
International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

Masquerade Detection Using Truncated Command Lines

Roy A. Maxion and Tahlia N. Townsend
maxion@cs.cmu.edu and tahlia@cs.cmu.edu

Dependable Systems Laboratory

Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 / USA

Abstract

A masquerade attack, in which one user impersonates
another, can be the most serious form of computer abuse.
Automatic discovery of masqueraders is sometimes under-
taken by detecting significant departures from normal user
behavior, as represented by a user profile formed from sys-
tem audit data. While the success of this approach has
been limited, the reasons for its unsatisfying performance
are not obvious, possibly because most reports do not elu-
cidate the origins of errors made by the detection mecha-
nisms. This paper takes as its point of departure a recent
series of experiments framed by Schonlau et al. [12]. In
extending that work with a new classification algorithm, a
56% improvement in masquerade detection was achieved
at a corresponding false-alarm rate of 1.3%. A detailed
error analysis, based on an alternative data configuration,
reveals why some users are good masqueraders and others
are not.

1. Introduction
Colloquially, the masquerade problem can be described

in the following scenario. A legitimate user takes a coffee
break, leaving his/her terminal open and logged in. During
the user’s brief absence, an interloper assumes control of the
keyboard, and enters commands, taking advantage of the le-
gitimate user’s privileges and access to programs and data.
The interloper’s commands may comprise read or write ac-
cess to private data, acquisition of system privileges, instal-
lation of malicious software, etc. Because the interloper
is impersonating a legitimate user (or some other computer
identity, such as a program), s/he is commonly known as a
masquerader. It should be noted that there are many ways
for a masquerader to gain access to legitimate user accounts,
e.g., through a purloined password or a hacker’s break in.
The term may also be extended to encompass abuse of legit-

imate privileges – the case in which a user “masquerades”
as himself; such a person is sometimes termed an “insider,”
especially when the person is an accepted member of the
organization sponsoring the target system.

Masquerading can be a serious threat to the security of
computer systems and computational infrastructures. A
well-known instance of masquerader activity is the recent
case of Robert P. Hanssen, the FBI mole who allegedly used
agency computers to ferret out information later sold to his
co-conspirators [6]. Hanssen was a legitimate user, but his
behavior was improper. More than 60% of companies sur-
veyed in 1996 reported some sort of misuse, at enormous
cost. Of even greater concern than economic losses, of
course, are attacks on national security.

Detecting masqueraders has long been a challenge, dat-
ing as far back as 1988 for practical detection systems [8].
The typical approach is based on the idea that masquerader
activity is unusual activity that will manifest as significant
excursions from normal user profiles. User profiles are con-
structed from monitored system-log or accounting-log data.
Examples of the kinds of information derived from these
(and other) logs are: time of login, physical location of lo-
gin, duration of user session, cumulative CPU time, partic-
ular programs executed, names of files accessed, user com-
mands issued, and so forth [7]. When a deviation from nor-
mal behavior is observed, a masquerade (or other misuse)
attempt is suspected. To facilitate comparison with other
work, this study employs truncated user-command lines (no
arguments) as data.

There have been several attempts to tackle the prob-
lem of detecting masqueraders. A nice collection of such
work, in which a number of masquerade-detection tech-
niques were applied to the same data set, is presented by
Schonlau and his colleagues [12].

In terms of minimizing false alarms, the best result
achieved in that work used a uniqueness metric for a 39.4%
hit rate at a 1.4% false alarm rate. In terms of detecting

1 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

masqueraders, the best results reported in the Schonlau et
al. work were for a Bayes One-Step Markov model (69.3%
hits and 6.7% false alarms). Although these results may
seem disappointing, they are in fact quite good, considering
the difficulty of the problem. One of the best aspects of the
Schonlau et al. work is the data set itself. User data are ex-
tremely hard to obtain, due to concerns about user privacy
and corporate confidentiality. That Schonlau and his col-
leagues made their data available is a major contribution.

This paper takes the work of Schonlau et al. as a point
of departure. It uses the data provided by Schonlau et al.,
and demonstrates a new technique for masquerade detection
with a 56% improvement in correct detection at the lowest
false alarm rate reported in the literature so far. It also am-
plifies the results with an analysis of the errors made by
the detector as applied to an alternative configuration of the
Schonlau et al. data set. The error analysis exposes certain
limitations of the Schonlau et al. framework, and suggests
what could be done to achieve better results in the future.

2 Problem and approach

This paper addresses the problem of masquerade detec-
tion as exemplified in the task of classifying sequences of
user-command data into either of two categories: self (the
legitimate user) and nonself (the masquerader). The data
used are those of Schonlau et al., described in Section 5.
These data consist of 15,000 commands from each of 50 dif-
ferent users. The data are configured in two ways: (1) ran-
domly injected with data from users outside the community
of 50 (which approximate an incursion by a masquerader);
and (2) each user crossed with every other user to compare
the effects of every user acting as a “masquerader” against
all other users. The first configuration is that employed by
Schonlau et al., hereafter referred to as the SEA configura-
tion; the second configuration contrasts with the first in that
(1) it provides a consistent set of intrusions against all users,
which allows meaningful error analysis, and (2) it samples a
greater range of intrusive behavior (2450 sequences from 49
masqueraders per victim, as opposed 0-24 sequences from a
maximum of three different masqueraders per victim under
the SEA regime).

A new detection algorithm, inspired by Naive Bayes text
classification, was used. This algorithm was chosen because
the self/nonself classification task is similar to the general-
ized task of text classification, and the Naive Bayes classi-
fier has a history of good performance in that context [10].

Two objectives dominated the study: first, to determine
whether or not a new classifier could improve upon the de-
tection rates reported in previous work; second, to provide a
detailed examination of whatever classification errors occur
in the study. An error analysis facilitates more understand-
ings than a simple report of classification results, because

the errors and their causes will show what needs to be done
to effect improvements in the future.

The next section provides a survey of recent literature
concerned with the particular data and problem at hand.
Descriptions of the Naive Bayes classifier and the data are
given, followed by an overview of issues involved with the
classification of user-command data into self and nonself
categories. The experimental methodology is presented, af-
terwhich are the results, error analysis and discussion.

3 Recent literature
The point of departure for the work described in this

paper lies with the efforts of Schonlau and his colleagues,
who have provided a nice retrospective of their accomplish-
ments, rendered over the course of several papers, in [12].
These authors used keyboard command data from 50 users,
injected with data from users outside the community of 50.
Data for each user comprised 15,000 commands. The first
5,000 commands constituted ground truth (i.e., contained
no injected data), and the last 10,000 commands were prob-
abilistically injected with commands issued by another user.
The idea was to detect blocks of 100 commands typed by
the “masquerader,” discriminating them from blocks of 100
commands typed by the true user. Details of the data, how
they were gathered, and how the original experiments were
conducted can be found in Sections 5 and 6.

The review paper by Schonlau et al. [12] describes an
experiment in which six masquerade-detection schemes are
compared on the same user data seeded with “masquer-
aders.” Some of the detection techniques were original,
while others were drawn from the computer science liter-
ature. The investigators targeted a false-alarm rate of 1%.
All of the methods had relatively low hit rates (ranging
from 39.4% to 69.3%) and high false alarm rates (rang-
ing from 1.4% to 6.7%). The results are also compared
using cluster analysis and ROC curves, which reveal that
no method completely dominates another. This section pro-
vides an overview of the various masquerade detectors used
by Schonlau et al. Their results are shown graphically in
Figure 1, along with the results of the present study.

Bayes 1-Step Markov. This detector is based on single-
step transitions from one command to the next, and is due
to DuMouchel [3]. The detector determines whether or not
observed transition probabilities are consistent with histor-
ical probabilities. This technique was the best performer
in terms of correct detections, but failed to get close to the
desired false alarm rate.

Hybrid Multi-Step Markov. This method is based on
Markov chains, and is due to Ju and Vardi [4]. The imple-
mentation of this model in [12] actually toggled between a
Markov model and a simple independence model, depend-
ing on the proportion of commands in the test data that were
not observed in the training data. The performance of this

2 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

method, shown in Figure 1 was among the highest of the
methods tested.

IPAM. This detector is based on single-step command
transition probabilities, estimated from training data. IPAM
(incremental probabilistic action modeling) was developed
by Davison and Hirsh [1] for their work in predicting se-
quences of user actions. It is described in [12], from which
the result depicted in Figure 1 is drawn. IPAM’s perfor-
mance ranks with those in the lowest-performing group.

Uniqueness. This approach, due to Schonlau and Theus
[13], is based on ideas about command frequency: com-
mands not seen in the training data may indicate a masquer-
ade attempt, and the more infrequently a command is used
by the user community as a whole, the more indicative that
command is of being a masquerade. Uniqueness was a rel-
atively poor performer in terms of detecting masqueraders,
but was the only method able to approach the target false
alarm rate of 1% [12].

Sequence-Match. This approach is based on the early
work of Lane and Brodley, refined in [5]. This method com-
putes a similarity match between the most recent user com-
mands and a user profile. The technique is reviewed in [12],
and the result portrayed in Figure 1 is taken from there. On
the Schonlau et al. data, it was a poor performer.

Compression. The idea behind the compression ap-
proach is that new data from a given user compresses at
about the same ratio as old data from that same user, and
that data from a masquerading user will compress at a dif-
ferent ratio and thereby be distinguished from the legitimate
user. This idea is credited to Karr and Schonlau in [12]
whose result is depicted in Figure 1. Compression was the
worst performer of the methods tested.

4 The Naive Bayes classification algorithm

Naive Bayes classifiers are simple, probabilistic classi-
fiers known for their inherent robustness to noise and their
fast learning time (learning time is linear in the number of
examples). They have a history of successful use in text
classification, where the task is to assign a document to a
particular class, typically using the so-called “bag of words”
approach, which profiles document classes based simply on
word frequencies [10]. Deciding whether a newspaper ar-
ticle is about sports, health or politics, based on the counts
of words in the article, is similar to the task of deciding
whether or not a stream of commands issued at a computer
terminal belongs to a particular authorized user. Despite
its simplicity and success in text classification, hitherto the
Naive Bayes approach has not been applied to user profil-
ing, with command-line data, for masquerader detection.

In the present context, the classifier works as follows.
The model assumes that the user generates a sequence of
commands, one command at a time, each with a fixed prob-

ability that is independent of the commands preceding it
(this independence assumption is the “naive” part of Naive
Bayes). The probability for each command � for a given
user � is based on the frequency with which that command
was seen in the training data, and is given by:

����� �	� Training Count
�
� ����

Training Data Length
����������

where � is a pseudocount and � is the number of distinct
commands (i.e., the alphabet) in the data. The pseudocount
can be any real number larger than zero (0.01 in this study),
and is added to ensure that there are no zero counts; the
lower the pseudocount, the more sensitive the detector is to
previously unseen commands. The pseudocount term in the
denominator compensates for the addition of a pseudocount
in the numerator. The probability that a test sequence of the
five commands “a a b b b” was generated by a particular
user, say User 1, ��� , is:����� � !#"������ � !$"��%���&� '%"������ � '�"��%���&� '
or (�%�)� � !�*�+," (����� � '&*.- where

�%��� � !
is the probability that

User1 typed the command / . For each User X, a model
of Not X can also be built using training data from all other
users. The probability of the test sequence having been gen-
erated by Not X can then be assessed in the same way as
the probability of its having been generated by User X. The
larger the ratio of the probability of originating with X to
the probability of originating with Not X, the greater the
evidence in favor of assigning the test sequence to X. The
exact cut-off for classification as X, that is the ratio of prob-
abilities below which the likelihood that the sequence was
generated by X is deemed too low, can be determined by a
cross-validation experiment during which probability ratios
for sequences which are known to have been generated by
self are calculated, and the range of values these legitimate
sequences cover is examined.

The success of Naive Bayes has often struck researchers
as surprising, given the unrealistic assumption of attribute
independence which underlies the Naive Bayes approach.
However, [2] demonstrates that Naive Bayes can be opti-
mal even when this assumption is violated. Further details
regarding Naive Bayes can be found in [9] and [11].

5 Data

The data used in the present work were the same
as the data used in the several Schonlau et al. [12]
masquerade-detection studies. As described by Schon-
lau et al., user commands were captured from the
UNIX acct auditing mechanism. Only two fields
were used – command name and user. This limita-
tion was imposed for privacy reasons. Examples of

3 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

commands are: sed, eqn, troff, dpost, echo,
sh, cat, netstat, tbl, sed, eqn, sh and
so forth. The first 15,000 commands for each of about 70
users were recorded over a period of several months. Some
users generated 15,000 commands in a few days; others
took a few months. Some commands not explicitly typed
by the user (e.g., those generated by shell files or scripts)
were also included, as were names of executable programs.

The data used in this study were obtained from Schonlau
et al., who graciously made their data available for down-
load at http://www.schonlau.net.

6 Experimental method (Schonlau et al.)

This section describes the experimental method used by
Schonlau et al. This description is drawn from [12].

“We randomly selected 50 users [out of the 70 from
whom data were collected] to serve as intrusion targets. We
then used the remaining 20 users as masqueraders and in-
terspersed their data into the data of 50 users. ...

For simplicity, because it facilitates presentation of the
results, we decided to decompose each user’s data into 150
blocks of 100 commands each. ... The first 50 blocks (5000
commands) of all users are kept aside as training data – as
far as we know they are not contaminated by masqueraders.
For blocks 51 through 150 we made the simplification that a
block is contaminated either completely or not at all; there
are no mixed blocks.

Starting with block 51, we insert masquerading data as
follows: if no masquerader is present, a new masquerader
continues to be present in the following block with a 1%
probability. If a masquerader is present, the same masquer-
ader continues to be present in the following block with a
probability of 80%. While the exact values of the probability
are arbitrary, they reflect the requirements that (1) there are
an arbitrary number of masqueraders in the data (including
the possibility of none), (2) the length of the masquerading
varies and (3) most of the data are not contaminated.

Data that correspond to different masqueraders are al-
ways separated by at least one block of uncontaminated
data. Inserting masquerading data increases the number of
commands observed. We truncate the data to 150 blocks per
user in order not to give away the amount of masquerading
data inserted.

Masquerading data are drawn from the data of mas-
querading users as follows: we determine the length of the
masquerade and choose a masquerader and a start data
block at random. The random choice is repeated if there
are not enough contiguous masquerading data left or if the
masquerading data were previously used.”

The various masquerade-detection techniques employed
by Schonlau et al. were applied directly to the data sets
that emerged from the procedure just described. For each

user, the user’s first 5,000 commands were used as train-
ing data; the last 10,000 (masquerader-injected) commands
were used as testing data for that same user.

7 Experimental method (revised)

A major shortcoming in the methodology followed by
Schonlau et al. is that the design of the test set precludes
sensible error analysis. Different masqueraders were in-
jected into different users, and not all users were given
masqueraders. Although this may be faithful to real-world
conditions, failure to run a consistent set of masqueraders
against all users in a test setting makes it difficult to draw
constructive inferences from the hit and miss rates.

When an algorithm fails to identify a masquerader block
which is only found in one user’s data, it is not clear whether
the failure is due to characteristics of the user, the masquer-
ader or the algorithm. This makes it hard to improve fu-
ture performance. Furthermore, the number of masquerade
events was different for different users, and in the majority
of cases, where there were multiple masquerade events, they
were largely drawn from the same masquerader. For each of
the methods reported in the Schonlau et al. paper, a substan-
tial proportion (15, 16, 21 and 14% respectively for Bayes
1-step Markov, Uniqueness, Hybrid Multi-step Markov and
Compression) of the hits achieved were achieved by repeat-
edly identifying blocks taken from the same masquerader.
Choosing the masquerader-user pairs differently might have
had a significant impact on the success profiles reported.

Recall that the objectives of the present study were
twofold: to effect a comparison between the Naive Bayes
classifier and the classifiers used in Schonlau et al.; and
to carry out an analysis of classification errors (misses and
false alarms). These goals required two different experi-
ments, SEA and 1v49 respectively, as sketched below.

SEA experiment. This experiment followed the same
methodology, and used the same data configuration, as did
Schonlau et al., hence the moniker “SEA.” Its goal was to
deploy and test a new classifier (Naive Bayes) that is possi-
bly better suited to what is very reminiscent of a text clas-
sification task than the classifiers used by Schonlau et al.,
and to produce results that could be compared easily with
those achieved by previous researchers using the same data
but different classifiers.

A separate Naive Bayes classifier was built for each of
the 50 users. During the training phase, the classifier built a
profile of self and a profile of non-self, using the first 5000
commands of a given user’s data for the former profile, and
the 49 x 5,000 training data commands of the other 49 users
for the latter profile. The test data were identical to those
used in the Schonlau et al. original experiments. Two ver-
sions of the Naive Bayes classifier were run on this data
configuration; one was the simple, unadorned version typi-

4 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

cally used in the literature, and the other was enhanced with
an updating scheme whose purpose was to accommodate
drift in the data due to changes over time.

1v49 experiment. To address the methodological short-
coming discussed at the beginning of this section, a new test
set was employed to facilitate error analysis in the present
study. This configuration was consistent in the number and
origin of the masquerade events encountered by each detec-
tor, i.e., if the detector that was trained on UserX encoun-
tered masquerade events from 5 different masqueraders,
the detector trained on UserY would encounter the same
5 events. Using this configuration, the Naive Bayes classi-
fier was trained (constructed a user profile) on the first 5,000
commands of a given user, but tested on the first 5,000 com-
mands of each of the other 49 users as if all 49 of those users
were masqueraders. The data configuration is therefore re-
ferred to as the 1v49 configuration. It resulted in 2450
masquerade blocks for each user compared with between
0 and 24 for Schonlau et al. The test of self-recognition re-
mained the same as in the Schonlau et al. paradigm, with
between 76 and 100 blocks of self data culled from the sec-
ond 10,000 commands being presented to the detector. Note
that the detector for this experiment differs from the one
used with the SEA data in that it trains on positive examples
only, i.e., it does not build a profile of nonself. The training
data for making a nonself profile in the SEA experiment is
used as testing data in the 1v49 experiment. The 1v49 data
configuration was used with the simple Naive Bayes clas-
sifier (described in Section 4) to obtain results which were
amenable to error analysis.

8 SEA results

In assessing the results of a masquerade detector we
are concerned with the trade-off between correct detections
(hits, or true positives) and false detections (false alarms,
or false positives). These are often depicted on a receiver
operating characteristic curve (called an ROC curve) where
the percentages of hits and false alarms are shown on the y-
axis and the x-axis, respectively.1 The ROC curve for Naive
Bayes, with updating, on the SEA data is shown in Figure 1
along with the superimposed results of the various Schon-
lau et al. experiments reviewed in Section 3. Note that the
unit of classification, employed by both Schonlau et al. and
the present study, is a block of 100 contiguous commands.

The curve itself shows results for a Naive Bayes classi-
fier with updating applied to the SEA data configuration as
the decision threshold was stepped through its range. Le-
nient decision criteria allow a higher hit rate, but also a
higher false-alarm rate; more stringent criteria tend to re-

1For a thorough exposition of ROC curves, see [14].

% False Alarms
10 20 30 40 50 60 70 80 90 100

%
 H

its
10

20

30

40

50

60

70

80

90

100

0

Bayes One-Step Markov, 6.7% FA

Naive Bayes, updating, 1.3% FA

Naive Bayes, no updating, 4.6% FA

Hybrid Multi-Step Markov
IPAM
Uniqueness, 1.4% FA
Sequence-Match
Compression

Figure 1: Relative operating characteristic (ROC) curve for
the Naive Bayes classifier (with updating) as applied to the
SEA-configured data. Also included are best-outcome re-
sults achieved by other methods as described in the text.

duce both rates. Each point on the curve indicates a particu-
lar trade-off between hits and false alarms. Points nearer to
the upper left corner of the graph are the most desirable, as
they indicate high hit rates and correspondingly low false-
alarm rates. Recall that the unit of classification is a block of
100 consecutive user commands. For the SEA data config-
uration there were between 76 and 100 blocks of unlabeled
self data per user, for a total of 4769 possible false alarms,
and between 0 and 24 blocks of masquerader data per user,
for a total of 231 possible missed alarms.

¿From the figure it may appear that the Schonlau et al.
method of Bayes One-Step Markov classification produced
the best results. This is certainly true when considering hit
rate alone (proportion of masqueraders correctly identified
as masqueraders). However, the false-alarm rate is also im-
portant, because in a real-world situation false alarms must
be investigated, and these investigations have a cost. Con-
sequently a common goal in masquerade-detection systems
(and intrusion-detection systems) is to reduce the false-
alarm rate as far as possible; Schonlau et al. had a tar-
get level of 1%. When false alarms are considered, the
Bayes One-Step Markov method, with a 6.7% false alarm
rate looks less promising; the Naive Bayes result dominates.

Although the quality of a detector may be judged in
terms of its ability to maximize hits and to limit either false

5 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

alarms or missing alarms, this can sometimes be too sim-
plistic. In reality there is often a bias favoring either false
alarms or misses. Therefore, the overall “goodness” of each
of several detection methods can be ranked by applying a
cost function of the form:

��������� ��(
	�� ������ *���� (
� /�� ��� ��� /��� � *
The cost of a false alarm in terms of misses will vary

from one installation to another, so there is no obvious way
to set the relative values of � and

�
to give an optimal cost.

A first attempt at ranking the methods therefore uses a cost
function in which � and

�
are both equal to one:

��������� 	�� ������� � � /�� ��� ��� /��� �
By this measure, the best methods are: Bayes One-Step

Markov, followed by Naive Bayes (without and with updat-
ing, respectively), Hybrid Markov, IPAM, Uniqueness, Se-
quence Matching and Compression. The consensus in the
literature, however, seems to be that a false alarm should be
more expensive than a miss; what is not clear is how much
more expensive. In the Schonlau et al. work, researchers
were asked to target a false alarm rate of 1%; the only suc-
cessful method by this criterion was Uniqueness. In order
for Uniqueness to emerge as the top of those methods de-
scribed by Schonlau et al., it is necessary to set the cost of
a false alarm to 6 times that of a miss, i.e., to use the cost
function

��������� (
	�� ����� *�� � (
� /�� ��� ��� /��� � *
Table 1 presents the detection methods ranked accord-

ing to the latter cost function: false alarms are six times as
costly as misses. When false alarms and misses weighted
in this way, the best methods are Naive Bayes, Uniqueness,
Hybrid Markov, Bayes One-Step Markov, IPAM, Sequence
Matching and Compression. The Naive Bayes method with
updating, using a threshold extracted from the training data
by cross validation, obtained a false alarm rate of 1.3% with
a concomitant hit rate of 61.5%. This constitutes an im-
provement of 56% over Uniqueness, the best result achieved
by Schonlau et al. (hit rate 39.4%, false alarm rate 1.4%).

9 1v49 results and error analysis

The rankings provided in Table 1 suggest which of the
several classifiers/detectors might be the best performer in
a given situation, but they don’t reveal anything about the
sources of classification error. The 1v49 experiment, de-
scribed in Section 7 was designed explicitly to investigate

Method Hits Misses FA Cost
N. Bayes (Updating) 61.5 38.5 1.3 46.3
N. Bayes (no Upd.) 66.2 33.8 4.6 61.4
Uniqueness 39.4 60.6 1.4 69.0
Hybrid Markov 49.3 50.7 3.2 69.9
Bayes 1-Step Markov 69.3 30.7 6.7 70.9
IPAM 41.1 58.9 2.7 75.1
Sequence Matching 36.8 63.2 3.7 85.4
Compression 34.2 65.8 5.0 95.8

Table 1: Ranking of classification methods, using SEA data
configuration and Cost = Misses + 6 * (False Alarms) as a
ranking function.

the Naive Bayes classification errors, and provide insight
into the questions: what makes a successful masquerader;
what makes a user an easy or a hard target; what causes
false alarms?

The base results of the 1v49 experiment are: 62.8% hits,
37.2% misses, and 4.63% false alarms, making the 1v49
outcome roughly equivalent, in terms of classification accu-
racy, to Naive Bayes (no updating) in the SEA version of
the experiment. The primary tool emerging from the 1v49
experiment is a confusion matrix, an excerpt of which is de-
picted in Table 2 (the full table is not shown due to space
limitations). The number in each cell of the table indicates
the number of missed detections when one user (victim/self)
is intruded upon by another (intruder/nonself). For example
the 46 in row 9, column 5 indicates the number of times that
User 5 was undetected when masquerading as User 9. The
victims (self) are listed down the rows, while the intruders
(nonself) are listed across the columns. Note that the num-
bers along the diagonal, as expected, are all zeros.

The far right column shows the total missed intrusions
for each victim, indicating the victim’s susceptibility to at-
tack across the population of 50 masqueraders. The bot-
tom row shows the total number of successful intrusions for
each intruder, as indicators of attacker success. With such
a table, it is easy to determine the most egregious masquer-
ader as well as the most susceptible victim. For example,
within this portion of the table, User 5 was the most suc-
cessful masquerader, with 1617 incursions that were unde-
tected, while User 1 showed the greatest susceptibility as a
victim, with 1295 missed detections.

Examination of the full table reveals several interesting
observations, some of which will be addressed in detail
here. User 30 suffered no successful attacks as a victim,
and was never successful as an attacker; User 38 was the
most successful attacker, with 1649 undetected attacks (out
of 2450 attempts); and User 12 was most often victimized,
with 1474 erroneously-accepted attacks.

6 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

VICTIM INTRUDER MISSED

INTRUSIONS

1 2 3 4 5 6 7 8 9 10 �����

1 0 2 40 47 41 1 40 3 50 9 ����� 1296

2 0 0 3 3 4 0 4 6 0 1 ����� 359

3 26 0 0 15 12 1 16 1 3 9 ����� 549

4 35 3 2 0 44 0 36 14 48 5 ����� 1110

5 10 3 2 18 0 0 32 3 34 2 ����� 1028

6 13 0 0 1 0 0 9 0 9 5 ����� 212

7 36 3 4 44 50 2 0 3 49 4 ����� 1299

8 2 1 2 38 36 0 9 0 14 0 ����� 611

9 37 3 2 45 46 1 40 2 0 14 ����� 1162

10 9 0 2 25 0 3 14 2 26 0 ����� 365

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

SUCCESSFUL 1124 402 339 1405 1617 74 1379 360 1359 270 �����

INTRUSIONS

Table 2: Confusion matrix (excerpt): simple Naive Bayes classifier with updating, 1vs49 configuration. “Self” is listed down
the left column; “non-self” is listed across the top. Numbers in the matrix indicate misses – the number of times the detector
erroneously accepted a masquerader (non-self) as self, e.g., User 5 successfully masqueraded 46 times as User 9.

9.1 What makes a successful masquerader?

The top masqueraders were users 38, 05 and 25 with
67% (1649/2450), 66% (1617/2450) and 64% (1578/2450)
success rates respectively. All were successful across the
board, that is, more than half the users falsely accepted 35
or more of these masqueraders’ blocks as self. A careful
analysis of these users’ data reveals that they succeed by
virtue of one or more of the following attributes: high use
of popular shared tuples (see Section 9.1.1); moderate use
of very popular shared tuples; absence of unusually heavy
use of any particular command or unpopular tuple.

It is instructive to examine a scattergram of the data for
the most successful masquerader, User 38, shown in Figure
2. For purposes of graphing the data this way, each distinct
command in the data set was converted to a unique integer.
The scattergram shows all 15,000 commands for User 38,
with a vertical dashed line dividing the 5,000 training-data
commands on the left from the 10,000 testing-data com-
mands on the right. Notice the dense patterns of wavy lines
that hug the x-axis; these represent repeating sequences of
commands. These repeating sequences occur not just for
User 38, but are common to, or shared by, many other users
as well. This observation led to an exploration of the extent
to which such repeating sequences were shared among all
the users, and the extent to which such sharing might affect
classification outcomes.

9.1.1 Shared tuples

Investigation of the training data as a whole reveals that se-
quences of at least two commands (2-tuples) occurring in
the data of at least ten users account for 34.8% of the train-
ing data (after removal of overlaps). The amount of training
data accounted for by these shared tuples ranges between
0 for User 30, the least successful masquerader, and 70.5%
for User 38, the most successful masquerader. The longest
such tuple contained 49 commands, and was shared by 18
of the 50 users. An examination of the relationship be-
tween shared tuples and masquerade success discloses that
the more shared tuples, the greater the user’s chance of suc-
cess as a masquerader. Plotting the number of shared tuples
occurring in the data of a user against that user’s success as
a masquerader, reveals that 52% of the variation (� + = .52,
� = .72) in ability to masquerade can be explained by the
amount of the user’s data that is made up of shared tuples.
The correlation is not perfect, because not only the num-
ber of shared tuples, but also the popularity of the tuples
affects masquerader success. For example, although a large
proportion of the training data for User 21 is comprised of
shared tuples, this user does rather badly as a masquerader,
because 37% of its training data is made up of a single 5-
tuple which is only used by 12 other users. Shared tuples,
arising perhaps from scripts built in to the computing envi-
ronment, are effective camouflage for the masquerader.

7 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

Position in Command Stream
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

C
o
m

m
a
n
d
 I
D

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

0

Figure 2: User 38: scattergram representation of com-
mands. Vertical dashed line indicates division between
training data (left of line) and testing data. Note repetitious
patterns of command sequences along the x-axis.

9.2 What makes a user a hard target?

The toughest users to imitate were users 30, 47 and
32. These users suffered 0% (0/2450), 3% (74/2450) and
7.6% (185/2450) misses respectively. Investigation of these
users’ data reveals that the characteristics which contribute
to robustness against attack are: very high frequency use of
particular commands; regular use of rare commands; and
infrequent use of popular commands. For example, more
than half of the data for User 47 is made up of a single com-
mand - cat - occurring a total of 2565 times compared to
an average over all users of just 223. In addition, User 47
employs a number of unique or rare commands, for exam-
ple, cgiparse, with relatively high frequency, in a sub-
stantial number of blocks. User 30 has an extremely in-
dividual command-line profile. This user employs only 5
commands, of which two are barely used at all. Three com-
mands - tcsh, rshd, rdistd - make up 99.6% of this
user’s training data. rdistd alone constitutes 33% of this
user’s training data, and is unique to this user. The other two
commands have popularities of 5 and 15 and are employed
with more than 5 times the average frequency.

9.3 What makes an easy victim?

The users with the highest miss rates were users 12, 50
and 15. These users suffered 60.1% (1474/2450), 58.7%

Position in Command Stream
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

C
o
m

m
a
n
d
 I
D

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

0

Figure 3: Concept drift illustrated by User 10: scattergram
representation of commands. Vertical dashed line indicates
division between training data (left of line) and testing data.
Note regions of test data bearing no resemblance to any por-
tion of training data.

(1441/2450) and 57.1% (1399/2450) misses respectively. If
we model average user behavior with a vector of average
command frequencies, and calculate the Euclidean distance
between this average vector and the frequency vector for
each user’s own training data, we discover that the profiles
of users 12, 50 and 15 are the second, third and fourth clos-
est to the average. The profile closest to the average is that
of User 22. This user ranks sixth in terms of miss prone-
ness. In other words, what these users have in common is
their “averageness”.

9.4 What causes false alarms?

Concept drift, sometimes called nonstationarity, lies be-
hind the majority of the false alarms observed in the 1vs49
experiment. Concept drift refers to the fact that user be-
havior may not be perfectly static; as time passes, new be-
haviors may emerge, making a user’s behavior at one point
in time, as represented by his profile, appear different from
his behavior at a later point in time. If a user’s behavior
changes after the building of the profile, the classifier may
not recognize data generated by the authentic user and false
alarms will be raised.

Concept drift is dramatically illustrated in Figure 3,
showing a scatterplot of position in the datastream vs. com-
mand id for User 10. This was one of the four users to

8 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

whom 60% of the observed false alarms can be attributed.
The drastic changes in command-line behavior illustrated
on the scatterplot coincide with the blocks which give rise
to false alarms.

A combination of exploiting information about non-self
(training the classifier on both self and nonself data) and up-
dating the profiles is quite effective in tackling false alarms.
However, the problem persists for User 10, partly due to the
exact location of block boundaries relative to the onset of
new behavior patterns, and partly due to the fact that the
new behavior exhibited by this user is actually common in
the community as a whole, so that a classifier trained on
self and nonself will preferentially assign those blocks to
the non-self model. This is another illustration of the dan-
gers posed by the presence of shared tuples.

10 Discussion

Although the results achieved by using the Naive Bayes
classifier constitute a 56% improvement over the previous
result with the lowest false alarm rate, these improved re-
sults remain unsuitable for fielding a masquerade-detection
system. The hit rate is too low, and the false alarm rate is
too high. To be effective in an operational environment, a
detector needs to have a false alarm rate of not more than
1%, and probably much lower than that. Acceptable false
alarm rates are determined by the number of events per unit
time that could raise an alarm. If a detector examines a mil-
lion events per day, which for some detection environments
would be considered a low number, a 1% false alarm rate
would give 10,000 false alarms per day. That many false
alarms cannot be handled by the limited number of analysts
on duty, so the false alarm rate would need to be consider-
ably lower. Concomitantly, hit rates must be higher to avoid
missing true masquerade events. Reaching effective perfor-
mance levels will require improvements in several areas:

Data. The poor performance of every method tried so
far on this data may indicate that command line data alone,
without arguments, is not enough to profile a user. Use-
ful additions might be: arguments to commands; type and
length of sessions; user categories (job-type, department).

Careful data collection is important – algorithms look-
ing at the order of commands (e.g., Markov models) may
have been adversely affected by the fact that these data are
not truly sequential. In acct, the package used to collect the
data, commands are not logged in the order in which they
are typed, but rather when the application ends; and, com-
mands issued in different terminal windows are interleaved.

Careful preliminary examination of the data is important
in avoiding things like including shared scripts which are
built into the user environment (e.g., system login scripts)
and which reduce the individuality of the data upon which
the detector is trying to build a user profile.

It should be noted that using data blocks of 100 com-
mands is rather unrealistic, because any serious and sensi-
ble masquerader is likely to hit and run in far fewer than
100 commands. Detection within a block of ten commands
would seem more realistic. This study used a block size of
100 to allow comparison with the several Schonlau et al. re-
sults; however, a preliminary investigation using blocks of
size ten has shown promising results: a 50.4% hit rate with
a 2.1% false alarm rate. This compares quite favorably with
the block-100 results (61.5% hits and 1.3% false alarms).

What would constitute better data? Since it is not com-
pletely clear what the effect of the Schonlau et al. data set
is, because there is no control against which to compare it,
one can only speculate about how to effect improvements
in the data. Some ideas are: gather data over equal lengths
of time for all users, as opposed to a few days for some
users and a few months for others; try to balance data across
users by obtaining the same number of user/login sessions
for each user; get timestamps for logins and for each user
command issued, so that one day can be differentiated from
another; shared scripts, such as system login scripts, should
be removed, because they inject shared tuples into the user
data; get richer user data in terms of complete user com-
mands complete with all the command-line arguments; get
a job description of each user (e.g., programmer, researcher,
manager, secretary, sysadm, etc.). Finally, the features in
the data might be improved, using latent features instead of,
or in addition to, the raw features.

Methodology. The particular way an experiment is done
can have dramatic effects on its outcome; small method-
ological details, accidentally overlooked, can impede others
from replicating or evaluating results. Experimental meth-
ods can substantially influence the validity of results. For
example, the way that masquerade data are composed from
segments of many users may be biased, and that bias affects
outcomes. In the Schonlau et al. work this is manifested by
the hit rates depending on the coincidences of which mas-
querade blocks were injected into which users.

Error analysis. Error analysis is seldom done on clas-
sification or learning results. The present study makes it
clear that an examination of errors can reveal important
facts about what causes the detector to make a mistake, thus
providing a basis for future improvement.

Classifier. It is interesting to ask why Naive Bayes per-
formed so much better than its competitors. Unfortunately,
the answer to this question is not at all clear. The hit rates
of Naive Bayes might be explained by Naive Bayes being
good at summing weak evidence. Such a situation would
ensue when no one thing is particularly indicative of a mas-
querade intrusion, but many small things, in combination,
are. The pseudocount probably helps to explain the lower
false alarm rate of Naive Bayes compared with the Markov
detector, whereas shared tuples may explain the poor per-

9 DSN 2002: Maxion & Townsend

International Conference on Dependable Systems & Networks: Bethesda, Maryland, 23-26 June 2002.

formance of Uniqueness (Schonlau et al. note that with
Uniqueness an intruder using mostly common commands
will slip past the detection system). However, a detailed ex-
planation for what it is that makes Naive Bayes appropriate
for these data awaits further research.

11 Conclusion
The present study achieved a 56% improvement over

previous results. It has emphasized careful data collection,
attention to experimental methodology, and error analysis,
the latter of which has led to insights about why some mas-
queraders are harder to detect than others. Nevertheless,
masquerade detection remains among the most challenging
of classification problems.

Data are difficult to obtain, and typically provide only
positive training examples (for the case of determining
whether or not a command sequence is from a given user, as
opposed to determining which of many pre-identified users
most closely matches a sample). No one really knows what
a masquerader looks like, because real-world examples of
masquerade attacks are generally not available for analysis.
A detector can be given an idea of what constitutes self,
and even of nonself, but not of masquerader. Absent any
genuine masquerader data, researchers must approximate a
masquerade event with injections of data taken from some
nonself user going about his or her daily business. This is
certainly not a good or faithful way to model real masquer-
ader behavior. The problem of nonstationarity in the data is
considerable. Techniques can be developed to handle this in
most cases, but some users will continue to be problematic
in this regard. It would be helpful to identify these trouble-
makers in advance, but at present it is not clear how to do so.
Collecting more information about these users may help.
Real progress lies in being able to understand what makes
a good or poor masquerader; for example, once it is known
that scripts raise the probability of a masquerader’s success,
one is empowered to filter shared sequences out of the data,
or to treat the data in some other compensatory way. Er-
ror analysis has often been neglected in studies of masquer-
ade detection, despite its obvious usefulness in providing
insight into what works, what doesn’t work, and why.

12 Acknowledgements

We thank the Defense Advanced Research Projects
Agency (DARPA), who supported this work under contracts
F30602-99-2-0537 and F30602-00-2-0528. David Banks,
of the US FDA, provided helpful comments in many dis-
cussions. Imre Kondor kindly provided a visualization sys-
tem for Naive Bayes classification. Marcus Louie helped to
work out the shared-tuple analysis, Kevin Killourhy helped
with data management, and Patricia Loring helped in for-
matting the final Latex document. We are grateful for all of
these contributions.

References

[1] B. D. Davison and H. Hirsh. Predicting sequences of user
actions. In Predicting the Future: AI Approaches to Time-
Series Problems, pages 5–12, Menlo Park, California, 1998.
AAAI Press. Papers from the 1998 AAAI Workshop, 27 July
1998, Madison, Wisconsin: published as AAAI Technical
Report WS-98-07.

[2] P. Domingos and M. Pazzani. Beyond independence: con-
ditions for the optimality of the simple Bayesian classifier.
In L. Saitta, editor, 13th International Conference on Ma-
chine Learning (ICML-96), pages 105–112, San Francisco,
California, 1996. Morgan Kaufmann. Bari, Italy, 03-06 July
1996.

[3] W. DuMouchel. Computer intrusion detection based on
Bayes factors for comparing command transition probabil-
ities. Technical Report 91, National Institute of Statistical
Sciences, Research Triangle Park, North Carolina 27709-
4006, 1999.

[4] W. Ju and Y. Vardi. A hybrid high-order markov chain model
for computer intrusion detection. Technical Report 92, Na-
tional Institute for Statistical Sciences, Research Triangle
Park, North Carolina 27709-4006, 1999.

[5] T. Lane and C. E. Brodley. Temporal sequence learning and
data reduction for anomaly detection. ACM Transactions
on Information and System Security, 2(3):295–331, August
1999.

[6] V. Loeb. Spy case prompts computer search. Washington
Post, 05 March 2001, page A01.

[7] T. F. Lunt. A survey of intrusion-detection techniques. Com-
puters & Security, 12(4):405–418, June 1993.

[8] T. F. Lunt and R. Jagannathan. A prototype real-time
intrusion-detection expert system. In IEEE Symposium on
Security and Privacy, pages 59–66, Washington, DC, 1988.
IEEE Computer Society Press. 18-21 April, Oakland, Cali-
fornia.

[9] C. D. Manning and H. Schutze. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, Mas-
sachusetts, 1999. Fourth printing, 2001.

[10] A. McCallum and K. Nigam. A comparison of event mod-
els for naive bayes text classification. In Learning for Text
Categorization, pages 41–48, Menlo Park, California, 1998.
AAAI Press. Papers from the 1998 AAAI Workshop, 27
July 1998, Madison, Wisconsin: published as AAAI Tech-
nical Report WS-98-05.

[11] T. M. Mitchell. Machine Learning. McGraw-Hill, Boston,
Massachusetts, 1997.

[12] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr,
M. Theus, and Y. Vardi. Computer intrusion: Detecting mas-
querades. Statistical Science, 16(1):58–74, February 2001.

[13] M. Schonlau and M. Theus. Detecting masquerades in intru-
sion detection based on unpopular commands. Information
Processing Letters, 76(1–2):33–38, November 2000.

[14] J. Swets and R. Pickett. Evaluation of Diagnostic Systems:
Methods from Signal Detection Theory. Academic Press,
New York, 1992.

10 DSN 2002: Maxion & Townsend

