
Distributed Symbolic Model Checking for

µ–calculus∗

Orna Grumberg, Tamir Heyman, Assaf Schuster

Computer Science Department, Technion, Haifa, Israel

July 17, 2003

Abstract

In this paper we propose a distributed symbolic algorithm for model
checking of propositional µ–calculus formulas. µ-calculus is a powerful
formalism and µ–calculus model checking can solve many problems,
including, for example, verification of (fair) CTL and LTL properties.
Previous works on distributed symbolic model checking were restricted
to reachability analysis and safety properties. This work thus signif-
icantly extends the scope of properties that can be verified distribu-
tively, enabling us to use them for very large designs.

The algorithm distributively evaluates subformulas. It results in
sets of states which are evenly distributed among the processes. We
show that this algorithm is scalable and therefore can be implemented
on huge distributed clusters of computing nodes. The memory modules
of the computing nodes collaborate to create a very large memory
space, thus enabling the checking of much larger designs. We formally
prove the correctness of the parallel algorithm. We complement the
distribution of the state sets by showing how to distribute the transition
relation.

∗This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant num-
ber 111/01-2).

1

1 Introduction

In the early 1980s, model checking procedures were suggested [6, 19, 15]
which could handle systems with a few thousand states. In the early 1990s,
symbolic model checking methods were introduced. These methods, based
on Binary Decision Diagrams (BDDs) [2], could verify systems with 1020

states and more [4]. This progress has made model checking applicable to
industrial designs of medium size. Significant efforts have been made since
to fight the state explosion problem. But the need to verify larger systems
is growing faster than the capacity of any newly developed method.

Recently, a new promising method to fight the state explosion problem
was introduced. The method uses the collective pool of memory modules in
a network of processes. Distributed symbolic reachability analysis is used
to find the set of all states reachable from the initial states [13]. A dis-
tributed symbolic on-the-fly algorithm was applied in order to model check
properties written as regular expressions [1]. Experimental results show that
distributed methods can reduce the average memory requirement 300 times
using 500 processes. Consequently, distributed methods find errors that
were not found by sequential tools.

This paper extends the scope of properties that can be verified for large
designs. It presents a distributed symbolic model checking algorithm for
the µ-calculus, which is a powerful formalism for expressing properties of
transition systems using least and greatest fixpoint operators. Many verifi-
cation procedures can be solved by translating them into µ–calculus model
checking[4] problems. Such verification procedures include (fair) CTL model
checking, LTL model checking, bisimulation equivalence, and language con-
tainment of ω-regular automata.

Many algorithms for µ-calculus model checking have been suggested
[10, 20, 22, 8, 16]. In this work we parallelize a simple sequential algo-
rithm [7]. The algorithm works bottom-up through the formula, evaluating
each subformula based on the value of its own subformulas. A formula is
interpreted as the set of states in which it is true. Thus, for each µ–calculus
operation, the algorithm receives a set (or sets) of states and returns a new
set of states.

The distributed algorithm follows the same lines as the sequential one,
except that each process runs its own copy of the algorithm and each set of
states is stored distributively among the processes. Every process owns a
slice of the set, so that the disjunction of all slices contains the whole set.
An operation is now performed on a set (or sets) of slices and returns a set
of slices. At no point in the distributed algorithm is a whole set is stored

1

by a single process.
The intuitive solution for a distributed computation might prove to be

deceptive for some operations. For instance, in order to evaluate a formula
of the form ¬g, the set of states satisfying g should be complemented. It is
impossible for a single process to carry out this operation locally. Rather,
each process sends the other processes the states they own, which are not
in g “to the best of its knowledge.” If none of the processes “knows” that a
state is in g, then the state is (distributively) determined to be in ¬g.

While performing an operation, a process may obtain states that are not
owned by it. For instance, when evaluating the formula EXf , a process will
find the set of all predecessors of states in its slice for f . However, some of
these predecessors may belong to the slice of another process. Therefore, the
procedure exch is executed (in parallel) by all processes, and each process
sends its non-owned states to their respective owners.

Memory requirements are kept low through frequent calls to a memory
balancing procedure. It ensures that each set is partitioned evenly among
the processes. This ensures that the memory requirements, which are usu-
ally proportional to the size of the manipulated set, are evenly distributed
among the processes. However, this also requires different slicing functions
for different sets. As a result, we may need to apply an operation to two sets
that are sliced according to different partitions. In the case of conjunction,
for instance, the two sets should first be re-sliced according to the same
partition. Only then do the processes apply conjunction to their individ-
ual slices. Narayan et al. [18] show how to preform negation, conjunction,
and disjunction under the assumption that the set of window functions does
not change. However, if the set does not change, the memory requirement
will be unbalanced as explained. This will render the distributed system
ineffective.

Distributing the sets of states is only one facet of the problem. The tran-
sition relation also strongly influences the memory peaks that appear during
the computation of pre-image (EX) operations. The pre-image operation
has one of the highest memory requirements in model checking. Even when
its final result is of tractable size, its intermediate results might explode
the memory. We propose a scalable distributed method for the pre-image
computation, including slicing of the transition relation.

The rest of this paper is organized as follows: In Section 2 we briefly
review the propositional µ–calculus logic and its model checking algorithm.
We also briefly review the distributed symbolic model checking elements
that were developed in [13]. In Section 3 we describe our distributed model
checking algorithm for µ–calculus. In Section 4 the correctness of our algo-

2

rithm is proved, and in Section 5 an enhancement for pre-image computation
is described. We conclude in Section 7.

2 Preliminaries

2.1 The Propositional µ–Calculus

Below we define the propositional µ–calculus [14]. We will not distinguish
between a set of states and the Boolean function that characterizes this
set. By abuse of notation we will apply both set operations and Boolean
operations on sets and Boolean functions. Let AP be a set of atomic propo-
sitions and let V AR = {Q,Q1, Q2, . . .} be a set of relational variables. The
µ–calculus formulas are defined as follows:

• if p ∈ AP , then p is a formula;

• a relational variable Q ∈ V AR is a formula;

• if f and g are formulas, then ¬f ,f ∧ g,f ∨ g, EX f are formulas;

• if Q ∈ V AR and f is a formula, then µQ.f and νQ.f are formulas.

µ–calculus consists of the set of closed formulas in which every relational
variable Q is within the scope of µQ or νQ.

Formulas of the µ–calculus are interpreted with respect to a transition
system M = (St, R, L), where St is a nonempty and finite set of states,
R ⊆ St × St is the transition relation, and L : St → 2AP is the labelling
function that maps each state to the set of atomic propositions true in that
state.

In order to define the semantics of µ–calculus formulas, we use an en-
vironment e : V AR → 2St, which associates with each relational variable a
set of states from M .

Given a transition system M and an environment e, the semantics of
a formula f , denoted [[f]]Me, is the set of states in which f is true. We
denote by e[Q ← W] a new environment that is the same as e except that
e[Q ← W](Q) = W . The set [[f]]Me is defined recursively as follows (where
M is omitted when clear from the context).

• [[p]]e = {s | p ∈ L(s)} • [[g1 ∧ g2]]e = [[g1]]e ∩ [[g2]]e
• [[Q]]e = e(Q) • [[g1 ∨ g2]]e = [[g1]]e ∪ [[g2]]e
• [[¬g]]e = St \ [[g]]e • [[EXg]]e = {s | ∃t [(s, t) ∈ R and t ∈ [[g]]e] }
• [[µQ.g]]e, [[νQ.g]]e are the least and greatest fixpoints, respectively, of the
predicate transformer τ : 2St → 2St defined by: τ(W) = [[g]]e[Q ← W]

3

Tarski [21] showed that least and greatest fixpoints always exist if τ is mono-
tonic. If τ is also continuous, then the least and greatest fixpoints of τ can
be computed by ∪i∈Nτ i(False) and ∩i∈Nτ i(True), respectively. In [7] it is
shown that if M is finite then any monotonic τ is also continuous.

In this paper we consider only monotonic formulas. Since the only tran-
sition systems we consider are finite, they are also continuous. The function
fixpt in Figure 2 describes an algorithm for computing the least or great-
est fixpoint, depending on the initialization of Qval. If the parameter init
is False, the least fixpoint is computed. Otherwise, if init = True, the
greatest fixpoint is computed.

Given a transition system M , an environment e, and a formula f of
the µ–calculus, the model checking algorithm for µ–calculus finds the set of
states in M that satisfy f . Figure 1 presents a sequential recursive algorithm
for evaluating µ–calculus formulas. For closed µ–calculus formulas, the ini-
tial environment is irrelevant. The necessary environments are constructed
during recursive applications of the eval function.

function eval(f, e)
1 case
2 f= p: res= {s | p ∈ L(s)}
3 f= Q: res= e(Q)
4 f= ¬g: res= ¬eval(g, e)
5 f= g1 ∨ g2:res= eval(g1, e)∨eval(g2, e)
6 f= g1 ∧ g2:res= eval(g1, e)∧eval(g2, e)
7 f= EXg:res= {s | sRt ∧ t ∈eval(g, e)}
8 f= µQ.g:res= fixpt(Q, g, e, False)
9 f= νQ.g:res= fixpt(Q, g, e, T rue)

10 endcase
11 return(res)
end function

Figure 1: Pseudo–code for sequential µ–calculus model checking

2.2 Elements of Distributed Symbolic Model Checking

Our distributed algorithm includes several basic elements that were devel-
oped in [12]. For completeness, we give a brief overview of these elements
in this subsection.

Sets of states in the transition system, as well as the intermediate results,
are represented by BDDs. At any point during the algorithm’s execution,

4

function fixpt(Q, g, e, init)
1 Qval= init
2 repeat
3 Qold= Qval

4 Qval= eval(g, e[Q ← Qval])
5 until (Qval = Qold)
6 return Qval

end function

Figure 2: Pseudo–code for computing fixpoint

the sets of states obtained are partitioned among the processes. A set of
window functions is used to define the partitioning, determining the slice
that is stored (we say: owned) by each process.

Definition 1: [Complete set of window functions [18, 5]] A window func-
tion is a Boolean function that characterizes a subset of the state space. A
set of window functions W1, . . . ,Wk is complete if and only if

∨k
i=1 Wi = 1.

Unless otherwise stated, we assume that all sets of window functions are
complete.

We use the slicing algorithm, as described in [12], to get a set of window
functions. The objective of this algorithm is to distribute a given set evenly
among the nodes. Its input is a set of states, and its output is a set of
window functions. These functions slice the input set into approximately
equal subsets.

The slicing algorithm uses the SelectVar algorithm, which slices a Boolean
function (a BDD) into two by assigning a BDD variable. The SelectVar
algorithm receives a BDD, f , and a threshold, δ. It selects one of the BDD
variables v and slices f into fv = f ∧ v and fv = f ∧ v.

The cost of such a slicing is defined as:

Definition 2: [Cost(f, v, α):] α ∗ MAX(|fv|,|fv|)
|f | + (1−α) ∗ |fv |+|fv |

|f |

The MAX(|fv |,|fv |)
|f | factor gives an approximate measure to the reduction

achieved by the partition. The |fv|+|fv |
|f | factor gives an approximate measure

of the number of shared BDD nodes in fv and fv and therefore reflects the
duplication in the partition. The cost function depends on the value of α,
where 0 ≤ α ≤ 1. α = 0 means that the cost function completely ignores
the reduction factor, while α = 1 means that the cost function completely
ignores the duplication factor.

5

Initially, the algorithm only attempts to find a BDD variable that will
minimize the duplication factor (α = 0), while still reducing the memory
requirements below the threshold (i.e., max(|f1|, |f2|) ≤ |f | − δ). If such
a slicing does not exist, the algorithm increases α gradually, allowing a
gradual increase in duplication until max(|f1|, |f2|) ≤ |f | − δ is reached.
Note that even though our algorithm may compute the cost functions for
many different α, |f ∧v| and |f ∧v| are computed only once for each variable
v.

Maintaining an equal load while the intermediate results are being stored
is essential for the scalability of the parallel algorithm. The equal load is
maintained throughout the algorithm by means of a memory balance proce-
dure [12]. This procedure matches those processes that have a large memory
requirement with processes that have a small one. Each pair of processes
then re-slices the union of its two window functions to obtain a better bal-
anced slicing. The pair uses the same procedure that is used to slice the
whole state space. Re-slicing of different pairs is performed in parallel. A
process with a huge memory requirement may be matched several times
with processes that have a small one. This algorithm defines a new set of
window functions that will be used to produce further intermediate results.
Following the computation of the new set of window functions, the set of
states is distributed accordingly.

More formally, the ldBlnc procedure is a parallel algorithm, as follows.
Let W1, . . . ,Wk be a set of window functions, and res be a set of states, so
that process i owns the subset resi = res ∧Wi. When ldBlnc terminates,
a new set of window functions W ′

1, . . . , W
′
k is produced, and process i owns

res′i = res ∧W ′
i .

During the memory balance procedure, as well as during other parts
of the distributed model checking algorithm, BDDs are shipped between
the processes. A compact and universal BDD representation is used, as
described in [12], for the communication. To send a local BDD structure,
the process first converts it to the universal representation, then sends it
to a different process which converts the universal representation back to
its local BDD structure. Different variable order is allowed in the different
processes. The size of the universal representation is independent of local
variable ordering, and it is linear in the BDD size. Converting a universal
represented BDD into the receiver BDD structure (according to the local
variable order) may sometimes involve higher complexity (up to exponential
in certain cases).

6

3 Distributed Model Checking for µ–Calculus.

The general idea of the distributed algorithm is as follows. The algorithm
consists of two phases. The initial phase starts as the sequential algorithm,
described in Section 2. It terminates when the memory requirement reaches
a given threshold. At this point, the distributed phase begins. In order
to distribute the work among the processes, the state space is partitioned
into several parts, using a slicing procedure. Throughout the distributed
phase, each process owns one part of the state space for every set of states
associated with a certain subformula. When a computation of a subformula
produces states owned by other processes, these states are sent out to the
respective processes. A memory balancing mechanism is used to repartition
imbalanced sets of states produced during the computation. A distributed
termination algorithm is used to announce global termination. In the rest
of this section we describe elements used by this algorithm.

3.1 Switching to the Distributed Phase

When the initial phase terminates, several subformulas have already been
evaluated and the sets of states associated with them have been stored. In
order to start the distributed phase, we slice the sets of states found so far
and distribute the slices among the processes.

Each set of states is represented by a BDD and its size is measured by
the number of BDD nodes. In each process all sets are managed by the
same BDD manager, where parts of the BDDs that are used by several sets
are shared and stored only once. Thus, two factors affect the partitioning
of the sets: the required storage space for the sets, and the space needed
to manipulate them. In order to keep the first factor small, it is best to
partition the sets so that the space used by the BDD manager for all sets
in each process is small. To keep the second factor small, each part of each
set in each process should also be kept small. This is possible because the
memory used in performing an operation is proportional to the size of the
set it is applied to.

In model checking, the most acute peaks in memory requirement usually
occur while operations are being performed. Thus, it is more important to
reduce the second factor. Indeed, rather than minimizing the total size of
each process, our algorithm slices each set in a way that reduces the size
of its parts. As a result, the slicing criterion may differ for different sets.
We use a slicing algorithm[13] described generally in Section 2.2. Slicing is
applied to each one of the sets that has already been evaluated when phase

7

switching occurs.
The slicing algorithm updates two tables: InitEval and InitSet. InitEval

keeps track of which sets have been evaluated by the initial phase of the al-
gorithm. InitEval(f) is True if and only if f has been evaluated by the
initial algorithm. Each process id has the table InitSet, which for each for-
mula f such that InitEval(f) = True, holds the subset of the set of states
satisfying f and owned by this process. Formally, for each process id, and
for each formula f , if InitEval(f) = True then InitSet(f) = f ∧Wid. The
distributed phase will start by sending the tables InitEval and InitSet, as
well as the list of slices Wi, to all the processes.

3.2 The Distributed Phase

The distributed version of the model checking algorithm for the µ–calculus
is given in Figure 3. While the sequential algorithm finds the set of states
that satisfy, in a given model, a formula of the µ–calculus logic, each process
in the distributed algorithm finds the part of this set that the process owns.
Intuitively, the distributed algorithm works as follows: given a set of slices
Wi, a formula f , and an environment e, the process id finds the set of states
eval(f, e) ∧Wid.

In fact, a weaker property is required in order to guarantee the correct-
ness of the algorithm. It is enough to know that when evaluating a formula
f , every state satisfying f is collected by at least one of the processes. For
efficiency, however, we require in addition that every state be collected by
exactly one process.

Given a formula f , the algorithm first checks if the initial phase has
already evaluated it by checking if InitEval(f) = True. If so, it uses the
result stored in InitSet(f). Otherwise, it evaluates the formula recursively.
Each recursive application associates a set of states with some subformula.

Preserving the work load is an inherent problem in distributed computa-
tion. If the memory requirement in one of the processes is significantly larger
than in the others, the effectiveness of the distributed system is disrupted.
To avoid this situation, a memory balance procedure is invoked whenever a
new set of states is created, in order to maintain a balanced memory require-
ment for the new set. The memory balance procedure changes the slices Wi

and updates the parts of the new set in each of the processes accordingly.
Old sets are kept unchanged. Since each set is balanced, so is the overall
memory requirement.

Each process in the distributed algorithm evaluates each subformula f
as follows (see Figure 3):

8

A propositional formula p ∈ AP : evaluated by collecting all the states s
that satisfy two conditions: p is in the labelling L(s) of s and, in addition,
s is owned by this process.

A relational variable Q: evaluated using the local environment of the
process. Since only closed µ–calculus formulas are evaluated, the environ-
ment must have a value for Q (computed in a previous step).

A subformula of the form ¬g: evaluated by first evaluating g, and then
using the special function exchnot. Given a set of states S and a partition
S1, . . . , Sk of S, each process i runs the procedure exchnot on Si. The
process reports to all the other processes about the states that do not belong
to S “as far as it knows.” Since each state in S belongs to some process, if
none of the processes knows that s is in S, then s is in ¬S.

Since each process holds only the states of ¬S that it owns, the processes
only send states that are owned by the receiver. This reduces communica-
tion.

A subformula of the form g1 ∨ g2: evaluated by first evaluating g1 and
g2, possibly with different slicing functions. This means that a process can
hold a part of g1 with respect to one slicing and a part of g2 with respect to
another slicing. Nevertheless, since each state of g1 and of g2 belongs to one
of the processes, each state of g1 ∨ g2 now belongs to one of the processes
as well. Applying the function exch results in a correct distribution of the
states among the processes, according to the current slicing.

A subformula of the form g1 ∧ g2 can be translated, using De Morgan’s
laws, to ¬(¬g1 ∨ ¬g2). However, evaluating the translated formula requires
four communication phases (via exch and exchnot). Instead, such a formula
is evaluated by first evaluating g1 and g2. As in the previous case, they might
be evaluated with respect to different window functions. Here, however,
the slicing of the two formulas should agree before a conjunction can be
applied. This is achieved by applying exch twice, thus reducing the overall
communication to only two rounds.

A subformula of the form EXg: evaluated by first evaluating g and then
computing the pre-image using the transition relation R. Since every state
of g belongs to one of the processes, every state of the pre-image also belongs
to one of the processes . In fact, a state may be computed by more than
one process if it is obtained as a pre-image of two parts. Applying exch
completes the evaluation correctly.

Subformulas of the form µQ.g and νQ.g (the least and greatest fixpoints,
respectively): evaluated using a special function fixpt that iterates until a
fixpoint is found. The computations for the formulas differ only in the ini-
tialization, which is False for µQ.g and is the current window function for

9

νQ.g. The fixpt function uses a distribution termination detection proce-
dure, parterm, to check whether a fixpoint has been reached. Each process
calls parterm with a Boolean value. The process reports true if and only if
a fixpoint has been reached “as far as it knows.” The fixpoint is evaluated
by applying exch on both the last and current value of Q and comparing
the parts that the process owns. Since each state belongs to some process, a
fixpoint is reached if none of the processes gets a new state during the last
iteration.

4 Correctness

In this section we prove the correctness of the distributed algorithm, assum-
ing the sequential algorithm is correct. The sequential algorithm evaluates
a formula by computing the set of states that satisfy it. In the distributed
algorithm every such set is partitioned among the processes. The union over
all the partitions for a given subformula is called the global set. In the proof
we show that, for every µ–calculus formula, the set of states computed by
the sequential algorithm is identical to the global set computed by the dis-
tributed algorithm. Note that the global set is never actually computed and
is introduced only for the sake of the correctness proof. In the proof that
follows we need the following definition.

Definition 3: [Well-partitioned environment] An environment e is well
partitioned by parts e1, . . . , ek if and only if, for every Q ∈ V AR, e(Q) =∨k

i=1 ei(Q).

The procedures exch are applied by all processes with a set of non-
disjoint subsets Si that cover a set res. Given a set of window functions, the
procedures exchange non-owned parts so that at termination each process
has all the states from res that it owns. The set of window functions does
not change. Lemma 1 defines the relationship between the output of the
procedure exch and the current set of window functions.

Lemma 1 [exch procedure] Let W1, . . . , Wk be a set of window functions
and res be a set of states. Assume that each process id runs procedure exch
with subset Sid, where

∨k
i=1 Si = res. Then the set of window functions

does not change and, after all procedures terminate, each process id has
resid = res ∧Wid =

∨k
i=1 Si ∧Wid.

10

function peval(f, e)
1 case
2 InitEval(f) : return(InitSet(f))
3 f= p : res= {s | p ∈ L(s)} ∧Wid

4 f= Q : return (e(Q))
5 f= ¬g : res= exchnot(peval(g, e))
6 f= g1 ∨ g2 : res= exch(peval(g1, e)∨peval(g2, e))
7 f= g1 ∧ g2 : res1= peval(g1, e) res2= peval(g2, e)
8 res= exch(res1)∧exch(res2)
9 f= EXg : res= exch({s | ∃t[sRt ∧ t ∈peval(g, e)]})

10 f= µQ.g : res= fixpt(Q, g, e, False)
11 f= νQ.g : res= fixpt(Q, g, e, Wid)
12 endcase
13 ldBlnc(res) /* balances W; updates res accordingly */
14 return(res)
end function

function fixpt(Q, g, e, init)
1 Qval= init
2 repeat
3 Qold= Qval

4 Qval= peval(g, e[Q ← Qold])
5 until (parterm(exch(Qval)=exch(Qold)))
6 return Qval

end function

function exch(S) 1 function exchnot(S)
1 res= S ∧Wid 2 res= (¬S) ∧Wid

2 for each process i 6= id 3 for each process i 6= id
3 sendto(i, S ∧Wi) 4 sendto(i, (¬S) ∧Wi)
4 for each process i 6= id 5 for each process i 6= id
5 res= res∨ receivefrom(i) 6 res= res∧ receivefrom(i)
6 return res 7 return res
end function 8 end function

Figure 3: Pseudo–code for a process id in the distributed model checking

11

Proof: At termination of procedure exch, process id has the following set:

resid = (Sid ∧Wid) ∨
∨

j 6=id

(Sj ∧Wid) =
k∨

i=1

Si ∧Wid = res ∧Wid.

Q.E.D.
Let f be a µ–calculus formula and eid be the environment in process id.
pevalid(f, eid) denotes the set of states returned by procedure peval, when
run by process id on f and eid.
Theorem 1 defines the relationship between the outputs of the sequential
and the distributed algorithms.

Theorem 1 (Correctness) Let f be a µ–calculus formula, W1 . . .Wk be a
complete set of window functions, and W ′

1 . . . W ′
k be the set of window func-

tions when eval(f, e) terminates. In addition, let e be a well–partitioned
environment by e1, . . . ek, and e′ be the environment when eval(f, e) ter-
minates. Furthermore, for all i = 1, . . . , k, let e′i be the environment when
pevali(f, ei) terminates. Then e′ is well partitioned by e′1, . . . e′k, W ′

1 . . .W ′
k

is a complete set of window functions, and eval(f, e) =
∨k

i=1 pevali(f, ei).

It follows trivially from Theorem 1 that the disjunction of all the parts of
a set evaluated by the processes for a function f is equal to the entire set
evaluated by the sequential algorithm.
Proof: We prove the theorem by induction on the structure of f . In all
but the last two cases of the induction step the environments do not change,
and therefore e′ is well partitioned by e′1, . . . e′k.

The set of window functions is modified by applying ldBlnc at the end
of peval. The procedure ldBlnc repartitions the subsets between the pro-
cesses. However, their disjunction remains the same. Therefore, W ′

1 . . .W ′
k

is a complete set of window functions.
Base: f = p for p ∈ AP

∨k
i=1 pevali(f, ei) =

∨k
i=1 ({s | p ∈ L(s)} ∧Wi) =

{s | p ∈ L(s)} ∧∨k
i=1 Wi.

Since
∨k

i=1 Wi = 1 (the set of window functions is complete), the above ex-
pression is equal to {s | p ∈ L(s)}, which is exactly eval(f, e).

Induction:

12

1. f = Q, where Q ∈ V AR is a relational variable:
∨k

i=1 pevali(Q, ei) =∨k
i=1 ei(Q). Since e is well partitioned, e(Q) =

∨k
i=1 ei(Q), which is

equal to eval(f, e).

2. f = ¬g: pevalid(¬g, eid) first applies pevalid(g, eid), which results in
Sid. It then runs the procedure exchnot(Sid), which returns the result
resid.

resid = ((¬Sid) ∧Wid) ∧
∧

j 6=id

((¬Sj) ∧Wid) =
k∧

j=1

((¬Sj) ∧Wid).

When exchnot terminates in all processes, the global set computed by
all processes is (recall that

∨k
i=1 Wi = 1):

k∨

i=1

k∧

j=1

((¬Sj) ∧Wi)

 =

k∧

j=1

(¬Sj)∧
k∨

i=1

Wi =
k∧

j=1

(¬Sj) = ¬
k∨

j=1

Sj .

Since Si = pevali(g, ei), ¬
∨k

j=1 Sj = ¬∨k
j=1 pevali(g, ei), which by

the induction hypothesis is identical to ¬ eval(g, e). This, in turn, is
identical to eval(¬g, e). Thus, eval(¬g, e)=

∨k
i=1 pevali(¬g, ei).

3. f = g1 ∨ g2: pevalid(g1 ∨ g2, eid) first computes pevalid(g1, eid) ∨
pevalid(g2, eid). At the end of this computation, the global set is:

k∨

i=1

(pevali(g1, ei) ∨ pevali(g2, ei)) =
k∨

i=1

pevali(g1, ei)∨
k∨

i=1

pevali(g2, ei).

By the induction hypothesis, this is identical to eval(g1, e) ∨ eval(g2, e),
which is identical to eval(g1 ∨ g2, e). Applying the procedures exch
and ldBlnc changes the partition of the sets among the processes, but
not the global set.

4. f = g1 ∧ g2: pevalid(g1 ∧ g2, eid) first computes the two sets resid
1 =

pevalid(g1, eid) and resid
2 = pevalid(g2, eid), then applies exch to each

of them, and finally conjuncts the results. Note that no ldBlnc is
invoked between the two applications of exch. Therefore, both use the

13

same window functions. Let W1, . . . , Wk be those window functions.
Then the global set is

k∨

i=1

resi =
k∨

i=1

(exch(resi
1) ∧ exch(resi

2)) =

k∨

i=1

(Wi ∧

k∨

j=1

resj
1) ∧ (Wi ∧

k∨

j=1

resj
2)

 .

By the induction hypothesis,
∨k

j=1 resj
1 = eval(g1, e) and

∨k
j=1 resj

2 =
eval(g2, e). Thus,

k∨

i=1

resi =
k∨

i=1

(eval(g1, e) ∧ eval(g2, e) ∧Wi) =

eval(g1 ∧ g2, e) ∧
k∨

i=1

Wi = eval(g1 ∧ g2, e).

Applying ldBlnc does not change the global set; thus
∨k

i=1 pevali(g1∧
g2, ei) = eval(g1 ∧ g2, e).

5. f = EX g: pevalid(EXg, eid) evaluates the set of all predecessors of
states in pevalid(g, eid), using the transition relation R. The global set
of all predecessors s can be represented by the formula

∨k
i=1 ∃t[(s, t) ∈

R ∧ t ∈ pevali(g, ei)]. The global set computed at this stage is:

k∨

i=1

∃t [(s, t) ∈ R ∧ t ∈ pevali(g, ei)] .

Since disjunction and existential quantification are commutative, the
above formula is identical to

∃t
[

k∨

i=1

(s, t) ∈ R ∧ t ∈ pevali(g, ei)

]
= ∃t

[
(s, t) ∈ R ∧ t ∈

k∨

i=1

pevali(g, ei)

]
.

By the induction hypothesis,
∨k

i=1 pevali(g, ei) = eval(g, e). Thus,
the global set is identical to

∃t [(s, t) ∈ R ∧ t ∈ eval(g, e)] = eval(EX g, e).

14

Since the procedures exch and ldBlnc do not change the global set,∨k
i=1 pevali(EXg, ei) = eval(EXg, e).

6. f = µQ.g, a least fixpoint formula: pevalid(µQ.g, eid) evaluates the
least fixpoint formula by calling fixptid(Q, g, eid, False)). Similarly,
the sequential algorithm, eval(µQ.g, e), evaluates the least fixpoint
formula by calling the sequential function fixpt(Q, g, e, False)). As
in previous cases, we would like to prove that

∨k
i=1 pevali(µQ.g, ei) =

eval(µQ.g, e). Since ldBlnc does not change the correctness of this
claim, we only need to prove that

∨k
i=1 fixpti(Q, g, ei, False)) =

fixpt(Q, g, e, False)). In addition, we need to show that the envi-
ronment remains well partitioned when the computation terminates.
The following lemma proves stronger requirements. It shows that at
every iteration, the results of the sequential algorithm are identical
to the global results of the distributed algorithm and that both al-
gorithms terminate at the same iteration. This guarantees that the
results at termination match. The lemma also proves that the envi-
ronment is well partitioned at every iteration. The lemma uses the
following property of procedure parterm.

Property 1: Procedure parterm is invoked by each of the processes
with a Boolean parameter. If all processes send True, then parterm
returns True to all processes. Otherwise, it returns False to all pro-
cesses.

Lemma 2 Let Qj be the value of Qval in iteration j of the sequential
fixpoint algorithm. Similarly, let Qj

id be the value of Qval in iteration
j of the distributed fixpoint algorithm in process id. Q0 is the ini-
tialization of the sequential algorithm; Q0

id is the initialization of the
distributed algorithm. Then,

(a) At every iteration, e is well partitioned by e1, . . . , ek.

(b) For every j: Qj =
∨k

i=1 Qj
i .

(c) If the sequential fixpt algorithm terminates after i0 iterations,
then so does the distributed fixpt algorithm.

Proof: We prove the lemma by induction on the number j of iterations
in the loop of the sequential function fixpt.

15

Base: j = 0:

(a) At iteration 0, e is well partitioned, according to the induction
hypothesis of Theorem 1.

(b) In the case that f = µQ.g, the value of both the sequential and
the distributed algorithm at initialization is False. Hence, Q0 =
Q0

id = False, which implies Q0 =
∨k

i=1 Q0
i .

(c) Since both algorithms perform at least one iteration, they will
not terminate at iteration 0.

Induction: Assume Lemma 2 holds for iteration j. We prove it for
iteration j + 1.

(a) Let e′, e′1, . . . , e′k be the environments at the end of iteration j+1,
and assume that e is well partitioned by e1, . . . , ek at the end of
iteration j. The only changes to the environments in iteration j+
1 may occur in line 5 of the distributed and sequential algorithms.
Changes may occur for two reasons: e(Q) may be assigned a new
value Qj , or a recursive call to eval may change e. Similarly, in
the distributed algorithm, two changes may occur: eid(Q) may
be assigned a new value Qj

id, or a recursive call to pevalid may
change eid.
By the induction hypothesis of Lemma 2 we know that Qj =∨k

i=1 Qj
i . Hence, e[Q ← Qj](Q) =

∨k
i=1 ei[Q ← Qj

i](Q). Since no
other change has been made to the environments, and since e is
well partitioned, we conclude that e[Q ← Qj] is well partitioned
by e1[Q ← Qj

1], . . . , ek[Q ← Qj
k].

In iteration j + 1, eval is now invoked with an environment that
is well partitioned by the environments pevalid is invoked with.
The induction hypothesis of Theorem 1 therefore guarantees that
e′ is well partitioned by e′1, . . . , e′k.

(b) Qj+1 = eval(g, e[Q ← Qj]) (line 5 of the sequential algorithm)
and Qj+1

id =
pevalid(g, e[Q ← Qj

id]) (line 5 of the distributed algorithm).
By item (a), e[Q ← Qj] is well partitioned. Thus, the induction
hypothesis of Theorem 1 is applicable and implies that

eval(g, e[Q ← Qj]) =
k∨

i=1

pevali(g, e[Q ← Qj
i]).

16

Hence, Qj+1 =
∨k

i=1 Qj+1
i .

(c) The sequential fixpt procedure terminates at iteration j + 1 if
Qj = Qj+1. We prove that this holds if and only if for every pro-
cess id, exch(Qj

id) = exch(Qj+1
id), and therefore parterm returns

True to all processes.
Let W1, . . . , Wk be the current window functions. By item (b),
Qj =

∨k
i=1 Qj

i and Qj+1 =
∨k

i=1 Qj+1
i .

∀id[exch(Qj
id) = exch(Qj+1

id)] ⇔

∀id[
k∨

i=1

Qj
i ∧Wid =

k∨

i=1

Qj+1
i ∧Wid] ⇔

∀id[Qj ∧Wid = Qj+1 ∧Wid] ⇔ Qj = Qj+1.

The last equality is implied by the previous one because the win-
dow functions are complete. This completes the proof of the
lemma. Q.E.D.

7. f = νQ.g, a greatest fixpoint formula: The proof for this case is almost
identical to the previous one. The only change should be made to the
definition of Q0, Q0

i in the statement of the lemma, so that Q0 = True
and Q0

i = Wi. The proof of second bullet in the base case should be
changed accordingly. This completes the proof. Q.E.D.

4.1 The Processes Own Disjoint Subsets

Theorem 1 can be extended to state that when all procedures pevalid(f, eid)
terminate, the subsets owned by each of the processes are disjoint. This is
important in order to avoid duplication of work. A set of window functions
that defines disjoint ownership is presented in the following definition:

Definition 4: [Disjoint Set of Window Functions] A set of window func-
tions W1, . . . ,Wk is disjoint if and only if, for every 1 ≤ t, l ≤ k, t 6= l,
Wt ∧Wl = 0.

The distributed algorithm uses the exchange procedure to store disjoint
subsets of each set. The following lemma specifies this property:

17

Lemma 3 [exch procedure makes disjoint parts] Let W1, . . . ,Wk be a set of
disjoint window functions and S be a set of states. Assume that each process
id runs procedure exch with a subset Sid. Then at termination of the proce-
dures in all processes, for every 1 ≤ t, l ≤ k, t 6= l, exch(St)∧exch(Sl) = 0.

Proof: By Lemma 1, at termination of procedure exch, for every 1 ≤ t, l ≤
k, t 6= l,rest ∧ resl = (

∨k
j=1 Sj ∧Wt) ∧ (

∨k
j=1 Sj ∧Wl). Since Wi is a set of

disjoint window functions, the last expression equals 0. Q.E.D.
We now show that, for every µ–calculus formula, the subsets computed

by the distributed algorithm are disjoint. In the proof that follows we need
the following definition.

Definition 5: [Disjoint Environment] Environment parts e1, . . . , ek are
disjoint if and only if, for every Q ∈ V AR, for every 1 ≤ t, l ≤ k, t 6= l,
et(Q) ∧ el(Q) = 0.

Theorem 2 proves that given a disjoint set of window functions, the dis-
tributed algorithm returns disjoint results.

Theorem 2 (The Processes Own Disjoint Subsets) Let f be a
µ–calculus formula, W1 . . . Wk be a disjoint set of window functions, and
W ′

1 . . . W ′
k be the set of window functions when eval(f, e) terminates. In

addition, let e1, . . . ek be disjoint environment parts, and for all i = 1, . . . , k,
let e′i be the environment when pevali(f, ei) terminates. Then e′1, . . . e′k are
disjoint environment parts, W ′

1 . . . W ′
k is a disjoint set of window functions,

and for every 1 ≤ t, l ≤ k, t 6= l,

pevalt(f, et) ∧ pevall(f, el) = 0.

Proof: We prove the theorem by induction on the structure of f . In all but
the last two cases of the induction step the environments are not changed
and therefore e′1, . . . e′k are disjoint.

The set of window functions is modified by applying ldBlnc at the end
of peval. The procedure ldBlnc repartitions the subsets between the pro-
cesses. However, the set of window functions remains disjoint. Therefore,
W ′

1 . . . W ′
k is a disjoint set of window functions.

Base: f = p for p ∈ AP for every 1 ≤ t, l ≤ k, t 6= l, pevalt(f, et)∧
pevall(f, el) = {s | p ∈ L(s)} ∧Wt ∧ {s | p ∈ L(s)} ∧Wl.
Since for every 1 ≤ t, l ≤ k, t 6= l, Wt ∧Wl = 0 (the set of window functions

18

is disjoint), the above expression is equal to 0.

Induction step:

1. f = Q, where Q ∈ V AR is a relational variable: for every 1 ≤ t, l ≤ k,
t 6= l,pevalt(f, et)∧ pevall(f, el) = et(Q) ∧ el(Q). Since e1, . . . , ek are
disjoint, the last expression equals 0.

2. f = ¬g: pevalid(¬g, eid) first applies pevalid(g, eid), which results in
Sid. It then runs the procedure exchnot(Sid), which returns the result
resid.

resid = ((¬Sid) ∧Wid) ∧
∧

j 6=id

((¬Sj) ∧Wid) =
k∧

j=1

((¬Sj) ∧Wid).

Therefore, for every 1 ≤ t, l ≤ k, t 6= l,pevalt(f, et)∧ pevall(f, el) =
rest ∧ resl =

k∧

j=1

((¬Sj) ∧Wt) ∧
k∧

j=1

((¬Sj) ∧Wl).

Since Wt ∧ Wl = 0, the above expression is equal to 0. Applying
ldBlnc at the end of peval repartitions the subsets between the pro-
cesses; however, the subsets remain disjoint. Thus, for every 1 ≤ t, l ≤
k,t 6= l,pevalt(f, et)∧ pevall(f, el) = 0.

3. f = g1 ∨ g2: pevalid(g1 ∨ g2, eid) first computes the disjunction of
pevalid(g1, eid) and pevalid(g2, eid), which results in Sid. Then it
runs the procedure exch(Sid). Therefore, for every 1 ≤ t, l ≤ k, t 6= l,
pevalt(f, et) ∧ pevall(f, el) =exch(St)∧exch(Sl). By the induction
hypothesis, the window functions used by exch are disjoint. Therefore
we can apply Lemma 3, which ensures that the last expression equals
0.

4. f = g1 ∧ g2: pevalid(g1 ∧ g2, eid) first computes the two sets resid
1 =

pevalid(g1, eid) and resid
2 = pevalid(g2, eid). It then applies exch to

each set and conjuncts the results. Therefore, for every 1 ≤ t, l ≤
k, t 6= l, pevalt(f, et)∧ pevall(f, el) = exch(rest

1)∧ exch(rest
2)∧

exch(resl
1)∧ exch(resl

2). Lemma 3 ensures that the last expression
equals 0.

19

5. f = EX g: pevalid(EXg, eid) evaluates the set of all predecessors of
states in pevalid(g, eid), which results in Sid. It then runs the proce-
dure exch(Sid). Therefore, for every 1 ≤ t, l ≤ k, t 6= l,pevalt(f, et)∧
pevall(f, el) =exch(St)∧exch(Sl). Lemma 3 ensures that the last ex-
pression equals 0.

6. f = µQ.g, a least fixpoint formula: pevalid(µQ.g, eid) evaluates the
least fixpoint formula by calling fixptid(Q, g, eid, False)). As in pre-
vious cases, we would like to prove that for every 1 ≤ t, l ≤ k,
t 6= l,pevalt(f, et)∧ pevall(f, el) = 0. Since ldBlnc does not change
the correctness of this claim, we only need to prove that for every
1 ≤ t, l ≤ k, t 6= l,fixptt(Q, g, et, False))∧ fixptl(Q, g, el, False)) =
0. In addition, we need to show that the environment remains dis-
joint when the computation terminates. The following lemma proves
stronger requirements. It shows that at every iteration, the results
and the environment parts are disjoint. This guarantees that at ter-
mination they are disjoint as well.

Lemma 4 Let Qj
id be the value of Qval in iteration j of the fixpoint

algorithm in process id. Q0
id is the value of Qval at initialization. Then,

(a) At every iteration, e1, . . . , ek are disjoint.

(b) For every j,1 ≤ t, l ≤ k, t 6= l, Qj
t ∧Qj

l = 0.

Proof: We prove the lemma by induction on the number j of iterations
in the loop of the function fixpt.

Base: j = 0:

(a) At iteration 0, e1, . . . , ek are disjoint, according to the induction
hypothesis of Theorem 2.

(b) In case f = µQ.g, the initialization of the distributed algorithm
is False. Hence, for every 1 ≤ t, l ≤ k, t 6= l, Q0

t = Q0
l = 0, which

implies Q0
t ∧Q0

l = 0.

Induction step: Assume Lemma 4 holds for iteration j. We prove it
for iteration j + 1.

(a) Let e′1, . . . , e′k be the environments at the end of iteration j + 1,
and assume that e1, . . . , ek are disjoint at the end of iteration j.

20

The only changes to the environments in iteration j+1 may occur
in line 5 of the algorithms. Changes may occur for two reasons:
eid(Q) may be assigned a new value Qj

id, or a recursive call to
pevalid may change eid.
By the induction hypothesis of Lemma 4 we know that for every
1 ≤ t, l ≤ k, t 6= l, Qj

t ∧ Qj
l = 0. Hence, for every 1 ≤ t, l ≤ k,

t 6= l, et[Q ← Qj
t](Q) ∧ el[Q ← Qj

l](Q) = 0. Since no other
change has been made to the environments, and since e1, . . . , ek

are disjoint, we conclude that for every 1 ≤ t, l ≤ k, t 6= l,
et[Q ← Qj+1

t](Q) ∧ el[Q ← Qj+1
l](Q) = 0.

In iteration j +1, pevalid is now invoked with a disjoint environ-
ment. The induction hypothesis of Theorem 2 therefore guaran-
tees that e′1, . . . , e′k are disjoint.

(b) Qj+1
id = pevalid(g, e[Q ← Qj

id]) (line 5 of the distributed algo-
rithm).
By item (a), eid[Q ← Qj

id] are disjoint. Thus, the induction
hypothesis of Theorem 2 is applicable and implies that for every
1 ≤ t, l ≤ k, t 6= l, pevalt(g, e[Q ← Qj

t]) ∧pevall(g, e[Q ← Qj
l])=

0. Hence, for every 1 ≤ t, l ≤ k, t 6= l, Qj+1
t ∧Qj+1

l = 0.
This completes the proof of the lemma Q.E.D.

7. f = νQ.g, a greatest fixpoint formula: The proof for this case is almost
identical to the previous one. The only change should be made to the
definition of Q0

i in the statement of the lemma, so that Q0
i = Wi. The

proof of the second bullet in the base case should be changed accord-
ingly. This completes the proof. Q.E.D.

5 Scalable Distributed Pre-image Computation

The main goal of our distributed algorithm is to reduce the memory re-
quirement of the symbolic model checking operations. In symbolic model
checking, pre-image is one of the operations with the highest memory re-
quirement. Given a set of states S, pre-image computes pred(S) (also
denoted by EX S in µ-calculus), which is the set of all predecessors of
states in S. The pre-image operation can be described by the formula
pred(S) = ∃s′[R(s, s′)∧S(s′)]. It is easy to see that the memory requirement
of this operation grows as the sizes of the transition relation R and the set

21

S grow. Furthermore, intermediate results sometimes exceed the memory
capacity even when pred(S) can be held in memory.

Our distributed algorithm reduces memory requirements by slicing each
of the computed sets of states. This takes care of the S parameter of a
pre-image computation, but not of the R parameter. In order to make our
method scalable for very large models, we need to reduce the size of the
transition relation as well.

The transition relation consists of pairs of states. We distinguish between
the source states and the target states by referring to the latter as St′. Thus,
R ⊆ St× St′.

A reduction of the second parameter of R, St′, can be achieved by ap-
plying the well-known restriction operator [9]: Prior to any application of
the pre-image computation, a process that owns a slice Si of S reduces its
copy of R by restricting St′ to Si. Since pre-image operations are applied
to different sets during model checking, this reduction is dynamic.

We further reduce R by adding a static slicing of St according to (possibly
different) window functions U1, . . . , Um. The slicing algorithm of Section 2.2
can be used to produce U1, . . . , Um, so that R is partitioned to m slices of
similar size. Each slice Rj is a subset of (St ∩ Uj) × St′. Since R does not
change during the computation, U1, . . . , Um do not change either.

Having k window functions W1, . . . , Wk for S and m window functions
U1, . . . , Um for R, we use k×m processes. All processes (i, 1), (i, 2), . . . , (i,m)
have the same Wi and hence own the same Si = S ∧ Wi. However, these
processes have a different Ul. Process (i, l) with Wi and Ul computes the
pre-image of Si by predj(Si) = ∃s′[Rl(s, s′) ∧ Si(s′)].

Figure 5 above demonstrates a pre-image computation using a sliced
transition relation with k = 2 and m = 3. Given a set S sliced into S1, S2

according to W1,W2 respectively, the pre-image of S1 is computed by three
processes. Each process uses a different slice of the transition relation, R1, R2

and R3, according to U1, U2 and U3.

22

5.1 Model Checking Algorithm with Sliced Transition Rela-
tion

The algorithm parevalstr(f, e) is similar to peval, but uses a sliced tran-
sition relation. Formulas not in the form of EXg do not use the transition
relation. The algorithm works the same way as peval does on these for-
mulas, using one process (i, 1) for each window function Wi. The exch
algorithm and the ldBlnc algorithm work only with the relevant processes
(1, 1),(2, 1),. . .,(k, 1).

A formula in the form EXg is evaluated by first using the processes
(1, 1),(2, 1),. . .,(k, 1) to evaluate g. Then each process (i, 1) broadcasts its
copy of gi to the processes (i, 2),. . .,(i,m). Each process (i, l) computes the
pre-image of gi using Rl. Finally, the processes use the algorithm exchstr
(given in Figure 4) to complete the evaluation and update the processes
(1, 1),(2, 1),. . .,(k, 1).

functionexchstr(S,(uId,wId))
1 for all 1 ≤ i ≤ k
2 sendto((i,1), S ∧Wi)
3 if uId 6= 1 return 0

/* uId = 1 */
4 res= ∅
5 for all 1 ≤ l ≤ m
6 for all 1 ≤ i ≤ k
7 res= res∨receivefrom((i,l))
8 return res
end function

Figure 4: Pseudo–code for exchanging non-owned states after pre-image
computation using the sliced transition relation

The method suggested in this section applies slicing to the full transition
relation if it can be held in memory but is too big to enable a successful com-
pletion of the pre-image operation. However, the given transition relation
is often partitioned, i.e., it is given as a set of small relations Nl, each defin-
ing the value of variable vl in the next states. The size of the partitioned
transition relation is usually small; therefore it can be constructed by one
process and then sliced using the algorithm suggested in [17]. In this case,
model checking is done directly with the partitioned transition relation [3].

23

5.2 Distributed Construction of the Sliced Full Transition
Relation

In this section we consider cases in which the full transition relation R is
a conjunction of all Nl. We consider cases where either the size of R or
intermediate results during its construction cannot fit into the memory of a
single process.

Our goal is to construct slices Rj of R, with none of the processes ever
holding R. One process starts the construction by computing the conjunc-
tion of partitions Nl gradually, until a threshold is reached. The current
(partial) transition relation is then sliced among the processes, using the
slicing algorithm. Each process continues to conjunct the partitions that
have not yet been handled, until all partitions are conjuncted. During the
conjunction, further slicing or balancing are applied so that the final slices
are balanced.

5.3 Correctness of the Algorithm with a Sliced Transition
Relation

In this section we prove the correctness of the distributed algorithm parevalstr.
Theorem 3 proves that the output of the distributed algorithm parevalstr
and the output of the distributed algorithm peval are equal. In the proof
that follows we need the following definition.

Definition 6: [Sliced Transition Relation] A transition relation R cor-
responds to a sliced transition relation R1, . . . , Rm if and only if for every
1 ≤ l ≤ m, Rl = R ∧ Ul, where U1, . . . , Um is a complete set of window
functions.

Theorem 3 (Correctness with Sliced Transition Relation) Let f be
a µ–calculus formula and let R be a transition with the corresponding sliced
transition relation R1, . . . , Rm. In addition, let e1, . . . ek be a distributed
environment, e′i be the environment when pevali(f, ei) terminates, and e′′i
be the environment when parevalstri,1(f, ei) terminates. Then, e′i = e′′i
and pevali(f, ei)= parevalstri,1(f, ei).

From Theorem 3 and Theorem 1 we can conclude that the union over the
parts evaluated by all processes for a function f is equal to the entire set
evaluated by the sequential algorithm.
Proof: We prove the theorem by induction on the structure of f .
parevalstri,1(f, ei) works the same way as pevali(f, ei) does for all for-

24

mulas except those of the form EXg. Therefore it is enough to prove the
theorem only for formulas in the form EXg.
Base: f = p for p ∈ AP . Immediate, since not EXg.
Induction:
f = EX g: parevalstri,l(EXg, ei) evaluates the set of all predecessors of
states in parevalstri,1(g, ei), using the transition relation Ri. The set of
all predecessors si,l can be represented by the formula ∃t[(s, t) ∈ Ri ∧ t ∈
parevalstri,1(g, ei)]. Then each process runs exchstr(si,l, i, l) and places
the results in s′i,l. The result in processes (wId, 1) is as follows:

s′wId,1 =
m∨

l=1

k∨

i=1

si,l ∧ wi

The above formula is therefore identical to:

wi ∧
m∨

l=1

k∨

i=1

∃t
[
(s, t) ∈ Rl ∧ t ∈ parevalstri,1(g, ei)

]
.

Since disjunction and existential quantification are commutative, the above
formula is identical to

wi ∧ ∃t
[

k∨

i=1

(s, t) ∈ (
m∨

l=1

Rl) ∧ t ∈ parevalstri,1(g, ei)

]
.

Since Rl are sliced transition relations, the above formula is identical to:

wi ∧ ∃t
[
(s, t) ∈ R ∧ t ∈

k∨

i=1

parevalstri,1(g, ei)

]
.

By the induction hypothesis, parevalstri,1(g, ei) = pevali(g, ei). Thus,
the set returned by process (i, 1) is identical to

wi ∧ ∃t
[
(s, t) ∈ R ∧ t ∈

k∨

i=1

pevali(g, ei)

]
.

The last expression is identical to:

wi ∧ pevali(EX g, ei).

Lemma 1 ensures that the set returned by procedure exch(pevali(EXg, ei))
is identical to the above formula, and thus parevalstri,1(EXg, ei) = pevali(EXg, ei).
This completes the proof. Q.E.D.

25

6 Scalability

A distributed algorithm is scalable if it remains effective for large problems
when running on a large number of nodes. The main factors that influence
scalability are the memory requirement of the algorithm at each node and the
communication volume. If the memory requirement at each node decreases
as the number of nodes grows, the algorithm can probably handle larger
problems by using a large number of nodes.

Our experience in previous work [13, 1] indicates that the bandwidth
of the current standard network allows systems with a few dozen nodes to
work effectively, and communication does not become a bottleneck. A very
large network will need to handle larger communication volume.

There are two sources for the memory requirements of the algorithm: the
memory required from each node to store the sets and the memory required
to compute the image of a single set. Since each set is distributed evenly
among the nodes by the ldBlnc procedure, the memory requirement from
each node is expected to be balanced. Therefore, the memory required by
each node is expected to decrease when the number of nodes increases.

The memory requirement for computing the image of a set depends on
the set size. Since computation is applied to a balanced set, the size of each
subset decreases linearly to the number of nodes. Therefore, the memory
requirement for the computation is expected to decrease when the number
of nodes increases.

The algorithm works bottom up through the formula, evaluating each
subformula based on the value of its own subformulas. It evaluates each
subformula using a number of nodes that work in parallel. However, the
evaluation is synchronized by the call to the ldBlnc, exch and exchnot
procedures. The evaluation takes a constant number of operations for all the
operators except fixpoint. Lemma 2 proves that the distributed algorithm
takes the same number of steps for fixpoint operators as the sequential.
Therefore, we conclude that the complexity of the distributed algorithm is
the same as in the sequential case. The complexity of evaluating a formula
depends only on the number of alternations d of the least and greatest
fixpoints [10]. A sequential [10, 16] algorithm requires nd steps where n is
the number of states in the transition system.

Our algorithm requires several standard machines, each consisting of lo-
cal processors and local memory. The communication between the machines
consists of a standard ethernet. The algorithm can be implemented using the
MPI standard [11]. Therefore, it does not require any special architecture.

26

7 Conclusion

This paper presents a framework for distributed symbolic model checking.
It includes a scalable distributed symbolic model checking algorithm for µ–
calculus. It suggests using a sliced transition relation for image computation
of very large transition systems. Many other model checking algorithms for
subsets of µ–calculus can use this framework. Future work should address
such implementation issues as selecting window functions, selecting order
of communication during the exchange procedure, and balancing memory
utilization without forcing synchronization.

Acknowledgement: We would like to thank Ken McMillan for his time,
patience and help in choosing a notation for the µ–calculus model checking
algorithm.

References

[1] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable Dis-
tributed On-the-Fly Symbolic Model Checking. In Third International Con-
ference on Formal Methods in Computer-Aided Design (FMCAD’00), LNCS,
Austin, Texas, November 2000.

[2] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[3] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with
partitioned transition relations. In A. Halaas and P. B. Denyer, editors, Pro-
ceedings of the 1991 International Conference on Very Large Scale Integration,
August 1991.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–171, June 1992. Special Issue: Selections from 1990 IEEE Sympo-
sium on Logic in Computer Science.

[5] G. Cabodi, P. Camurati, and S. Quer. Improving the Efficient of BDD-Bsaed
Operators by Means of Partitioning. IEEE Transactions on Computer-Aided
Design, pages 545–556, May 1999.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic Specifications. In Pro-
ceedings of the Tenth Annual ACM Symposium on Principles of Programming
Languages, January 1983.

[7] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press,
December 1999.

27

[8] R. Cleaveland. Tableau-Based Model Checking in the Propositional µ-calculus.
Acta Informatica, 27:725–747, 1990.

[9] O. Coudert, J. C. Madre, and C. Berthet. Verifying of Synchronous Sequen-
tial Machines Based on Symbolic Execution. In J. Sifakis, editor, Workshop
on Automatic Verification Methods for Finite State Systems, pages 365–373.
Springer-Verlag, Grenoble, France, 1989.

[10] E. A. Emerson and C.-L. Lei. Efficient Model Checking in Fragments of the
Propositional Mu-calculus. In Proceedings of the First Annual Symposium on
Logic in Computer Science. IEEE Computer Society Press, June 1986.

[11] Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
The International Journal of Supercomputer Applications and High Perfor-
mance Computing, 8, 1994.

[12] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability
in Parallel Reachability Analysis of Very Large Circuits. In Proc. of the 12th
International Conference on Computer Aided Verification, LNCS, 2000.

[13] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability
in Parallel Reachability Analysis of Very Large Circuits. Formal Methods in
System Design, 21(2):317–338, November 2002.

[14] D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer
Science, 27, 1983.

[15] O. Lichtenstein and A. Pnueli. Checking that Finite State Concurrent Pro-
grams Satisfy their Linear Specification. In Proceedings of the Twelfth An-
nual ACM Symposium on Principles of Programming Languages, pages 97–
107, January 1985.

[16] D. Long, A. Browne, E. Clark, S. Jha, and W. Marrero. An Improved Al-
gorithm for the Evaluation of Fixpoint Expressions. In Proc. of the Sixth
International Conference on Computer Aided Verification, LNCS 818, pages
338–350, 1994.

[17] A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli.
Reachability Analysis Using Partitioned-ROBDDs. In Proceedings of the IEEE
International Conference on Computer Aided Design, pages 388–393. IEEE
Computer Society Press, June 1997.

[18] A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-
ROBDDs. In Proceedings of the IEEE International Conference on Computer
Aided Design, pages 547–554. IEEE Computer Society Press, June 1996.

[19] J.P. Quielle and J. Sifakis. Specification and Verification of Concurrent Sys-
tems in CESAR. In Proceedings of the Fifth International Symposium in Pro-
gramming, 1981.

28

[20] C. Stirling and D. J. Walker. Local Model Checking in the Model Mu-Calculus.
In Proc. of the 1989 International Joint Conference on Theory and Practice
of Software Development, 1989.

[21] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pa-
cific J. Math, 5:285–309, 1955.

[22] G. Winskel. Model Checking in the Modal µ-calculus. In Proceedings of the
Sixteenth International Colloquium on Automata, Languages, and Program-
ming, 1989.

29

