem-
ory utilization for the backward step.

We implemented our method on a standard, loosely- con-
nected environment of workstations, using a high-performance
model checker. Our initial performance evaluation, carried
out on several large circuits, shows that our method can check
models that are too large to fit in the memory of a single node.
Our on-the-fly approach may find counterexamples even when
the model is too large to fit in the memory of the parallel sys-
tem.

1 Introduction

A model checking algorithm takes a model and a specifi-
cation written as a temporal formula. If the model satisfies
the formula, the algorithm returns ‘true’; otherwise it returns
‘false’ and provides a counterexample demonstrating why the
model does not satisfy the formula. The counterexample fea-
ture is vital to the debugging of the system.

Model checking tools have successfully uncovered sub-
tle errors in medium-sized complex designs. However, the
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large memory requirements of these tools limit their appli-
cability to large designs. This is their main drawback. Many
approaches to reducing the memory requirements of model
checking tools have been investigated. One of the most suc-
cessful approaches is symbolic model checking [8], in which
computation is done over a set of states. Many model check-
ers represent these sets using binary decision diagrams
(BDDs) [6].

Another approach is on-the-fly model checking, in which
parts of the model are developed whenever the need arises.
The check is usually guided by an automaton that monitors
the behavior of the system in order to detect errors and stop
the evaluation as soon as an error is found. Several on-the-fly
algorithms [13,20,5] for CTL* use a depth-first search (DFS)
traversal of the state space. Since BDD-based methods work
efficiently on sets of states, we use an on-the-fly algorithm
suggested by Beer et al. [4]. This algorithm uses breadth-
first search (BFS) for traversal of the state space. It model
checks specifications given as regular expressions describing
“bad” (unwanted) behaviors. Note the difference from reg-
ular model checking in which the specification formula de-
scribes the good behaviors. In this method, a regular expres-
sion is translated into an automaton, using the standard algo-
rithm [15]. The acceptance state of the automaton indicates
an error state in the model for the given specification. The
automaton and the model are then multiplied. Finally, a BFS
is used for reachability analysis. The BFS stops as soon as an
error state is detected. Industrial temporal languages such as
Sugar [2] and ForSpec [1] employ regular expressions. See
appendix A for a detailed description of model checking reg-
ular expressions on-the-fly.

Other approaches [9,19,18,21,14] aim to reduce the mem-
ory requirements of model checking algorithms by partition-
ing the work into several tasks. This can be done by par-
allelizing an explicit-state model checker that does not use
symbolic methods [21]; by using a single computer that han-
dles one task at a time while keeping others in an external
memory [9,19,18]; or by means of a distributed, symbolic
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algorithm for reachability analysis that works on a network
of processes with distributed memory [14]. The algorithm in
[14] achieved an average memory scale-up of 55 on 130 pro-
cesses. This made it possible to handle designs that could not
fit into the memory of a single machine.

In this work we combine the approaches of [4] and [14],
obtaining a distributed symbolic on-the-fly model checking
method that can handle very large designs. Our method in-
cludes a distributed algorithm that employs several processes
for counterexample generation: the entire set of states is never
held in a single process.

Producing the counterexample requires additional storage
of sets of states during reachability analysis, one set for each
step. In the distributed algorithm each process stores only part
of each set. In order to balance the parts of the sets across the
processes, we apply a slicing function that defines for each
process the parts of the set it should store. The parts a process
stores may belong to different parts of the state space. This
makes the distributed counterexample generation somewhat
tricky: we need to track the steps backwards while switching
different slices and maintaining the memory requirement at a
low level.

We implemented our method inside the high-
performance verification tool RuleBase [3], developed by the
IBM Haifa Research Lab. We used a distributed, non-dedicated,
slow network system of 32 standard workstations. The perfor-
mance results show that our method scales well. Large exam-
ples that could not fit into the memory of a single machine
terminate using the parallel system. The parallel system ap-
pears to be balanced with respect to memory utilization. Fur-
thermore, communication over the network does not become
a bottleneck.

We were also able to show that the distributed algorithm
is more effective for on-the-fly model checking that includes
counterexample generation than it is for reachability analysis.
There are two main reasons for this. First, the counterexam-
ple generation procedure requires that sets of states be saved,
and this consumes more space. The parallel system, however,
enables the effective splitting and balancing of this additional
space. This enhances scalability. Second, the parallel system,
even when failing to complete reachability to the fixpoint,
is usually able to proceed for several steps beyond the point
reached by a single machine. This improves the chances that
our on-the-fly model checking will find an error state during
these steps.

The rest of the paper is organized as follows. Section 2 de-
scribes the sequential on-the-fly algorithm for checking regu-
lar expressions. Section 3 presents our distributed on-the-fly
model checking scheme. Section 4 provides our performance
evaluation and Section 5 presents our conclusions.

2 The Sequential On-the-Fly Algorithm

In this section we describe the main characteristics of the se-
quential on-the-fly model checking algorithm presented in [4].
This algorithm is the basis for our distributed method.

Given a system model M and a regular expression ϕ de-
scribing “bad” behavior, the corresponding automaton A is
constructed and combined with M . A monitors the behav-
ior of M . If it detects an erroneous behavior, an error flag is
set. A then enters a special state and stays there forever. We
call a state that satisfies the error flag an error state. Thus,
M does not contains any bad behaviors that satisfies ϕ if and
only if the combination of M and A (that is, M × A) does
not reach an error state. In order to check that M satisfies
ϕ, we run a reachability analysis on M × A that constantly
checks whether an error state has been encountered. The al-
gorithm traverses the (combined) model using a breadth–first
search (BFS). Starting from the set of initial states, it con-
structs a doughnut at each iteration. This doughnut is the set
of new states found in that iteration. The doughnuts are kept
for later use in the generation of the counterexample. Keeping
the doughnuts increases the space requirements of this algo-
rithm, and they exceed those of (pure) reachability analysis.

The model checking algorithm terminates successfully if
all reachable states have been traversed and no error state has
been found. If at any stage an error state is encountered, the
model checking algorithm stops and the generation of a coun-
terexample begins.

A counterexample is a sequence of states that starts with
an initial state and ends with an error state. It is generated
backwards. The algorithm begins with an error state and se-
lects a state from among its predecessors. Then the generation
continues, following the doughnuts that were produced and
stored by the reachability analysis algorithm. All these se-
lected states are saved in the order in which they were found.
Counterexample generation terminates when the doughnut of
the initial states is reached. At this point the selected states
comprise a complete counterexample sequence.

Figure 1 presents the sequential algorithm for on-the-fly
model checking, including the counterexample generation pro-
cedure. The algorithm differs from simple BFS in three ways:
it evaluates the formula while computing the set of reachable
states; it saves the sets of states for the counterexample gen-
eration; if it reaches an error state, it constructs a counterex-
ample. The counterexample generation procedure is based on
the one in [11]. Lines 1–9 describe the model checking phase.
At each iteration i, the set of new states that have not yet been
reached is kept in doughnut Si.

The algorithm terminates if either no new states are found
(new = ∅), in which case it announces success, or if an
error state is found (new ∩ error 6= ∅), in which case
it announces failure.

In lines 16–22, the counterexample Ce0, . . . Cek is gen-
erated. The counterexample is of length k +1 (line 14), since
an error state was first found in the k-th iteration. We choose
Cek ∈ Sk from among the error states reached. Having al-
ready chosen a state Cei ∈ Si, we compute the set of bad
states by finding the set of predecessors for Cei: pred(Cei).
We then intersect it with the doughnut Si−1 (line 19). Since
each state in Si is a successor of some state in Si−1, the set
bad will not be empty. We now choose Cei−1 from the set of
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1 reachable = new = initialStates
2 i = 0
3 while ((new 6= ∅)&&(new ∩ error = ∅)) {
4 Si = new
5 i = i+1
6 next = nextStateImage(new)
7 new = next \ reachable
8 reachable = reachable ∪ next
9 }
10 if (new = ∅) {
11 print ‘‘formula is true in the model’’
12 return
13 }
14 k = i
15 print ‘‘formula is false in the model’’
16 bad = new ∩ error
17 while (i>=0) {
18 Cei = choose one state from bad
19 if (i>0) bad=pred(Cei)∩Si−1

20 i = i-1
21 }
22 print ‘‘counterexample is:’’ Ce0 · · ·Cek

Fig. 1. Sequential algorithm for on-the-fly model checking, including
counterexample generation

bad states. The generation of the counterexample continues
until Ce0 is chosen.

3 Distributed Algorithm

The distributed algorithm for on-the-fly model checking con-
sists of two phases:

– The model checking phase
– The counterexample generation phase

3.1 Distributed Model Checking

In the distributed algorithm, an initial sequential stage pre-
cedes the distributed stage. The reachable states are first com-
puted on a single process. When a certain memory require-
ment threshold is reached, the state space is partitioned into
k slices, whose union is the whole state space. This partition,
or slicing, should require less memory. Furthermore, the sub-
sets should be disjoint. Disjoint subsets will allow us to avoid
duplication of work during reachability analysis. The slicing
algorithm [14,18,10] selects a variable and uses it to slice a
set into two disjoint subsets. Using the slicing algorithm k
times results in k subsets that are distributed to k processes.
This ends the sequential stage.

The distributed stage begins with each process being in-
formed of the slice it owns, and of the slices owned by each
of the other processes (which are non-owned by this process).
The process receives its own slice and proceeds to compute
the reachable states for that slice in iterative BFS steps. At
each such step, the set of new states is kept in a doughnut.

Each process computes the set next of states that are
reached directly from the states in its new set. The next set
contains owned as well as non-owned states. Each process
splits its next set according to the k slices and sends the
non-owned states to their corresponding owners. At the same
time, the process receives the set of states it owns from the
other processes.

The model checking phase for one process Pj is given
in lines 1–13 of Figure 2. Lines 1–3 describe the setup stage
where the process receives the slice it owns and the initial
sets of states it needs to compute from. Lines 5–17 describe
the iterative computation.

Distributed termination detection (line 5) is used to deter-
mine when this phase should end. All processes should end at
this phase if one of two conditions holds: none of the pro-
cesses found a new state or one of them found an error state.
In the first case, the specification has been proven correct and
the algorithm terminates. In the second case the specification
is false, and all processes proceed to the counterexample gen-
eration phase. In order to distinguish between the two cases,
the termination detection procedure is used (line 14) with the
error parameter equal 0.

Several points distinguish distributed model checking from
sequential model checking. When distributed model checking
is used,

– the set next is modified (lines 9–10) through communi-
cation with the other processes and is restricted to include
only owned states;

– distributed termination detection is applied;
– for each doughnut i, each process Pj stores the slice of

the doughnut S(i,j) it owns.

Our distributed algorithm is made particularly effective
by the memory balancing procedure, which maintains ap-
proximately equal memory requirements across the processes
during the entire computation. This is accomplished by pair-
ing large slices with small ones and reslicing their union in a
balanced way. As a result, a process owns (and stores) differ-
ent slices of the doughnuts in different iterations. Therefore,
in some iteration, a process may own a state that does not
have any predecessors stored in the slices of the doughnuts
it owned previously. The distributed generation of a (correct)
counterexample is nonetheless guaranteed by the following
property, which is true by construction:

Si =
⋃

j

S(i,j), (1)

where Si is the doughnut computed by the sequential algo-
rithm at iteration i.

3.2 Distributed Counterexample Generation

To generate a counterexample, our algorithm uses the dough-
nut slices that are stored in the memory of the processes. The
distributed counterexample generation algorithm consists of
local phases and coordination phases. In the local phase, all
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processes run in parallel. Each process takes the counterex-
ample generated so far, denoted by the suffix Cei . . .Cek.
It then executes the sequential algorithm for counterexample
generation, adding the additional states Cei−1,Cei−2,. . . until
it can proceed no further. A process may get stuck after pro-
ducing a counterexample with suffix Cei . . .Cek if it can-
not find a predecessor for Cei in its own slice of the (i-1)th
doughnut. However, by property (1) and by the fact that each
element in Si has a predecessor in Si−1, there must be a pro-
cess that has such a predecessor for Cei.

In the coordination phase, the process that produces the
largest suffix is selected and used to reinitiate the local phase
in all processes. If this suffix is complete (i.e., it contains all
states Ce0. . .Cek), the process simply prints its counterex-
ample and all processes terminate. Otherwise, the process
broadcasts its suffix, together with its iteration number, to
all other processes. Each process updates its data accordingly
and reinitiates the local phase from that point. The algorithm
continues until a complete suffix is found.

Lines 18–35 of Figure 2 describe the algorithm. Lines
22–26 contain the local phase, while lines 27–35 contain the
coordination phase. The algorithm uses the following three
variables:

– myId, which is the index of the process (myId=j for pro-
cess Pj);

– minIte, the smallest iteration number, chosen at the start
of the coordination phase;

– minProc, the smallest index among the processes with
the smallest iteration number.

3.3 Reducing Peak Memory Requirement

In order to generate the counterexample, the sets bad =
pred(Cei)∩S(i,j) must be computed. This is done by inter-
secting the doughnut slice S(i,j) with the set of predecessors
of the state Cei (lines 24, 35). The BDDs for Cei and bad are
usually small. However, a very large peak in memory use may
be caused by intermediate BDDs obtained during the compu-
tation of bad. This phenomenon can be viewed in example
GXI (Figure 9), where a significant increase in memory use
causes the parallel system to overflow during the computation
of the counterexample.

Changing the order of operations can, however, produce
smaller intermediate BDDs. This, in turn, reduces the peak
memory requirement. In the new order, we first restrict the
transition relation of our model to the doughnut slice S(i,j)

and only then use it to compute pred(Cei). Since our imple-
mentation is based on the partitioned transition relation [7],
we actually restrict each one of the partitions to the doughnut
slice.

To increase precision, we define the operations we per-
form by means of Boolean functions (represented as BDDs).
Assume that our model consists of a set of Boolean variables
V . The Boolean function TR(V, V ′) represents the transition
relation of the model, where V and V ′ represent the current
and next state, respectively.

1 mySlice = receive(fromSingle)
2 reachable = receive(fromSingle)
3 new = receive(fromSingle)
4 i = 0
5 while (Termination(new,error)==0) {
6 S(i,j) = new
7 i = i+1
8 next = nextStateImage(new)
9 next = sendReceiveAll(next)

10 next = next ∩ mySlice
11 new = next \ reachable
12 reachable = reachable ∪ next
13 }
14 if (Termination(new,0)==1) {
15 print ‘‘formula is true in the model’’
16 return
17 }
18 k = i
19 print ‘‘formula is false in the model’’
20 bad = new ∩ error
21 while (i>=0) {
22 while ((i>=0) &&(bad 6= ∅)) {
23 Cei = choose one state from bad
24 if (i>0) bad=pred(Cei)∩ S(i−1,j)

25 i = i-1
26 }
27 (minIte,minProc)=MinIteFromAll(i,myId)
28 i = minIte
29 if (i<0) {
30 if (myId == minProc)
31 print ‘‘counterexample is:’’ Ce0 · · ·Cek

32 return
33 }
34 Cei+1 · · ·Cek=broadcast(minProc,Cei+1 · · ·Cek)
35 bad=pred(Cei+1)∩ S(i,j)

}
Fig. 2. Process Pj in the distributed algorithm for on-the-fly model
checking, including the generation of a counterexample.

Let Cei(V ) be the Boolean function for the singleton set
consisting of the state Cei, and let S(i,j)(V ) be the Boolean
function for the slice S(i,j). Then the computation of bad at
the j’th process can be described by the expression

∃V ′ [ TR(V, V ′) ∧ Cei(V ′) ] ∧ S(i,j)(V ). (2)

Our transition relation consists of partitions
PTRn(V, V ′) such that TR(V, V ′) =

∧
n PTRn(V, V ′).

Consequently, the previous expression can be rewritten as

∃V ′ [
∧
n

PTRn(V, V ′) ∧ Cei(V ′) ] ∧ S(i,j)(V ). (3)

Since S(i,j)(V ) does not depend on V ′, it can be moved into
the scope of the quantifier, resulting in an equivalent expres-
sion:

∃V ′[
∧
n

(
PTRn(V, V ′) ∧ S(i,j)(V )

) ∧ Cei(V ′)]. (4)

This expression describes the computation at the j’th process
. First, each partition of the transition relation is restricted to
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the doughnut slice S(i,j), and then the predecessors of Cei

are computed.
This computation can be made more efficient by using the

simplify-assuming technique [12]. Let f : E −→ {0, 1} be a
Boolean function over some domain E. If we are concerned
only with the value of f over some subset D of E, then we
may reduce the BDD size for f . This can be done by finding
another function f ′ which agrees with f on D and can have
any value on elements not in D.

Formally, given a function f : E −→ {0, 1} and an as-
sumption D ⊆ E, we say that a function f ′ : E −→ {0, 1}
simplifies f assuming D if it satisfies

f ′ ∧D = f ∧D. (5)

We denote such an f ′ by f |D.
The algorithm given by [12] guarantees that the BDD size

of f ′ is equal to or smaller than the BDD size of f . We use this
technique to reduce the size of each partition in the transition
relation. The reduced partition sizes decrease the memory re-
quirement during the computation of the expression in (4).
Instead of intersecting each PTRn(V, V ′) with S(i,j)(V ), we
simplify PTRn(V, V ′) assuming S(i,j)(V ) and intersect the
result with S(i,j)(V ). Since simplify-assuming satisfies (5),
the expression in (4) is equivalent to

∃V ′[
∧
n

(
PTRn(V, V ′)|S(i,j)(V ) ∧ S(i,j)(V )

)
∧ Cei(V ′)].(6)

Since S(i,j)(V ) does not depend on V ′, it can be moved
outside of the scope of the quantifier, resulting in an equiva-
lent expression:

∃V ′[
∧
n

(
PTRn(V, V ′)|S(i,j)(V )

)
∧ Cei(V ′)] ∧ S(i,j)(V ).(7)

The improvement described above uses precise informa-
tion in order to restrict the partitions of the transition rela-
tion. This requires computing a different restriction for each
doughnut in each step of the counterexample generation. We
suggest a different method of restriction, which is computed
only once for each process. Process Pj simplifies PTRn(V, V ′)
assuming Uj , where Uj = ∪iS(i,j) is the union of all the
doughnut slices owned by Pj . Since S(i,j) ⊆ Uj , the expres-
sion in (4) is equivalent to

∃V ′[
∧
n

(
PTRn(V, V ′)|Uj(V )

) ∧ Cei(V ′)] ∧ S(i,j)(V ). (8)

Note that PTRn(V, V ′)|Uj(V ) is computed only once at the
beginning of the counterexample generation process.

We next suggest an orthogonal improvement that exploits
the fact that we compute the set of predecessors of a singleton
(Cei(V ′), which contains only one state, Cei). We replace
the intersection of PTRn(V, V ′) and Cei(V ′) by substitut-
ing the state Cei for V ′ in PTRn(V, V ′). The existential
quantifier is then redundant and can be removed. Modified
thus, equation (3) can first be rewritten as

∃V ′ [
∧
n

( PTRn(V, Cei) ) ] ∧ S(i,j)(V ). (9)

The existential quantifier is then redundant and can be re-
moved to obtain

∧
n

( PTRn(V,Cei) ) ∧ S(i,j)(V ). (10)

Combining the above optimization with simplify-assuming,
we can compute (3) as

S(i,j)(V ) ∧
∧
n

(
PTRn(V, Cei)|Uj(V )

)
. (11)

Again, PTRn(V, V ′)|Uj(V ) is computed only once. At step i
of the counterexample generation procedure, Pj assigns Cei

to each of PTRn(V, V ′)|Uj(V ) and then intersects S(i,j)(V )
with them.

Experimental results show that all of the suggested op-
timizations significantly reduce memory requirements. Com-
pare, for instance, the results in Figure 9, where example GXI
is run without any optimization, to the results in Figure 10
where it runs with the optimization in expression 10. On the
other hand, we found the optimization in expression 11 to
have no significant advantage over the one in expression 10.

4 Experimental Results

In this section we report on the performance evaluation of
our approach. We implemented our method inside the high-
performance verification tool RuleBase [3], which is based
on McMillan’s SMV [17] and was developed by the IBM
Haifa Research lab. Our parallel test-bed includes 32 RS6000
machines, each consisting of a 225 MHz PowerPC processor
and 512 MB memory. The communication between the nodes
consists of a 100 Megabit/second token ring.

We selected large circuits to show that the parallel sys-
tem can find errors that the sequential algorithm cannot find.
This is because the sequential algorithm uses more memory
than is available in a single machine. We experimented with
two of the largest circuits we found in the benchmarks: IS-
CAS89 +addendum’93. In order to test the counterexample
generation, we used common properties that are often tested
when verifying hardware designs. We also used two large ex-
amples, BIQ and GXI, which are components of IBM’s Gi-
gahertz processor. We used the original properties for these
examples. These properties are explained in Figure 3. We
mapped properties to automata using the IBM implementa-
tion as described in [4]. Characteristics of the circuits and the
automata are given in Figure 4.

4.1 Space Reduction Using the Distributed Algorithm

This section presents the results for on-the-fly model check-
ing of the benchmark suite using our 32 machine test-bed.
Figures 5 to 11 summarize memory utilization, giving the
peak memory consumption for every step. Each of the graphs
compares the memory utilization in the single-machine exe-
cution to that of the parallel system. For the parallel system
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we give the highest (peak) memory utilization in any of the
machines.

We give examples for four models and six properties. Two
properties are checked for the BIQ and S1423 models: one
that overflows on a single machine, and another that com-
pletes the computation even when only a single machine is
used.

As Figure 5 shows, an overflow occurs at cycle 15 while
the algorithm searches for an error state in BIQ using a single
machine. The overflow occurs because the counterexample
generation (CE) phase requires that the doughnuts be saved,
and this consumes a lot of memory. In contrast, the parallel
algorithm does not overflow. It finds the error state in BIQ at
cycle 17.

At the cycle where the error state is found, we see a drop
in memory utilization. This drop is due to the fact that the
CE phase will begin in the next step, making state exchange
and load balancing unnecessary. State exchange and load bal-
ancing may contribute significantly to the observed peak in
memory requirement. This effect is particularly strong in BIQ
spec1, s1423 spec1, and s5378 spec1 (Figure 7, Figure 5 and
Figure 11).

Figure 6 shows another drop in memory utilization, at the
first counterexample cycle. This drop, which is characteristic
of many examples, is caused by two factors. First, the transi-
tion relation computations during a backward step are usually
simpler than those performed during a forward step, and they
require less memory. This is due to the relative simplicity of
the relation consisting of a single origin (the last state in the
CE found so far). Second, the set of reachable states can be
released since it is not needed for counterexample generation.

The parallel algorithm finds an error state in cycle 14 of
S1423, as depicted in Figure 7. In this case, finding the error
state on-the-fly is essential because, even with our parallel
system, we were not able to complete reachability analysis
on this example.

Figure 9 demonstrates why our optimizations are neces-
sary. In this example, an overflow occurs during a step back-
wards from a single state using the original transition relation.
The overflow occurs because we are using the partitioned
transition relation, in which backward steps are much harder
to perform than forward. We can avoid this problem by us-
ing substitution of the singleton (as describe in Section 3.3)
instead of quantification over the partitioned transition rela-
tion. Figure 10 demonstrates the effect of this method on our
example.

4.2 Timing and Communication in the Distributed
Algorithm

Figure 12 gives the timing breakdown for on-the-fly model
checking on our benchmark suite. The parallel reachability
stage takes most of the computation time. As shown in [14],
communication does not become a bottleneck at this stage.

5 Conclusions

Large clusters of computers are readily available nowadays.
We believe that these environments should be regarded as
huge memory pools that can be harnessed for problem solv-
ing. Our methods can be seen as a globalization of memory
systems, using the network as an intermediate level in the
memory hierarchy. This intermediate level resides between
the main memory and the disk. Although the network is a lot
faster than the disk (the difference in latency and bandwidth
is from three to five orders of magnitude), it is also much
slower than the main memory module (about three orders of
magnitude for very fast networks). Locality, then, is still an
important issue.

Our method was integrated into a high-performance model
checker, thus proving its industrial potential. Its successful
integration also shows that our parallelization method is or-
thogonal to other important optimizations and does not harm
their applicability. The orthogonality may lead to further im-
provement of our results by applying other optimizations on
the slices.

To the best of our knowledge, this is the first study re-
porting on parallel on-the-fly symbolic model checking. Our
positive results clearly indicate that this is a promising direc-
tion, and one that deserves more attention.
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A Regular Expressions in Symbolic Model Checking

When specifying a formula in temporal logic, one describes
what should hold in the model. Another way to specify a
property is to describe what should never hold in the model,
that is, to describe the set of bad computations rather than the
good ones. A nice way to describe a set of finite bad compu-
tations is by means of regular expressions (RE), as follows:
Let W be a finite set of symbols (in our case, signal names in
the model under test). The alphabet Σ, over which the regular
expressions are defined, is the set of all Boolean expressions
over W .

As an example, consider a model with two signals: req
and ack, and consider a property specifying that every req
must be followed by an ack in the next cycle. Σ in this case
consists of all 16 possible Boolean functions (true, false,
req, ¬req, req ∨ ack, etc.). A description of the bad compu-
tations of this property would state that sequences with req
holding in one state and ack not holding in the next state are
illegal.

Using regular expressions, we get the following:

(true∗)(req)(¬ack)

In order to check a given model M against a RE specification
r, one has to build the corresponding automaton Ar [15] and
check that any word in L(Ar) is not a prefix of a computation
path in M .

Using RuleBase, we perform this check in the follow-
ing way: First, we translate Ar into a corresponding non-
deterministic finite state machine Fr in the input language
of SMV, with final states q1, ..., qn. We then model-check the
CTL formula

AG(¬q1∧, ...,∧¬qn)

against the model M × Fr.
Note that the formula to be checked is of the form AG(p),

where p is a Boolean formula. It can thus be checked on-the-
fly [16,4], saving a lot of time and space. Model checking of
regular expressions is more efficient in most cases than model
checking of CTL formulas.

The expressive power of the regular expressions we have
described above differs from that of temporal logics. In [4],
Beer et al. present an algorithm for translating a subset of
CTL formulas to RE specifications. The subset of CTL which
can be translated to RE is called RCTL.

BIQ spec 1
If the writeP tr points to P and the value on the bus is D,
then four cycles after the next time a read from P occurs,
the value going out should be D.
Sugar: {[∗], (writeP tr(0..3) = P (0..3))&(dataIn(0) = D(0)),
goto(readPtr(0..3) = P (0..3))}(AX[4](dataOut(0) = D(0)))

BIQ spec 2
If the writeP tr points to P and the value on the bus is D,
then two cycles after the next time a read from P occurs,
the value going out should be D.
Sugar: {[∗], (writeP tr(0..3) = P (0..3))&(dataIn(0) = D(0)),
goto(readPtr(0..3) = P (0..3))}(AX[2](dataOut(0) = D(0)))

s1423 spec 1
If G729 and G726 are true, then G726 is true ten cycles
later.
Sugar: AG(G729&G726 → AX[10](G726))

s1423 spec 2
If G729 and G726 are true, then G726 is true seven cycles
later.
Sugar: AG(G729&G726 → AX[7](G726))

GXI spec 1
If start is true and the address is A, then if two cycles later
a rejection occurs, then between 2 to 32 cycle later, start
should hold again, with address equals A.
Sugar: {[∗], START&ADDR(0..2) = A, true, reject}
(ABF [2..32](START&ADDR(0..2) = A))

s5378 spec 1
If n3104gat is true, then starting six cycle later,
n3106gat should hold before n3104gat holds.
Sugar: AG(n3104gat → AX[6](n3106gat before n3104gat))

Fig. 3. The specifications in Sugar with explanations.

Circuit #vars + sat peak spec check
size step time steps CE

BIQ
spec 1 102 + 5 5.85M 15 15,059 Ov(15)
spec 2 102 + 5 5.33M 14 3,811 15 95
s1423
spec 1 91 + 4 8.64M 12 2,024 Ov(12)
spec 2 91 + 3 1.54M 10 625 11 58
GXI
spec 1 292 + 6 8.14M 44 16,222 Ov(44)
s5378
spec 1 188 + 4 9.66M 6 4,440 Ov(6)

Fig. 4. #vars gives the number of variables in the model and in the
sat(ellite). Sizes are given in million BDD nodes, and all times in sec-
onds. The peak is the maximal memory requirement at any point dur-
ing a step. In order to mask the effect of garbage collection scheduling
decisions, the peak is measured after gc invocations. Spec check is
the number of steps it takes to find an error state, and the time it takes
to generate a counterexample (CE). Ov(x) designates memory over-
flow during step x. All measurements were taken using an RS6000
machine consisting of a 225 MHz PowerPC processor with 512 MB
memory.
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Fig. 5. Memory utilization during on-the-fly model checking of BIQ
(spec 1)

Fig. 6. Memory utilization during on-the-fly model checking of BIQ
(spec 2)

Fig. 7. Memory utilization during on-the-fly model checking of s1423
(spec 1)

Fig. 8. Memory utilization during on-the-fly model checking of s1423
(spec 2)

Fig. 9. Memory utilization during on-the-fly model checking of GXI
(spec 1), using quantification. An overflow occurs during counterex-
ample generation.

Fig. 10. Memory utilization during on-the-fly model checking of GXI
(spec 1), using substitution

Fig. 11. Memory utilization during on-the-fly model checking of s5378
(spec 1)
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Circuit steps total Reachability Spec check
spec seq par eval CE
BIQ 1 17(15) 1,957 174 1,804 31 74
BIQ 2 15 921 184 731 24 52
s1423 1 14(12) 16,032 13 15,911 35 117
s1423 2 11 521 116 337 10 102
GXI 1 45(44) 8,468 1,866 6,570 26 138
s5378 1 7(6) 12,873 384 11,509 69 105

Fig. 12. Timing data (seconds) for parallel execution on 32×512MB
machines. Each of the measures is the worst sample over all the
machines. The steps count shows that the parallel system always
reaches a point beyond that at which a single machine overflows (this
point is given in brackets). Total is the total time over all steps, includ-
ing the sequential stage, parallel reachability stage and counterexam-
ple generation time. Note that the total time is the maxima over sums
and not the sum over maxima. Seq(uential) is the time it took to reach
the threshold at which the parallel stage started. Par(allel) is the par-
allel reachability analysis time. Eval(uation) is the total time it took to
evaluate, at each step, whether one of the processes found an error
state. (Note that in the sequential stage, Eval is a single BDD opera-
tion, while in the parallel stage it also requires global interaction over
the network). CE is the time it took to generate the counterexample.


