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Abstract

Recent research has studied the role of sparsity in highrdiioeal regression and
signal reconstruction, establishing theoretical limdsrecovering sparse models
from sparse data. In this paper we study a variant of thislprotwhere the
original n input variables are compressed by a random linear transtimto
m <« n examples inp dimensions, and establish conditions under which a sparse
linear model can be successfully recovered from the corsptedata. A primary
motivation for this compression procedure is to anonymtieedata and preserve
privacy by revealing little information about the originddta. We characterize
the number of random projections that are required faregularized compressed
regression to identify the nonzero coefficients in the trumdeh with probabil-
ity approaching one, a property called “sparsistence.” dditéon, we show that
¢1-regularized compressed regression asymptotically gtedis well as an or-
acle linear model, a property called “persistence.” Finalle characterize the
privacy properties of the compression procedure in infeionatheoretic terms,
establishing upper bounds on the rate of information conicated between the
compressed and uncompressed data that decay to zero.

1 Introduction

Two issues facing the use of statistical learning methodppiications arecaleandprivacy. Scale

is an issue in storing, manipulating and analyzing extrgrieeye, high dimensional data. Privacy
is, increasingly, a concern whenever large amounts of cenfiial data are manipulated within an
organization. It is often important to allow researchersamalyze data without compromising the
privacy of customers or leaking confidential informationiside the organization. In this paper we
show that sparse regression for high dimensional data caared out directly on a compressed
form of the data, in a manner that can be shown to guard priveay information theoretic sense.

The approach we develop here compresses the data by a ramd@mdr affine transformation,
reducing the number of data records exponentially, whitserving the number of original input
variables. These compressed data can then be made avéilabtatistical analyses; we focus on
the problem of sparse linear regression for high dimensidata. Informally, our theory ensures
that the relevant predictors can be learned from the corspdedata as well as they could be from
the original uncompressed data. Moreover, the actual giieds based on new examples are as
accurate as they would be had the original data been madalzeai However, the original data
are not recoverable from the compressed data, and the cesegreata effectively reveal no more
information than would be revealed by a completely new sampt the same time, the inference
algorithms run faster and require fewer resources than tnehrtarger uncompressed data would
require. The original data need not be stored; they can hefoiamed “on the fly” as they come in.



In more detail, the data are represented as<ap matrix X. Each of thep columns is an attribute,

and each of the rows is the vector of attributes for an individual record eTdata are compressed

by a random linear transformatiod —» X = ®&X, where® is a randomm x n matrix with

m < n. Itis also natural to consider a random affine transforma¥ic» X = ®X+ A, whereA

is a randonmm x p matrix. Such transformations have been called “matrix rmgskn the privacy
literature [6]. The entries ob and A are taken to be mdependent Gaussian random variables, but
other distributions are possible. We think Xfas “public,” while ® and A are private and only
needed at the time of compression. However, even wits 0 and® known, recovering< from

X requires solving a highly under-determined linear systach@mes with information theoretic
privacy guarantees, as we demonstrate.

In standard regression, a response varidbie Xs + ¢ € R" is associated with the input variables,
whereg; are independent, mean zero additive noise variables. IpeEssed regression, we assume
that the response is also compressed, resulting in thefdramsd respons¥ € R™ given byY —

Y = @Y = OXf 4+ ®¢ = Xp + €. Note that under compressiod, i € {1,...,m}, in the
transformed noisé = ®e¢ are no longer independent. In the sparse setting, the peeamhe RP

is sparse, with a relatively small numbgr= | S|y of nonzero coefficients if. The method we
focus on isf1-regularized least squares, also known as the lasso [17]st\Wdy the ability of the
compressed lasso estimator to identify the correct spatsd eelevant variables and to predict well.

We omit details and technical assumptions in the followingorems for clarity. Our first result
shows that the lasso gparsistenunder compression, meaning that the correct sparse sé¢edne
variables is identified asymptotically.

Sparsistence (Theorem 3.3): If the number of compressed exampfasatisfiesC,1s?lognps <

m < /Czn/logn, and the regularization parametey, satisfiesim — 0 and mi2,/logp —

oo, then the compressed lasso estimglgr= arg miry %HY - Xﬁ||§ + AmllBll1 is sparsistent:

P (supp(Bm) = supp(B)) — 1 asm — oo, wheresup(B) = {j : j # O}.

Our second result shows that the lass@éssistentunder compression. Roughly speaking, per-
sistence [10] means that the procedure predicts well, asumeg by the predictive risR(S) =

E (Y —pT7 X)2, whereX e RP is a new input vector and is the associated response. Persistence is
a weaker condition than sparsistency, and in particulas do€assume that the true model is linear.
Persistence (Theorem 4. 1) Given a sequence of sets of estimatBrsn C RP such thalBn m=

{8 1By < Ln,m} with log?(np) < m < n, the sequence of compressed lasso estlmﬁtp,{.s_

arg m’qw”lSLn.m Iy — X[;’||2 is persistent with the predictive risR(f) = (Y - BT ) over

uncompressed data with respecBgm, meaning thaR(fnm) — inf) Bli<Lom R(B) N 0, as
n — oo, in casel.nm = o (m/ log(np))Y/4.

Our third result analyzes the privacy properties of comgedsegression. We evaluate privacy in
information theoretic terms by bounding the average minfarmation | (X; X)/np per matrix
entry in the original data matriX, which can be viewed as a communication rate. Bounding this
mutual information is intimately connected with the prahlef computing the channel capacity of
certain multiple-antenna wireless communication systdrds

Information Resistence (Propositions 5.1 and 5.2): The rate at which information abodt is
revealed by the compressed détasatisfiesrnm = sup {3:X) X) = O(M — 0, where the
supremum is over distributions on the original dAta

As summarized by these results, compressed regressiorrasticpl procedure for sparse learning
in high dimensional data that has provably good propertamnections with related literature are
briefly reviewed in Section 2. Analyses of sparsistencesipmce and privacy properties appear in
Section 3-5. Simulations for sparsistence and persistaitte compressed lasso are presented in
Section 6. The proofs are included in the full version of theqr, available it t p: / / ar xi v.

or g/ abs/ 0706. 0534.



2 Background and Related Work

In this section we briefly review related work in high dimensl statistical inference, compressed
sensing, and privacy, to place our work in context.

Sparse RegressionAn estimator that has received much attention in the redtarature is the
lassopn [17], defined ag, = arg min% Y — Xﬂ||§+/1n I 81l1, wherel, is a regularization param-
eter. In [14] it was shown that the lasso is consistent in fgh Himensional setting under certain
assumptions. Sparsistency proofs for high dimensionablpnas have appeared recently in [20]
and [19]. The results and method of analysis of WainwrigB{,[tvhere X comes from a Gaussian
ensemble and; is i.i.d. Gaussian, are particularly relevant to the curpaper. We describe this
Gaussian Ensemble result, and compare our results to itagtioBe 3, 6.Given that under com-
pression, the noisé = ®c¢ is not i.i.d, one cannot simply apply this result to the coessed case.
Persistence for the lasso was first defined and studied byn&hresin and Ritov in [10]; we review
their result in Section 4.

Compressed SensingCompressed regression has close connections to, and diaivation from
compressed sensing [4, 2]. However, in a sense, our mativagi the opposite of compressed
sensing. While compressed sensing{ddllows a spars& to be reconstructed from a small number
of random measurements, our goal is to reconstruct a spanstdn of X. Indeed, from the point

of view of privacy, approximately reconstructir¥, which compressed sensing shows is possible
if X is sparse, should be viewed as undesirable; we return tqthiig in Section??. Several
authors have considered variations on compressed sermirggatistical signal processing tasks
[5, 11]. They focus on certain hypothesis testing problendeun sparse random measurements, and
a generalization to classification of a signal into two or endiasses. Here one obseryes- @x,
wherey € R™, x € R" and® is a known random measurement matrix. The problem is totselec
between the hypothesé : y = (s + ¢). The proofs use concentration properties of random
projection, which underlie the celebrated Johnson-Listtaniss lemma. The compressed regression
problem we introduce can be considered as a more challestatigtical inference task, where the
problem is to select from an exponentially large set of lin@@dels, each with a certain set of
relevant variables with unknown parameters, or to prediatvall as the best linear model in some
class.

Privacy. Research on privacy in statistical data analysis has a lsbgria, going back at least to [3].
We refer to [6] for discussion and further pointers into fherature; recent work includes [16]. The
work of [12] is closely related to our work at a high level, ivat it considers low rank random linear
transformations of either the row space or column spacesaldtaX. The authors note the Johnson-
Lindenstrauss lemma, and argue heuristically that datingnjprocedures that exploit correlations
or pairwise distances in the data are just as effective uragelom projection. The privacy analysis
is restricted to observing that recoverikgfrom X requires solving an under-determined linear
system. We are not aware of previous work that analyzes thagstic properties of a statistical
estimator under random projection in the high dimensioedtirsy, giving information-theoretic
guarantees, although an information-theoretic quantifineof privacy was proposed in [1]. We
cast privacy in terms of the rate of information communidatboutX throughX, maximizing over
all distributions onX, and identify this with the problem of bounding the Shannapacity of a
multi-antenna wireless channel, as modeled in [13]. Andllis important to mention the active
area of cryptographic approaches to privacy from the thsalecomputer science community, for
instance [9, 7]; however, this line of work is quite diffetérom our approach.

3 Compressed Regression is Sparsistent

In the standard settingg is an x p matrix, Y = Xf + € is a vector of noisy observations under
a linear model, angb is considered to be a constant. In the high-dimensionahgette allow p to
grow withn. The lasso refers to the followingP;) min |Y — Xﬁ||§ suchthat |f]]1 < L. In

Lagrangian form, this becomeéP,) min %HY — Xﬁ||§ + ZnlIBll1. For an appropriate choice of
the regularization parametér= A(Y, L), the solutions of these two problems coincide.

In compressed regression we project each colifpre R" of X to a subspace ah dimensions,
using anm x n random projection matrix. Let X = ®X be the compressed design matrix, and



let Y = @Y be the compressed response. Thus, the transformed f1s@0 Ionger ii.d.. The
compressed lasso is the following optimization problemYfe= ®X8 + ®¢ = ®X + €, with Qn
being the set of optimal solutions:

~ . 1 ~ -~ ~ 1 o~ -
(@) (P2)min 2—||Y—Xﬂ||%+/1m||ﬁ||l, (b) Qm=argmin ——[IY — XBlI5+ mlBl1. (1)
m BeRP 2m

Although sparsistency is the primary goal in selecting thieect variables, our analysis establishes
conditions for the stronger property of sign consistency:

DefiQition 3.1 (Sign _Consistency)A set of estimator€2, is sign consistenwith the truep if
P (3Bn € Qn S.t.5916Bn) = sgr(B)) — 1 asn — oo, where sgf) is given by sgix) = 1,0, and
—1forx >, =, or < O respectively. As a shorthand, denote the event that a sigsistent solution

exists withe (sgr(/)’n = sgr(p*)) := {3B e Qn such that sgiB) = sgr(p*)}.

Clearly, if a set of estimators is sign consistent then iparsistent.

All recent work establishing results on sparsity recovesguanes some form d@ficoherence condi-
tion on the data matrix. To formulate such a condition, it is convenient to introglan additional
piece of notation. LeS = {j : fj # 0} be the set of relevant variables and®t= {1,..., p} \ S

be the set of irrelevant variables. Th&g and Xsc denote the corresponding sets of columns of the
matrix X. We will impose the following incoherence condition; reldtconditions are used by [18]
in a deterministic setting. LetA||coc = max Z, _1 |Aij| denote the matrixo-norm.

Definition 3.2. (S Incoherence)Let X be ann x p matrix and letS c {1, ..., p} be nonempty.
We say thaX is S-incoherentn case
%x;xSHm +[ixIxs— 1y Hoo <1—y, forsomeye (0,1]. )

Although not explicitly required, we only apply this defioih to X such that columns oX satisfy
X ||§ = 0@(n),Vj €{1,..., p}. We can now state our main result on sparsistency.

Theorem 3.3. Suppose that, before compressidn,= Xp* + €, where each column oX is
normalized to havé,-normn, ande ~ N(O, 021n). Assume thaiX is S-incoherent, wher& =
supp(f*), and defins = | S| andpm = minjes|f*|. We observe, after compressioh= Xf* +€,

whereY = @Y, X = ®X, ande = ®¢, whered;j; ~ N(0, 1). Let B € Qn as in (b). If

16C18%2  4Css n
| 21 log 2 1 3
( pe + . )(np+ ogn+log2(s+1)) <m < ‘/16logn 3)
with C1 = % ~ 2.5044andC, = +/8e ~ 7.6885 andin — O satisfies

292
mn<in 1 /Iogs
a) ———— —> oo, and (b) — + Am
@) log(p—9) ®) pm[ m

Then the compressed lasso is sparsisi@(:ﬁupp([?m) = sup;:(ﬁ)) — 1 asm — oo.

IXg)~ H ] Y)Y (4)

4 Compressed Regression is Persistent

Persistence (Greenshtein and Ritov [10]) is a weaker donditan sparsistency. In particular, the
assumption thak(Y|X) = T X is dropped. Roughly speaking, persistence implies thatesplure
predicts well. We review the arguments in [10] first; we thdapat it to the compressed case.

Uncompressed PersistenceConsider a new paitX, Y) and supfose we want to predicfrom X.
The predictive risk using predict@’ X is R(8) = E(Y — g7 X)“. Note that this is a well-defined
quantity even though we do not assume @&t |X) = T X. It is convenient to rewrite the risk in
the following way: defineQ = (Y, X, ..., Xp)andy = (=1, 1, ..., ﬁp)T, then

R(8) =y "Xy, wherez = E(QQ"). (5)



LetQ = (QI Q) --- QNT, whereQ = (¥, Xui, ..., Xpi)T ~ Q,Vi = 1,...,narei.i.d. random
vectors and the training error is

Ra() = = D 0% = X[ )% =7 TE", where 2" = ~QTQ. (6)
i=1

GivenB, = { : |Bll1 < Ln} for Ln = o((n/logn)¥/4), we define the oracle predictgt , =
arg min g, -, R(8), and the uncompressed lasso estimﬁmt arg miny g, <, ﬁn(ﬂ).

Assumption 1. Suppose that, for eaghandk, E (|Z|q) < q!M9=2s/2, for everyq > 2 and some
constantdM ands, whereZ = Q; Qx — E(Q; Qk), whereQj, Qk denote elements @d.

Following arguments in [10], it can be shown that under Agstion 1 and given a sequence of sets
of estimatorsB, = {# : ||fll1 < Ln} for Lp = o((n/log n)1/4), the sequence of uncompressed

lasso estimatorg, = argming g, Ra(B) is persistent, i.e R(Bn) — R(Bu.n) £o.

Compressed Persistence. For the compressed case, again we want to pre@dcty), but
now the estimatop, m is based on the lasso from the compressed data ofrsizelLet y =

(=1, p1,...,Bp)T as before and we replaé® with
—~~ —_ o~ 1
Rom(8) =y 7™My, wherei™" = —QToT0Q. 7
n

. . 1/4
Given compressed sample sizg, let Bom = {8 : |8ll1 < Ln.m}, whereLpm = 0 (mg;(“—nfh])

We define the compressed oracle predigion m = argming. z. - . R(#) and the compressed
lasso estimato,E’\n,m = arg minﬂ: IBl1<Lnm ﬁn,m(ﬁ).

Theorem 4.1. Under Assumptiori, we further assume that there exists a constént- 0 such
thatIE(QZ) < M1, V|, whereQ; denotes thg'" element ofQ. For any sequencn m C RP with
Iog (npn) < my < n, whereBn m consists of all coefficient vecto;ts such that| gl < Ln m =

((mn /log(npn))Y 4) the sequence of compressed lasso procewdr.eﬁ arg m’”,gesn " Rn m(,b’)

is persistentR(Bn.m) — R(Bx.n.m) 2o, whenp, = O (" ) forc < 1/2.

The main difference between the sequence of compressea datimators and the original un-
compressed sequence is timatnd my together define the sequence of estimators for the com-
pressed data. Hemm, is allowed to grow fromQ(log?(np)) to n; hence for each fixed,

{ﬁn m, ¥my such that log(np) < m, < n} defines a subsequence of estimators. In Section 6 we
illustrate the compressed lasso persistency via simulatio compare the empirical risks with the
oracle risks on such a subsequence for a fixed

5 Information Theoretic Analysis of Privacy

Next we derive bounds on the rate at which the compressedXa¢aeal information about the
uncompressed dafd. Our general approach is to consider the mapping> ®X + A as a noisy
communication channel, where the channel is charactebyedultiplicative noised and additive
noise A. Since the number of symbols K is np we normalize by this effective block length to

define the information rate, m per symbol aspm = SUPy(x) %l Thus, we seek bounds on
the capacity of this channel. A privacy guarantee is giveteims of bounds on the ratgm — 0
decaying to zero. Intuitively, if the mutual informatiortiséies! (X; X) = H(X) — H(X | X) ~ 0
then the compressed daXareveal, on average, no more information about the origintd § than
could be obtained from an independent sample.

The underlying channel is equivalent to the multiple anéemodel for wireless communication
[13], where there are transmitter andn receiver antennas in a Raleigh flat-fading environment.
The propagation coefficients between pairs of transmitidrraceiver antennas are modeled by the
matrix entriesd;; ; they remain constant for a coherence intervapaime periods. Computing the



channel capacity over multiple intervals requires optatian of the joint density opn transmitted
signals, the problem studied in [13]. Formally, the chansehodeled a¥Z = ®X + y A, where

y > 0, Ajj ~ N(0,1), ®;j ~ N(0,1/n) and%Z{‘zlE[Xﬁ-] < P, where the latter is a power
constraint.

Theorem 5.1. Suppose th&[sz] < P and the compressed data are formed’by: ®X + y A,
where® ismx n with independent entrieBjj ~ N(0, 1/n) andA ismx p with independent entries

Aij ~ N(0, 1). Then the information rae, m satisfies n.m = SUupyx, |(;<';)z) < Miog (1 + y—Pz) .

This result is implicitly contained in [13]. When = 0, or equivalentlyy = 0, which is the
case assumed in our sparsistence and persistence rdmilibove analysis yields the trivial bound
rn,m < oco. We thus derive a separate bound for this case; howeveresiudting asymptotic order
of the information rate is the same.

Theorem 5.2, Suppose thaIE[XjZ] < P and the compressed data are formedZbs ® X, where
® js m x n with independent entrie®i; ~ N(0, 1/n). Then the information rate, m satisfies
Fom = SUPx) |(an22 < Mlog(2zeP).

Under our sparsistency lower bound iom the above upper bounds argm = O(log(np)/n). We
note that these bounds may not be the best possible sincareyptained assuming knowledge of
the compression matrig, when in fact the privacy protocol requires tldatand A are not public.

6 Experiments

In this section, we report results of simulations desigoeatidate the theoretical analysis presented
in previous sections. We first present results that show thepcessed lasso is comparable to the
uncompressed lasso in recovering the sparsity patterredful linear model. We then show results
on persistence that are in close agreement with the thearetisults of Section 4. We only include
Figures 1-2 here; additional plots are included in the felbkion.

Sparsistency. Here we run simulations to compare the compressed lassotlvdgthincompressed
lasso in terms of the probability of success in recoverimgsiparsity pattern gf*. We use random
matrices for bothX and®, and reproduce the experimental conditions of [19]. A degigrameter

is the compression factor f= % which indicates how much the original data are compressed.
The results show that when the compression faétds large enough, the thresholding behaviors
as specified in (8) and (9) for the uncompressed lasso caswytovthe compressed lasso, when
X is drawn from a Gaussian ensemble. In general, the compressitor f is well below the
requirement that we have in Theorem 3.3 in cXds deterministic. In more detail, we consider the
Gaussian ensemble for the projection ma®ixvhered; j ~ N(0, 1/n) are independent. The noise
ise ~ N(0, 62), wheres? = 1. We consider Gaussian ensembles for the design metith both
diagonal and Toeplitz covariance. In the Toeplitz casectvariance is given by (p)i,j = pli—it;

we usep = 0.1. [19] shows that wheiX comes from a Gaussian ensemble under these conditions,
there exist fixed constanfs andd, such that for any > 0 ands = supp(p), if

n> 26, +v)slog(p—s)+s+1, (8)
then the lasso identifies true variables with probabilitgrapching one. Conversely, if
n <20 —v)slog(p—s)+s+1, 9)

then the probability of recovering the true variables ushmlasso approaches zero. In the follow-
ing simulations, we carry out the lasso using procedwaes (Y, X) that implements the LARS
algorithm of [8] to calculate the full regularization path-or the uncompressed case, we run
I ar s(Y, X) such thaty = Xg* + ¢, and for the compressed case we tar s (@Y, ®X) such
that®Y = @ XB* + de. The regularization parameteris, = ¢,/(log(p — s) logs)/m. The results
show that the behavior under compression is close to thenmassed case.

Persistence.Here we solve the followingf1-constrained optimization problenp =
argmin g, <, IY — XBIl, directly, based on algorithms described by [15]. We coisttze solu-

tion to lie in the ballB, = {||]l; < Ln}, whereL, = n'/4/,/logn. By [10], the uncompressed lasso
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Figure 1: Plots of the number of samples versus the probgabﬂisuccess for recovering sgfi).
Each point on a curve for a particul@ror m, wherem = 25 <slog(p — s) + s+ 1, is an average
over 200 trials; for each trial, we randomly draé¥y p, ®mxn, ande € R". The covarianc& =
1E (XTX) and mode)s* are fixed across all curves in the plot. The sparsity leva(j = 0.2p*/2.
The four sets of curves in the left plot are for = 128 256 512 and 1024, with dashed lines
markingm for § = 1 ands = 2, 3,5 and 6 respectively. In the plots on the right, each curve has
a compression factof € {5, 10, 20, 40, 80, 120} for the compressed lasso, thus= fm; dashed
lines markd = 1. ForX = |, 6, = 6, = 1, while forX = T(0.1), 6, ~ 1.84 andd, ~ 0.46 [19],
for the uncompressed lasso in (8) and in (9).
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Figure 2: Risk versus compressed dimension. Wa fx 9000 andp = 128, and se$(p) = 3 and
L, = 2.6874. The model i$* = (=09, -1.7,1.1,1.3,-05,2,-1.7,-1.3,-0.9,0,...,0)T so
that|| g |, > Ln andp ¢ By, and the uncompressed oracle predictive risRis: 9.81. For each
value ofm, a data point corresponds to the mean empirical risk, wiiatefined in (7), over 100
trials, and each vertical bar shows one standard deviakioneach trial, we randomly dran p
with i.i.d. row vectorsx; ~ N(0, T(0.1)), andY = Xp* + €.



estimator,?n is persistent oveB;,. For the compressed lasso, giveand p,, and a varying com-
pressed sample size we take the balBy m = {4 : |f]l1 < Ln.m} whereLnm = m'/4/,/log(npn).

The compressed lasso estimaﬁagm for log?(npy) < m < n, is persistent oveBy m by Theo-
rem 4.1. The simulations confirm this behavior.
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