
DisLog: A Separation Logic for Disentanglement

ALEXANDRE MOINE, Inria, France
SAMWESTRICK, Carnegie Mellon University, USA

STEPHANIE BALZER, Carnegie Mellon University, USA

Disentanglement is a run-time property of parallel programs that facilitates task-local reasoning about

the memory footprint of parallel tasks. In particular, it ensures that a task does not access any memory

locations allocated by another concurrently executing task. Disentanglement can be exploited, for example,

to implement a high-performance parallel memory manager, such as in the MPL (MaPLe) compiler for

Parallel ML. Prior research on disentanglement has focused on the design of optimizations, either trusting

the programmer to provide a disentangled program or relying on runtime instrumentation for detecting and

managing entanglement. This paper provides the first static approach to verify that a program is disentangled: it

contributes DisLog, a concurrent separation logic for disentanglement. DisLog enriches concurrent separation

logic with the notions necessary for reasoning about the fork-join structure of parallel programs, allowing the

verification that memory accesses are effectively disentangled. A large class of programs, including race-free

programs, exhibit memory access patterns that are disentangled "by construction". To reason about these

patterns, the paper distills from DisLog an almost standard concurrent separation logic, called DisLog+. In this

high-level logic, no specific reasoning about memory accesses is needed: functional correctness proofs entail

disentanglement. The paper illustrates the use of DisLog and DisLog+ on a range of case studies, including

two different implementations of parallel deduplication via concurrent hashing. All our results are mechanized

in the Coq proof assistant using Iris.

CCS Concepts: • Software and its engineering → Parallel programming languages; • Theory of
computation→ Separation logic; Program verification.

Additional Key Words and Phrases: disentanglement, parallelism, separation logic

ACM Reference Format:
Alexandre Moine, Sam Westrick, and Stephanie Balzer. 2024. DisLog: A Separation Logic for Disentanglement.

Proc. ACM Program. Lang. 8, POPL, Article 11 (January 2024), 30 pages. https://doi.org/10.1145/3632853

1 INTRODUCTION
Recent work has shown that parallel functional programming can deliver the same efficiency and

scalability as imperative and procedural approaches. The key to this line of work is a memory

property known as disentanglement [Arora et al. 2021, 2023; Guatto et al. 2018; Raghunathan et al.

2016; Westrick et al. 2022, 2020], which restricts parallel tasks to access data that was allocated

“before” the task executed. This restriction enables tasks to allocate and garbage-collect memory

locally and independently—that is, without synchronizing with other parallel tasks. Utilizing

disentanglement, Arora et al. [2023] developed a provably efficient memory manager for functional

programs which also provides full support for effects. All of this work is implemented in MPL

Authors’ addresses: Alexandre Moine, alexandre.moine@inria.fr, Inria, Paris, France; Sam Westrick, swestric@cs.cmu.edu,

Carnegie Mellon University, Pittsburgh, USA; Stephanie Balzer, balzers@cs.cmu.edu, Carnegie Mellon University, Pittsburgh,

USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART11

https://doi.org/10.1145/3632853

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-2169-1977
HTTPS://ORCID.ORG/0000-0003-2848-9808
HTTPS://ORCID.ORG/0000-0002-8347-3529
https://doi.org/10.1145/3632853
https://orcid.org/0000-0002-2169-1977
https://orcid.org/0000-0003-2848-9808
https://orcid.org/0000-0002-8347-3529
https://doi.org/10.1145/3632853

11:2 Alexandre Moine, Sam Westrick, and Stephanie Balzer

(“maple”), an open-source
1
compiler for Parallel ML. In practice, MPL has been shown to be fast,

scalable, and competitive with lower-level and imperative language implementations.

This line of work relies on disentanglement to ensure efficiency and scalability, and leaves it up to

the programmer to reason about disentanglement and its performance impact. For purely functional

code, reasoning about disentanglement is not an issue: purely functional programs are guaranteed

to be disentangled, by construction, due to the lack of mutation (in-place updates). Programmers can

also use pure libraries that are implemented under-the-hood with in-place updates for efficiency. For

example, common parallel operations (such as map, reduce, scan, etc.) can be implemented efficiently

with mutable arrays, hidden behind a pure interface, and can then be used to write disentangled

code. However, in this example, the developers of high-performance libraries still need to reason

carefully about disentanglement. More generally, whenever in-place updates and other low-level

optimizations are necessary for efficiency, disentanglement needs to be taken into account.

In the context of in-place updates and other memory effects, reasoning about disentanglement

is subtle. Programmers may wish to use concurrent data structures (for example, lock-free hash

tables) to improve efficiency. Such data structures can be made disentangled [Westrick 2022], but

reasoning about their correctness is challenging, even for experts. If disentanglement is violated,

there can be significant consequences for performance, in terms of increased time and space

usage [Arora et al. 2023]. In this sense, disentanglement can be considered a “safety” condition for

performance-oriented code.

Therefore, we shift our attention to static verification of disentanglement. Our goal is to support

reasoning about both high-level and low-level code, including atomic in-place updates and concur-

rent data structures, which can require identifying intricate invariants. In this setting, concurrent

separation logic [Brookes 2007; O’Hearn 2007] and its modern variants [Jung et al. 2018; Nanevski

et al. 2014] have proven to be successful vehicles for verifying safety and correctness properties of

programs in the presence of challenging concurrent features. An intriguing question is whether or

not separation logic can be used to prove disentanglement, which we address in this paper.

To verify disentanglement statically, we develop DisLog, the first program logic for proving

disentanglement, and formally prove its soundness. At a high level, DisLog is a concurrent separation

logic built on Iris [Jung et al. 2018] endowed with assertions which describe dependencies between

parallel tasks and permissions to make disentangled loads from the heap. This approach makes the

logic powerful enough to verify disentanglement even in complex and subtle situations, such as

programs with lock-free data structures and algorithms using atomic in-place reads and writes.

Going further, on top of DisLog, we develop DisLog+, a standard concurrent separation logic

which hides the details of disentanglement, allowing for standard separation logic proofs while also

getting proofs of disentanglement for free. DisLog+ is applicable for a wide variety of programs,

including purely functional programs, race-free programs, and even programs that have “benign”

memory races (for example, write-write races). Importantly, DisLog and DisLog+ work seamlessly

together, allowing for DisLog+ proofs to drop into the more powerful DisLog where needed (for

example, for verifying non-pure segments of mostly pure programs), and otherwise stay at a high

level of abstraction.

To evaluate DisLog and DisLog+, we consider several case studies, including key parallel primi-

tives, as well as sophisticated parallel algorithms involving concurrent data structures. In all cases,

we prove that the programs are disentangled. Our experience has shown that, using the logics

developed in this paper, the effort of proving disentanglement is typically small. Furthermore,

when a formal proof of functional correctness is desired, using DisLog+ often yields a proof of

disentanglement for free.

1
https://github.com/mpllang/mpl

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

https://github.com/mpllang/mpl

DisLog: A Separation Logic for Disentanglement 11:3

Our contributions include:

• DisLog, the first program logic to verify that a program is disentangled (§4). It employs the

notion of timestamps to reason about the nested fork-join parallelism of a program and

introduces a novel clock assertion to prove that memory accesses do not cause entanglement.

• DisLog+, a high-level logic built on top of DisLog that shields the user from timestamp

management (§ 5). As a result, race-free programs can be verified in DisLog+ with the

standard reasoning rules of concurrent separation logic.

• Two mechanisms allowing to reason about benign races in DisLog+, including fractional

write-only assertions for write-write races (§5.4), and a set of rules for read-write races on

pre-allocated data (§5.5).

• A range of case studies (§6), including multiple parallel primitives, parallel lookup in a lazy

collection, and two examples of deduplication via concurrent hashing.

• A formalization in the Coq proof assistant using Iris [Jung et al. 2018]. All our results are

mechanized (§7) in Coq, including: the two program logics, their soundness theorems, and

the case studies [Moine et al. 2023b].

2 KEY IDEAS
2.1 Background

Nested Fork-Join Parallelism. We consider programs written using a single parallel primitive: the

parallel tuple 𝑒1 | | 𝑒2. It executes 𝑒1 and 𝑒2 in parallel, and returns their results as a pair. Here, two

tasks are spawned to execute expressions 𝑒1 and 𝑒2 in parallel. Parallel tuples may be arbitrarily

nested. For example, the expression 𝑒1 might itself execute another parallel tuple. This leads to a

dynamic nesting structure of tasks called the task tree, where the leaves are tasks that may take

steps in parallel. In an operational semantics, the task tree is maintained by two distinguished

reductions: a fork, where two tasks are spawned to execute 𝑒1 and 𝑒2 in parallel, and a join, when
the tasks complete and return their results as a pair. Parallel tasks can be understood as concurrent

threads with a structure: if they terminate, the two tasks forked by a parallel pair ultimately join.

This style of programming is known as nested fork-join parallelism, or sometimes nested task
parallelism. The arbitrary nesting of parallel tasks allows programmers to write parallel recursive

divide-and-conquer style algorithms. For example, a “parallel for-loop” can be implemented by

splitting the index range in half and then recursively executing the two halves in parallel (§6.2).

Acquiring locations. During execution, each task may allocate locations in memory and per-

form memory effects such as reads and writes on these locations, including atomic compare-and-

swaps (CAS). The reads in particular are important for the disentanglement property we consider.

In our operational semantics (§3.3), a read occurs in three distinct cases: (1) a memory load inside

an array reads the indexed value, (2) a closure call reads the environment of the closure, and (3) a

CAS reads the scrutinized value. When a task performs a read, if the result of that read is a location,

we say that the task acquires the resulting location.

Disentanglement. Disentanglement limits communication between concurrent tasks by restricting

which locations may be acquired: each task may always acquire its own allocations, and additionally,

each task may acquire any location allocated “before” the task began. The notion of “before” relates

to the dependencies induced by forks and joins. A forking task comes before the two tasks it forks,

and conversely, two joining tasks come before their join point. If a task ever acquires a location

allocated by some other task that is executing concurrently, this constitutes entanglement. The
logics developed in this paper allow proving that a program is disentangled, i.e., that in
every possible execution of the program, entanglement will never occur.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:4 Alexandre Moine, Sam Westrick, and Stephanie Balzer

1 fun scratch () =

2 let
3 val shared = newScratchpad()
4 val {tryLock, releaseLock} =

5 newLock()
6 fun myTask() =

7 if tryLock() then
8 (doWork shared;

9 clearScratchpad shared;

10 releaseLock())
11 else
12 let val 𝑥 = newScratchpad()
13 in doWork 𝑥

14 in
15 // two calls in parallel (could be
16 // generalized to many calls if desired)
17 (myTask() ∥ myTask())

(a) The scratch function calls doWork multi-
ple times in parallel, and provides a suitable
scratchpad for each call.

18 fun newLock () =

19 let val 𝑟 = ref false
20 in { tryLock = fn () ⇒ CAS(𝑟,false,true),
21 releaseLock = fn () ⇒ 𝑟 := false }

22

23 type elem = ...

24 val defaultElem : elem = ...

25

26 type scratchpad = elem array
27 fun newScratchpad () =

28 Array.allocate (𝑁, defaultElem)
29 fun clearScratchpad scratch =

30 for 𝑖 from 0 to 𝑁 − 1 do
31 scratch[𝑖] := defaultElem

32

33 fun doWork scratchpad =

34 // ... read and write to scratchpad

(b) Auxiliary code for scratch, including locks, scratch-
pads, and a function doWork that requires a scratchpad
as temporary space.

Fig. 1. The scratch example used to illustrate our approach.

Atomic operations and determinacy races. A key feature of disentanglement is that it allows for

non-deterministic interleaving of atomic in-place operations such as atomic loads, stores, and CASes.

Such operations are commonly used under-the-hood in the implementation of high-performance

libraries (for example, in the implementation of a high-throughput lock-free hash table). Proving

disentanglement in this setting requires reasoning carefully about atomic operations that can

acquire locations.

In other words, one of the challenges is to prove that entanglement is impossible whenever there

is a determinacy race [Feng and Leiserson 1999]. Concretely, a determinacy race occurs whenever
two atomic in-place operations are performed concurrently at the same location, and at least one

of the operations modifies the location. For example, an atomic load could race with an atomic

store, or an atomic load could race with a CAS, or two CASes could race with each other, etc. As

the name suggests, determinacy races can lead to non-deterministic execution, which we allow.

In this paper, we permit only atomic (i.e., properly synchronized) in-place operations, and

therefore avoid all data races [Adve 2010; Boehm 2011; Dolan et al. 2018] by construction. For

simplicity, we assume a sequentially consistent memory model. Because of the lack of data races,

throughout the paper, we use the term race to refer only to determinacy races.

2.2 Running Example
To illustrate the ideas in the paper, we use a running example, called scratch, shown in Fig. 1.

This function is non-deterministic due to a determinacy race, yet is disentangled. At a high level,

scratch calls the function doWork two times in parallel. Each call to doWork uses an array (called

a “scratchpad”) as temporary space. Note that it would be safe to allocate a fresh scratchpad for

every call to doWork. The goal of the example is to optimize performance by reducing the number of

scratchpads that are allocated. (The example only calls doWork twice, but this could be generalized

to any number of calls in parallel, which would make the optimization more significant.)

To reduce the number of allocated scratchpads, scratch implements a simple strategy. First, a

shared scratchpad is allocated together with a lock to protect it (Fig. 1, lines 3–5). Then, before

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:5

shared = newScratchpad()

newLock()

tryLock() // true

doWork shared

tryLock() // false

x = newScratchpad()

clearScratchpad shared

releaseLock()

doWork x

t1

t3

t4

t2
t1 t2 t1 t3

…

defaultElem = …

t1defaultElem

shared ↦ [defaultElem,…]

t3defaultElem

Fig. 2. One possible execution of the example of Fig. 1

each call to doWork, scratch will attempt to claim access to the shared scratchpad by calling tryLock

(line 7). If this succeeds, then doWork may use the shared scratchpad (line 8); otherwise, scratch

falls back on allocating a fresh scratchpad (line 12). Whenever a call to doWork is finished using

the shared scratchpad, the shared scratchpad is cleared (line 9), before finally releasing the lock

(line 10). In this way, scratch reduces the number of allocations by reusing the shared scratchpad as

much as possible. In particular, if scratch is executed using only a single processor, then every call

to doWork will be able to use the shared scratchpad, and no additional scratchpads will be allocated.

The auxiliary code for the example is shown in Fig. 1b, which defines scratchpads and locks. The

details of doWork are not important as long as it performs reads and writes on the scratchpad. Locks

are implemented by a pair of closures with a mutable boolean, indicating whether the lock has

been locked. The closure tryLock is implemented using an atomic compare-and-swap (CAS) which

returns true if the CAS succeeds, and false otherwise.

Disentanglement in scratch. Proving that the scratch example is disentangled is subtle. In par-

ticular, doWork may read or write to the scratchpad, and we need to show that reading from the

scratchpadwill never return a value allocated by a concurrent task. Thankfully, the scratch function

guarantees a strong precondition: when doWork begins, the argument scratchpad will contain only

the value defaultElem, which is allocated before every call to doWork, and therefore is safe with

respect to disentanglement.

The precondition on doWork is easily satisfied on line 13, because the scratchpad is freshly

allocated. Showing that the precondition is also satisfied on line 8 is more subtle, because there

is an invariant on the shared scratchpad which is determined by the state of the lock. Informally,

the invariant is: “while the lock is not held, for every 𝑖 , shared[i] = defaultElem.” This invariant is

re-established by calling clearScratchpad (line 9) before releasing the lock. Note that removing this

call to clearScratchpad may lead to an entangled state. Indeed, after a call to doWork, the scratchpad

may contain locally-allocated data, which is hence available for the other task.

2.3 Disentanglement: Timestamps, Reads, and How to Reason about Them
Partial orders on tasks through timestamps. In Sec. 3, we present a semantics that facilitates

reasoning about disentanglement. To this end, we enrich the semantics with the notion of a

timestamp, a unique identifier for each parallel task. We then assign every heap-allocated location

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:6 Alexandre Moine, Sam Westrick, and Stephanie Balzer

a timestamp, marking when (i.e., by which task) the location was allocated, and restrict every task

to only depend on locations allocated at timestamps that come before their timestamp. Timestamps

form a partial order which respects the dependencies induced by forks and joins. When a task forks,

the semantics generates two timestamps (one for each task) that are preceded by the timestamp

of the forking task. Conversely, when two tasks join, the semantics generates a timestamp that

is preceded by both timestamps of the two joining tasks. Forks and joins are the only operations

extending the partial order of timestamps. Tasks otherwise step independently.

Fig. 2 visualizes one possible execution of the running example. Each shaded oval represents a

task, and is labeled by its timestamp 𝑡𝑖 . The framed content is not relevant yet. Execution begins on

a task 𝑡1, which allocates the scratchpad and the lock. Then, a fork occurs, generating two tasks 𝑡2
and 𝑡3. The task 𝑡2 fails to win the lock, whereas the task 𝑡3 succeeds. After completing, the two

tasks join, forming a new task 𝑡4.

A program logic for timestamp orders. In Sec. 4, we develop a program logic, DisLog, that incor-

porates timestamps. Every expression in DisLog is associated with a current timestamp and an end
timestamp. The program logic uses a weakest precondition (WP) modality which takes the form

wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . Φ}
asserting that the expression 𝑒 is currently evaluated by a task at timestamp 𝑡 , that 𝑒 is disentangled

and can reduce, and if its reduction terminates, then it does so at end timestamp 𝑡 ′, yielding a

value 𝑣 such that Φ holds. The partial order of timestamps is encoded into the assertions of the logic,

via the precedence assertion 𝑡 ≼ 𝑡 ′. The precedence assertion is persistent and hence duplicable at

will. This assertion describes the parallel structure of the program being verified.

Examples of the precedence assertion 𝑡 ≼ 𝑡 ′ appear in the framed boxes of Fig. 2. To reason about

the task 𝑡2, the user gets an assertion 𝑡1 ≼ 𝑡2. Dually, the user gets an assertion 𝑡1 ≼ 𝑡3 to reason

about the task 𝑡3. At the join point 𝑡4, the user gets the assertions 𝑡2 ≼ 𝑡4 and 𝑡3 ≼ 𝑡4. Making use of

the fact the ≼ is a pre-order, the user can use transitivity and deduce for example that 𝑡1 ≼ 𝑡4.

Preserving disentanglement. Acquiring a memory location ℓ from the heap puts disentanglement

at risk. Disentanglement is preserved if and only if ℓ was allocated at some timestamp preceding the

timestamp 𝑡 of the acquiring task—in that case, we say that ℓ was allocated before 𝑡 . To represent

such a requirement, we introduce the clock assertion, written ℓ � 𝑡 , which precisely asserts that

the ℓ was allocated before 𝑡 . This assertion appears for example in the precondition of DisLog’s

Load rule (§4.3). To illustrate this rule, we show a specialized instantiation allowing to load the

element at index 0 in the shared scratchpad, here named ℓ . The premises are implicitly separated

by the separating conjunction ∗.

SpecializedLoad

shared ↦→ [ℓ ; ...] ℓ � 𝑡

wp ⟨𝑡, shared[0]⟩ {_ 𝑡 ′ 𝑣 . ⌜𝑡 ′ = 𝑡 ∧ 𝑣 = ℓ⌝ ∗ shared ↦→ [ℓ ; ...] }
The SpecializedLoad rule first requires, as in standard separation logic, ownership of the shared

location via a points-to assertion. Crucially, this rule also requires that the loaded value ℓ was

allocated before the current timestamp 𝑡 via the ℓ � 𝑡 assertion. In the postcondition of the WP, the

rule asserts that the end timestamp 𝑡 ′ is equal to the previous timestamp 𝑡 , the returned value 𝑣

is ℓ , and the user still has the points-to ownership.

The clock assertion is persistent, giving the user great flexibility. Moreover, it is monotonic with
respect to the precedence pre-order. Hence, if the user knows that the location ℓ was allocated before 𝑡
and that 𝑡 precedes 𝑡 ′ they can then deduce that ℓ was allocated before 𝑡 ′. This mechanism is

illustrated in Fig. 2. Indeed, the user can produce an assertion defaultElem� 𝑡1 upon the allocation

of defaultElem. Then, while reasoning about 𝑡3 the user can use the assertion 𝑡1 ≼ 𝑡3 to generate

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:7

a new clock assertion defaultElem� 𝑡3. As explained next, our high-level logic DisLog+ takes full

advantage of the monotonicity of the clock assertion.

2.4 Going High-Level: Simple Programs Should Have Simple Proofs
Readers familiar with proofs of realistic programs may be worried by timestamps polluting the

logic, and the additional proof burden imposed on a common rule such as Load. In practice, many

programs “don’t poke the bear” and subtle reasoning about timestamps should not be needed. For

example, Westrick et al. [2020] show that race-free programs are always disentangled, as they

prevent the communication of concurrently-allocated locations. Verifying such programs should

be as cheap as a standard separation logic proof.

In Sec. 5, we present DisLog+, a high-level separation logic where timestamps, clocks, and

precedence are confined to very few occurrences. DisLog+ allows reasoning on race-free programs

with the standard reasoning rules of concurrent separation logic. The sole difference is a restriction

on ghost state, effectively preventing races (§5.3). What is the secret of the DisLog+ logic? The key

observation we make on race-free programs is that (1) the content of a freshly allocated location is

always safe to acquire for the allocating task and (2) “being safe to acquire” is a monotonic property:
if a location is safe to acquire for a given task, it is safe to acquire for every subsequent task. As

long as a program does not write carelessly to a shared location and break monotonicity, locations

are always safe to acquire and no reasoning about timestamps is needed.

Technically, we define assertions of DisLog+ as monotonic predicates of DisLog over an ambient

timestamp, the latter being implicitly threaded through during the proof. Points-to assertions

of DisLog+ store not only ownership information but also the proof that all pointed-to locations

are safe to acquire at the ambient timestamp. Hence, DisLog+ provides a standard Load reasoning

rule. We stress that DisLog+ is a light abstraction over DisLog. At any moment during the proof,

the user of DisLog+ can fall back to DisLog for fine timestamp-related reasoning.

Our definition of DisLog+ is directly inspired by separation logics for weak-memory models:

iGPS [Kaiser et al. 2017], iRC11 [Dang et al. 2020] and Cosmo [Mével et al. 2020]. These high-level

logics are defined in terms of low-level logics by implicitly threading through a monotonic view of

the memory.

Beyond race freedom. It turns out that DisLog+ is not confined to reasoning about race-free

programs, but additionally provides two new sets of high-level reasoning rules to accommodate the

most elementary disentangled races. The first one consists of fractional write-only assertions (§5.4)
allowing the user to reason about write-write races within DisLog+. As a write-write race does not

acquire any location, such a race is always disentangled. The second one consists of a set of rules

unveiling just enough timestamps to reason about races on “obviously safe” data (§5.5). These data

include data that was allocated before the beginning of the parallel phase, and unboxed data—that

is, data that is not allocated in the heap.

The language we model supports the atomic operation compare-and-swap (CAS). A CAS is an

entanglement hazard. Indeed, a CAS reads the scrutinized value, which must be safe to acquire.

In the scratch running example (Fig. 1b), we use CAS to implement a spin-lock. Here, we exploit

unboxed data to allow parallel tasks to safely communicate via a race on shared reference 𝑟 . A “race

on unboxed data” should ring a bell: it perfectly fits in the realm of DisLog+ and its extensions. We

show in Sec. 6 how to reason about our locks and scratch entirely within the high-level DisLog+.

3 LANGUAGE AND SEMANTICS
Our language, DisLang, is an imperative lambda-calculus with fork-join parallelism. We equip Dis-

Lang with a small-step, substitution-based, call-by-value semantics, guaranteeing disentanglement.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:8 Alexandre Moine, Sam Westrick, and Stephanie Balzer

Values V 𝑣,𝑤 ::= () | 𝑏 ∈ {true, false} | 𝑖 ∈ Z | ℓ ∈ L | ˆ̀𝑓 . _®𝑥 . 𝑒 where 𝑓 𝑣 (𝑒) ⊆ ({𝑓 } ∪ ®𝑥)
Blocks 𝑟 ::= ®𝑤 | `𝑓 . _®𝑥 . 𝑒
Primitives ⊲⊳ ::= + | − | × | ÷ | mod | == | < | ≤ | > | ≥ | ∨ | ∧
Expressions 𝑒 ::= 𝑣 value

𝑥 variable
let𝑥 = 𝑒 in 𝑒 sequencing
if 𝑒 then 𝑒 else 𝑒 conditional
𝑒 ®𝑒 call
𝑒 ⊲⊳ 𝑒 primitive operation
`𝑓 . _®𝑥 . 𝑒 closure allocation

alloc 𝑒 𝑒 array allocation
𝑒 [𝑒] array load
𝑒 [𝑒]←𝑒 array store
length 𝑒 array length
𝑒 | | 𝑒 parallel tuple
CAS 𝑒 𝑒 𝑒 𝑒 compare-and-swap

Contexts 𝐾 ::= let𝑥 = □ in 𝑒 | if □ then 𝑒 else 𝑒 | alloc □ 𝑒 | alloc 𝑣 □ | length 𝑒
| □[𝑒] | 𝑣 [□] | □[𝑒]←𝑒 | 𝑣 [□]←𝑒 | 𝑣 [𝑣]←□
| □ ⊲⊳ 𝑒 | 𝑣 ⊲⊳ □ | □ ®𝑡 | 𝑣 (®𝑣 ++ □ ++ ®𝑡)
| CAS□ 𝑡 𝑡 𝑡 | CAS 𝑣 □ 𝑡 𝑡 | CAS 𝑣 𝑣 □ 𝑡 | CAS 𝑣 𝑣 𝑣 □

Fig. 3. Syntax of DisLang

3.1 Syntax
The syntax of DisLang appears in Fig. 3. A value 𝑣 ∈ V can be the unit value (), a boolean

𝑏 ∈ {true, false}, an idealized integer 𝑖 ∈ Z, a memory location ℓ ∈ L, where L is an infinite set of

locations, or a top-level function ˆ̀𝑓 . _®𝑥 . 𝑒 . A top-level function is closed in the sense that the only

variables available in the function body 𝑒 are the function’s name 𝑓 and the formal parameters ®𝑥 .
A block describes the contents of a heap cell, amounting to either an array of values, written ®𝑤 ,

or a _-abstraction `𝑓 . _®𝑥 . 𝑒 . Lambdas, as opposed to top-level functions ˆ̀𝑓 . _®𝑥 . 𝑒 , are not values.
Instead, they are compiled to heap-allocated closures [Appel 1992; Landin 1964]. Hence, acquiring a

lambda can create entanglement. Top-level functions can be seen as closures that are pre-allocated

outside the heap, which thus cannot create entanglement. In DisLang, fork-join parallelism is

available via the parallel tuple 𝑒1 | | 𝑒2, representing the expressions 𝑒1 and 𝑒2 to be computed in

parallel. DisLang supports a compare-and-swap instruction CAS 𝑒 𝑒 𝑒 𝑒 , which targets an array, and

is parameterized by 4 arguments: the location of the array, the index in the array, the old value

and the new value. An evaluation context 𝐾 describes a term with a hole, written □. The syntax of
evaluation contexts dictates a left-to-right call-by-value evaluation.

3.2 Computation Graphs and Disentanglement
The dynamics of DisLang, presented in the next section, makes use of a computation graph, capturing
the nested fork-join parallel structure of a program. A computation graph is a directed acyclic graph

where vertices, or tasks, represent sequential computations, and edges represent the dependencies

between them [Acar et al. 2016]. We label each task with a unique timestamp 𝑡 , from an infinite

set T . When a task 𝑡0 forks two fresh tasks 𝑡1 and 𝑡2, the computation graph is extended with

edges (𝑡0, 𝑡1) and (𝑡0, 𝑡2). Conversely, when two completed tasks 𝑡1 and 𝑡2 join to form a fresh task 𝑡3
the computation graph is extended with edges (𝑡1, 𝑡3) and (𝑡2, 𝑡3). As discussed earlier, an example

computation graph for the scratch example (§2) is shown in Fig. 2.

In a computation graph 𝐺 , we say that 𝑡 precedes 𝑡 ′ and write 𝑡 ≼𝐺 𝑡 ′ when there exists a

sequence of edges in𝐺 from 𝑡 to 𝑡 ′. In particular, we say that two tasks are concurrent when neither

precedes the other. Entanglement occurs when a task acquires a location that was allocated by a

concurrent task. Recall our running example (§2, Fig. 1): a particular implementation of doWork can

store a locally-allocated location in the shared scratchpad. If it were possible for two concurrent

tasks to both win the lock, without proper cleaning of the scratchpad, this locally-allocated location

could be acquired by the concurrent task, generating entanglement.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:9

HeadAlloc

0 ≤ 𝑛 ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \alloc 𝑛 𝑣 −→ [ℓ := 𝑣𝑛]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadCallPrim

𝑣1 ⊲⊳ 𝑣2
pure−−−→ 𝑣

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑣1 ⊲⊳ 𝑣2 −→ 𝜎 \𝛼 \𝑣
HeadClosure

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \`𝑓 . _®𝑥 . 𝑒 −→ [ℓ := `𝑓 . _®𝑥 . 𝑒]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadLength

𝜎 (ℓ) = ®𝑤
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ length ℓ −→ 𝜎 \𝛼 \ | ®𝑤 |

HeadStore

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ [𝑖]←𝑣 −→ [ℓ := [𝑖 := 𝑣] ®𝑤]𝜎 \𝛼 \ ()

HeadLetVal

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ let𝑥 = 𝑣 in 𝑒 −→ 𝜎 \𝛼 \ [𝑣/𝑥]𝑒

HeadIfTrue

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ if true then 𝑒1 else 𝑒2 −→ 𝜎 \𝛼 \𝑒1
HeadIfFalse

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ if false then 𝑒1 else 𝑒2 −→ 𝜎 \𝛼 \𝑒2

HeadLoad

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣 (𝑣 ∈ L =⇒ 𝛼 (𝑣) ≼𝐺 𝑡)

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ [𝑖] −→ 𝜎 \𝛼 \𝑣

HeadCall

(𝑣 = ˆ̀𝑓 . _®𝑥 . 𝑒) ∨ (𝑣 ∈ L ∧ 𝜎 (𝑣) = `𝑓 . _®𝑥 . 𝑒) | ®𝑥 | = | ®𝑤 | (∀ℓ . ℓ ∈ 𝑙𝑜𝑐𝑠 (𝑒) =⇒ 𝛼 (ℓ) ≼𝐺 𝑡)

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑣 ®𝑤 −→ 𝜎 \𝛼 \ [𝑣/𝑓] [®𝑤/®𝑥]𝑒

HeadCASSucc

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣0 𝑣0 = 𝑣 (𝑣0 ∈ L =⇒ 𝛼 (𝑣0) ≼𝐺 𝑡)

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \CAS ℓ 𝑖 𝑣 𝑣 ′ −→ [ℓ := [𝑖 := 𝑣 ′] ®𝑤]𝜎 \𝛼 \ true

HeadCASFail

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣0 𝑣0 ≠ 𝑣 (𝑣0 ∈ L =⇒ 𝛼 (𝑣0) ≼𝐺 𝑡)

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \CAS ℓ 𝑖 𝑣 𝑣 ′ −→ 𝜎 \𝛼 \ false

Fig. 4. Head reduction. The disentanglement proof obligation is highlighted.

3.3 Operational Semantics
Head Reduction. Fig. 4 defines the head reduction relation 𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑒 −→ 𝜎 ′ \𝛼 ′ \𝑒′

between two head configurations 𝜎 \𝛼 \𝑒 and 𝜎 ′ \𝛼 ′ \𝑒′, where 𝐺 is the (global) computation graph

and 𝑡 the timestamp of the (local) task at which the reduction takes place. A head configuration

consists of the expression 𝑒 being evaluated, the store 𝜎 , and an allocation map 𝛼 . A store 𝜎 is a

finite map of locations to blocks, representing the heap, and an allocation map 𝛼 is a finite map of

locations to timestamps, recording the timestamps at which locations were allocated.

We write 𝜎 (ℓ) to denote the block stored at the location ℓ in the store 𝜎 . To insert a block into

the store or update the store, we write [ℓ := 𝑟]𝜎 . Note that only arrays can be updated; closures

are immutable. To refer to the index 𝑖 of an array ®𝑤 , we write ®𝑤 (𝑖), and to update an array, we

write [𝑖 := 𝑣] ®𝑤 . We similarly write [ℓ := 𝑡]𝛼 for an insertion in the allocation map. We write 𝑣𝑛 for

an array of length 𝑛, where each element of the array is initialized with the value 𝑣 .

The HeadAlloc and HeadClosure reductions allocate heap blocks, arrays and closures, respec-

tively, extending the store with the desired block and the allocation map with the current timestamp.

The HeadCallPrim reduction encompasses a reduction
pure−−−→ to compute a primitive operation.

TheHeadStore reduction updates the field of an array, and theHeadLength reduction returns the

length of an array. The HeadLetVal reduction substitutes a variable by its value. The HeadIfTrue

and HeadIfFalse reductions reduce an if-then-else construction where the conditional is evaluated.

Entanglement may only occur when a task acquires a location. Locations are acquired during the

reductions HeadLoad, HeadCall, HeadCASSucc and HeadCASFail. A load reads the indexed

value, a call the environment of the closure, and a CAS the scrutinized value. The HeadCall

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:10 Alexandre Moine, Sam Westrick, and Stephanie Balzer

SchedHead

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑒 −→ 𝜎′ \𝛼 ′ \𝑒′

𝜎 /𝛼 /𝐺 /𝑡 /𝑒 sched−−−−→ 𝜎′ /𝛼 ′ /𝐺 /𝑡 /𝑒′

SchedFork

𝑡1, 𝑡2 ∉ vertices(𝐺) 𝐺 ′ = 𝐺 ∪ {(𝑡0, 𝑡1), (𝑡0, 𝑡2)}

𝜎 /𝛼 /𝐺 /𝑡0 /𝑒1 | | 𝑒2
sched−−−−→ 𝜎 /𝛼 /𝐺 ′ /𝑡1 ⊗ 𝑡2 /𝑒1 | | 𝑒2

SchedJoin

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼) 𝑡3 ∉ vertices(𝐺) 𝐺 ′ = 𝐺 ∪ {(𝑡1, 𝑡3), (𝑡2, 𝑡3)}

𝜎 /𝛼 /𝐺 /𝑡1 ⊗ 𝑡2 /𝑣1 | | 𝑣2
sched−−−−→ [ℓ := [𝑣1; 𝑣2]]𝜎 / [ℓ := 𝑡3]𝛼 /𝐺 ′ /𝑡3 / ℓ

StepSched

𝜎 /𝛼 /𝐺 /𝑇 /𝑒 sched−−−−→ 𝜎′ /𝛼 ′ /𝐺 ′ /𝑇 ′ /𝑒′

(𝜎, 𝛼,𝐺) /𝑇 /𝑒 step−−−→ (𝜎′, 𝛼 ′,𝐺 ′) /𝑇 ′ /𝑒′

StepBind

𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′

𝑆 /𝑇 /𝐾 [𝑒] step−−−→ 𝑆 ′ /𝑇 ′ /𝐾 [𝑒′]
StepParL

𝑆 /𝑇1 /𝑒1
step−−−→ 𝑆 ′ /𝑇 ′

1
/𝑒′

1

𝑆 /𝑇1 ⊗ 𝑇2 /𝑒1 | | 𝑒2
step−−−→ 𝑆 ′ /𝑇 ′

1
⊗ 𝑇2 /𝑒′1 | | 𝑒2

StepParR

𝑆 /𝑇2 /𝑒2
step−−−→ 𝑆 ′ /𝑇 ′

2
/𝑒′

2

𝑆 /𝑇1 ⊗ 𝑇2 /𝑒1 | | 𝑒2
step−−−→ 𝑆 ′ /𝑇1 ⊗ 𝑇 ′2 /𝑒1 | | 𝑒

′
2

Fig. 5. Reduction under a context and parallelism

reduction distinguishes between invoking a top-level function and a closure. Calling a closure

loads the values of its environment, which may contain locations. As we use a substitution-based

semantics, these locations are the location literals occurring in the function body 𝑒 , which are

computed by the 𝑙𝑜𝑐𝑠 (𝑒) function. To prevent entanglement, all the mentioned rules include the

same kind of precondition (highlighted in Fig. 4): if ℓ is acquired, then its allocation timestamp 𝛼 (ℓ)
must precede the timestamp 𝑡 of the task at which the reduction takes place. These preconditions

amount to a proof obligation during the verification of a program. Verified programs will satisfy the

obligation and will thus never get stuck. As we will see in Sec. 4.4 and in Sec. 5.3, soundness of

both of our logics entail the invariant that the physical program state are always disentangled.

Parallelism and Reduction under a Context. To keep track of the currently active and suspended

tasks of an executing parallel program, we follow Westrick et al. [2020] and enrich the seman-

tics with an auxiliary structure called a task tree, written 𝑇 , of the following formal grammar:

𝑇 ≜ 𝑡 ∈ T | 𝑇 ⊗ 𝑇 . A leaf represents an active task and is denoted by its timestamp 𝑡 . A node𝑇1⊗𝑇2
represents a suspended task that has forked two parallel computations, recursively described by

the task trees 𝑇1 and 𝑇2.

Taking advantage of task trees, we define the semantics of parallel reductions and reductions

under a context in Fig. 5. We define a scheduling reduction 𝜎 /𝛼 /𝐺 /𝑇 /𝑒 sched−−−−→ 𝜎 ′ /𝛼 ′ /𝐺 ′ /𝑇 ′ /𝑒′
as either a head step, a fork, or a join. In this reduction relation, 𝜎 is a store, 𝛼 an allocation map,𝐺

a computation graph, 𝑇 a task tree, and 𝑒 an expression. The SchedHead reduction describes a

head reduction. The SchedFork reduction describes a fork: the task tree is at a leaf 𝑡0 and faces

a parallel tuple. The reduction generates two fresh timestamps 𝑡1 and 𝑡2, adds the corresponding

edges to the computation graph and updates the task tree to the node with two leaves 𝑡1 ⊗ 𝑡2. The
SchedJoin reduction describes a join: the task tree is at a node with two leaves 𝑡1 ⊗ 𝑡2, and both

leaves reached a value. The reduction generates a fresh timestamp 𝑡3, updates the computation

graph, and allocates a memory cell to store the result of the parallel tuple. It then updates the task

tree to the leaf 𝑡3.

The main reduction relation 𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′ describes a scheduling reduction inside the

whole parallel program. A tuple 𝑆 /𝑇 /𝑒 consists of the program state 𝑆 , the task tree 𝑇 , and an

expression 𝑒 . A state 𝑆 consists of the tuple (𝜎, 𝛼,𝐺), denoting a store 𝜎 , an allocation map 𝛼 , and a

computation graph𝐺 . The StepSched reduction describes a scheduling step. The other reductions

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:11

describe where the scheduling reduction takes place. The StepBind reduction describes a reduction

under an evaluation context. The StepParL and StepParR reductions unveil the non-determinism

of the parallel reduction. If a node of the task tree is encountered facing a parallel tuple, the left

side or the right side can reduce.

4 DISLOG, A PROGRAM LOGIC FOR DISENTANGLEMENT
In this section, we present the details of DisLog. We first give an Iris primer and explain our

notations (§ 4.1). Then, we showcase how timestamps appear in the program logic (§ 4.2), and

present other reasoning rules (§4.3). Finally, we discuss the soundness theorem of DisLog (§4.4).

4.1 Assertions and Weakest Preconditions
We build DisLog on top of Iris [Jung et al. 2018], adopting Iris’ syntax. In particular, we write Φ for

an Iris assertion (of type 𝑖𝑃𝑟𝑜𝑝), Φ ∗ Φ′ for a separating conjunction, and Φ −∗ Φ′ for a separating
implication. If𝑈 is a proposition of the meta logic, we call𝑈 pure and write ⌜𝑈 ⌝. We write Φ ⊣⊢ Φ′
for the equivalence of assertions.

Our program logic features a weakest precondition (WP) modality which takes the form:

wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . Φ}

This modality adapts a standard Iris’ WP to the semantics of DisLang, and in particular, enriches it

to account for timestamps. In the above assertion, 𝑡 is the timestamp of the task which symbolically

executes the expression 𝑒 . We call this timestamp the current timestamp of the expression. A

postcondition takes the form _ 𝑡 ′ 𝑣 . Φ where the variables 𝑡 ′ and 𝑣 are bound in Φ. The variable 𝑣
denotes the resulting value and the variable 𝑡 ′ the end timestamp, the timestamp of the returning

task. We write wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ ℓ . Φ}, where the variable ℓ denotes a location, as a syntactic sugar
for wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ Φ}. We similarly do so for booleans 𝑏 and integers 𝑖 . If we want

to abstract over the details of the postcondition, we write Ψ instead of _ 𝑡 ′ 𝑣 . Φ.
Our WP is subject to the standard structural rules of separation logic. DisLog supports in

particular the Frame rule that we present below, as a warm-up to our notations. We write reasoning

rules as inference rules, where premises are separated by the separating conjunction ∗ and entail

the conclusion. In particular, if the conclusion is a WP, premises amount to preconditions.

Frame

Φ0 wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . Φ1}
wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . Φ0 ∗ Φ1}

Separation logic triples can be obtained with the standard definition {Φ} ⟨𝑡, 𝑒⟩ {Ψ} ≜ �(Φ −∗
wp ⟨𝑡, 𝑒⟩ {Ψ}), where � stands for the persistence modality of Iris. The persistence modality

characterize persistent assertions (an assertion Φ is persistent when Φ ⊣⊢ �Φ). Once a persistent
assertion holds, it holds forever. In particular, persistent assertions are duplicable.

Iris features ghost state, which is hence available in DisLog. We write Φ ⇛ Φ′ for a ghost update
(or fancy update) that updates the ghost state. We omit the so-calledmasks for the sake of readability.
Thanks to the ghost state, DisLog supports Iris invariants [Jung et al. 2018, §2.2], with a standard

interface. Our WP allows the user to assume (or open) an invariant before reasoning about an atomic
expression and generates an obligation to restore (or close) the invariant in the postcondition. An

atomic expression is an expression that can reduce to a value in a single head step of computation.

We syntactically characterize such assertions with the Atomic 𝑒 pure predicate.
DisLog makes use of fractional [Bornat et al. 2005; Boyland 2003] and discardable [Vindum and

Birkedal 2021] points-to assertions of the form ℓ ↦→𝑝 ®𝑤 , where 𝑝 denotes either a positive fraction

less than or equal to 1, or a discarded fraction written �. The latter makes the points-to assertion

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:12 Alexandre Moine, Sam Westrick, and Stephanie Balzer

ClockMono

ℓ � 𝑡 𝑡 ≼ 𝑡 ′

ℓ � 𝑡 ′

PrecRefl

𝑡 ≼ 𝑡

PrecTrans

𝑡 ≼ 𝑡 ′ 𝑡 ′ ≼ 𝑡 ′′

𝑡 ≼ 𝑡 ′′

MementoPre

⌜ℓ ∈ 𝑙𝑜𝑐𝑠 (𝑒)⌝ ℓ � 𝑡 −∗ wp ⟨𝑡, 𝑒⟩ {Ψ}
wp ⟨𝑡, 𝑒⟩ {Ψ}

MementoPost

wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . 𝑣 � 𝑡 ′ −∗ Ψ 𝑡 ′𝑣}
wp ⟨𝑡, 𝑒⟩ {Ψ}

TempusFugit

wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . 𝑡 ≼ 𝑡 ′ −∗ Ψ 𝑡 ′𝑣}
wp ⟨𝑡, 𝑒⟩ {Ψ}

TempusAtomic

⌜Atomic 𝑒⌝ wp ⟨𝑡, 𝑒⟩ {_ _ 𝑣 . Ψ 𝑡 𝑣}
wp ⟨𝑡, 𝑒⟩ {Ψ}

Fig. 6. Reasoning rules for clocks and precedence assertions

persistent. When 𝑝 = 1 we write ℓ ↦→ ®𝑤 . Points-to assertions of DisLog do not carry information

about timestamps: this role is devoted to two new assertions described in the next Section.

4.2 Timestamps Management
A central aspect of our disentanglement logic is the management of timestamps. To this end, DisLog

features two new assertions.

• The clock assertion ℓ � 𝑡 , indicating that the location ℓ was allocated before the timestamp 𝑡

in the underlying computation graph.

• The precedence assertion 𝑡 ≼ 𝑡 ′, witnessing that the timestamp 𝑡 precedes the timestamp 𝑡 ′ in
the underlying computation graph.

Both assertions are persistent and work hand-in-hand. Given the assertion ℓ � 𝑡 , a task at times-

tamp 𝑡 can safely acquire the location ℓ . Moreover, given both the assertions ℓ � 𝑡 and 𝑡 ≼ 𝑡 ′, a task
at timestamp 𝑡 ′ can safely acquire the location ℓ as well. A benefit of phrasing a location’s allocation

timestamp relative to another timestamp, rather than absolute, is that the user never needs to know

precisely at which timestamp a location was allocated: disentanglement is ensured as soon as the ac-

quired location was allocated by a preceding task. Similarly, the user never needs to know the whole

computation graph: precedence information suffices for proving disentanglement. We overload the

clock assertion to arbitrary values 𝑣 and introduce assertions of the form 𝑣 � 𝑡 . If 𝑣 is a location ℓ ,

then this assertion is defined as ℓ � 𝑡 . Otherwise, it is defined as ⌜𝑇𝑟𝑢𝑒⌝. We overload again this

assertion to a collection of values, and write ®𝑤 � 𝑡 for the iterated conjunction∗(𝑣∈ ®𝑤) (𝑣 � 𝑡).
Fig. 6 summarizes the rules governing the clock and the precedence assertions. The ClockMono

rule illustrates the monotonicity of the clock predicate with respect to the precedence pre-order:

if the location ℓ was allocated before 𝑡 and 𝑡 precedes 𝑡 ′, then it is safe to conclude that ℓ was

allocated before 𝑡 ′. We emphasize that the precedence assertion forms a pre-order: this assertion is

reflexive (PrecRefl) and transitive (PrecTrans). TheMementoPre andMementoPost rules are

the only rules generating a clock predicate. The MementoPre rule asserts that if the location ℓ

occurs in the expression 𝑒 at current timestamp 𝑡 , then the user can gain a witness ℓ � 𝑡 that ℓ was

allocated at a timestamp preceding 𝑡 . The MementoPost rule asserts that the value returned by a

task was allocated before the end timestamp of this task.

The TempusFugit rule distills the semantics of DisLang: it is safe to suppose that the current

timestamp precedes the end timestamp. The TempusAtomic rule asserts that the current timestamp

and the end timestamp of an atomic expression are the same. TheTempusAtomic rule is more precise

than needed: the clock predicate and the precedence predicate are both monotonic with respect to

the precedence pre-order, via the ClockMono rule and the PrecTrans rule, respectively. However,

the TempusAtomic rule relieves the user from the burden of always applying the ClockMono

and PrecTrans rules by hand when the timestamp is effectively preserved.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:13

Value

Ψ 𝑡 𝑣

wp ⟨𝑡, 𝑣⟩ {Ψ}

Alloc

⌜0 ≤ 𝑛⌝
wp ⟨𝑡, alloc 𝑛 𝑣⟩ {_ _ ℓ . ℓ ↦→ 𝑣𝑛}

Load

⌜0 ≤ 𝑖 < | ®𝑤 | ∧ ®𝑤 (𝑖) = 𝑣⌝ ℓ ↦→𝑝 ®𝑤 𝑣 � 𝑡

wp ⟨𝑡, ℓ [𝑖]⟩ {_ _ 𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝ ∗ ℓ ↦→𝑝 ®𝑤}

Closure

wp ⟨𝑡, ` 𝑓 . _®𝑥 . 𝑒⟩ {_ _ ℓ . Func ℓ 𝑓 ®𝑥 𝑒}

TopLevel

⌜𝑣 = ˆ̀𝑓 . _®𝑥 . 𝑒⌝
Func 𝑣 𝑓 ®𝑥 𝑒

Length

ℓ ↦→𝑝 ®𝑤
wp ⟨𝑡, length ℓ⟩ {_ _ 𝑖 . ⌜𝑖 = | ®𝑤 |⌝ ∗ ℓ ↦→𝑝 ®𝑤}

CallPrim

⌜𝑣1 ⊲⊳ 𝑣2
pure−−−→ 𝑣⌝

wp ⟨𝑡, 𝑣1 ⊲⊳ 𝑣2⟩ {_ _ 𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝}

Bind

wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . wp ⟨𝑡 ′, 𝐾 [𝑣]⟩ {Ψ}}
wp ⟨𝑡, 𝐾 [𝑒]⟩ {Ψ}

LetVal

wp ⟨𝑡, [𝑣/𝑥]𝑒⟩ {Ψ}
wp ⟨𝑡, let𝑥 = 𝑣 in 𝑒⟩ {Ψ}

Call

⌜ | ®𝑥 | = | ®𝑤 |⌝ Func 𝑣 𝑓 ®𝑥 𝑒 wp ⟨𝑡, [𝑣/𝑓] [®𝑤/®𝑥]𝑒⟩ {Ψ}
wp ⟨𝑡, 𝑣 ®𝑤⟩ {Ψ}

IfTrue

wp ⟨𝑡, 𝑒1⟩ {Ψ}
wp ⟨𝑡, if true then 𝑒1 else 𝑒2⟩ {Ψ}

IfFalse

wp ⟨𝑡, 𝑒2⟩ {Ψ}
wp ⟨𝑡, if false then 𝑒1 else 𝑒2⟩ {Ψ}

CASSucc

⌜0 ≤ 𝑖 < | ®𝑤 | ∧ ®𝑤 (𝑖) = 𝑣0 ∧ 𝑣0 = 𝑣⌝ ℓ ↦→ ®𝑤 𝑣0� 𝑡

wp ⟨𝑡, CAS ℓ 𝑖 𝑣 𝑣 ′⟩ {_ _𝑏. ⌜𝑏 = true⌝ ∗ ℓ ↦→ [𝑖 := 𝑣 ′] ®𝑤}
CASFail

⌜0 ≤ 𝑖 < | ®𝑤 | ∧ ®𝑤 (𝑖) = 𝑣0 ∧ 𝑣0 ≠ 𝑣⌝ ℓ ↦→𝑝 ®𝑤 𝑣0� 𝑡

wp ⟨𝑡, CAS ℓ 𝑖 𝑣 𝑣 ′⟩ {_ _𝑏. ⌜𝑏 = false⌝ ∗ ℓ ↦→𝑝 ®𝑤}

Store

⌜0 ≤ 𝑖 < | ®𝑤 |⌝ ℓ ↦→ ®𝑤
wp ⟨𝑡, ℓ [𝑖]←𝑣⟩ {_ _ _. ℓ ↦→ [𝑖 := 𝑣] ®𝑤}

Par

∀𝑡1 𝑡2 . 𝑡 ≼ 𝑡1 ∗ 𝑡 ≼ 𝑡2 ⇛ ∃Ψ1 Ψ2 . wp ⟨𝑡1, 𝑒1⟩ {Ψ1} ∗ wp ⟨𝑡2, 𝑒2⟩ {Ψ2} ∗(
∀𝑡 ′

1
𝑣1 𝑡
′
2
𝑣2 𝑡
′ ℓ . Ψ1 𝑡

′
1
𝑣1 ∗ Ψ2 𝑡 ′2 𝑣2 ∗ 𝑡

′
1
≼ 𝑡 ′ ∗ 𝑡 ′

2
≼ 𝑡 ′ ∗ ℓ ↦→ [𝑣1; 𝑣2] −∗ Ψ 𝑡 ′ ℓ

)
wp ⟨𝑡, 𝑒1 | | 𝑒2⟩ {Ψ}

Fig. 7. Syntax-directed rules of DisLog

4.3 Reasoning Rules for Expressions
Fig. 7 gives the syntax-directed reasoning rules of DisLog (we hide “later” modalities for brevity).

The rules Alloc, Length, CallPrim, LetVal, IfTrue, IfFalse, and Store are standard, apart from

their mention of timestamps. In particular, the Alloc rule does not generate a clock assertion. If

desired, such an assertion can be obtained by applying the MementoPost rule.

The Value rule asserts that if the symbolic evaluation of an expression ended at timestamp 𝑡 ,

yielding a value 𝑣 , then the postcondition Ψ 𝑡 𝑣 should hold. The Load rule extends the standard

separation logic rule to prevent entanglement. Indeed, the 𝑣 � 𝑡 assertion in the precondition

witnesses that if 𝑣 is a location, then it must have been allocated before the current timestamp 𝑡 .

The CASSucc and CASFail rules are similarly extended: they prevent entanglement by requiring

that if the scrutinized value is a location, then it was allocated before the current timestamp.

The Closure and TopLevel rules produce an assertion Func 𝑣 𝑓 ®𝑥 𝑒 certifying that calling 𝑣 as a

function will not cause entanglement. Obtaining this assertion for closures may be surprising at

first, but is warranted by the following facts: (i) all the timestamps of locations captured by the

closure are guaranteed to precede the closure’s allocation timestamp 𝑡 (by rule MementoPre), and

(ii) closures are immutable objects and, as such, cannot themselves create entanglement [Westrick

et al. 2022]. Phrased differently, the locations of the environment are allocated before the closure

itself, and thanks to immutability, this fact never changes. The Func predicate is persistent. The
Call rule allows calling a function, given the Func predicate. Proving that the environment was

allocated before the current timestamp amounts to proving that the closure’s location itself was

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:14 Alexandre Moine, Sam Westrick, and Stephanie Balzer

allocated before the current timestamp, which is true since the closure’s location is already part of

the expression (§4.4).

The Bind rule gives meaning to the notion of the “current timestamp” of an expression. Op-

erationally, the evaluation of a term 𝐾 [𝑒] at timestamp 𝑡 reduces the sub-expression 𝑒 until it

reaches a value 𝑣 and an end timestamp 𝑡 ′. Then, the whole term 𝐾 [𝑣] starts reducing at the new

timestamp 𝑡 ′. The Bind rule paraphrases this operational behavior. The rule asserts that the user

first has to reason about the sub-expression 𝑒 at the same current timestamp. The user has then

to reason about the filled term 𝐾 [𝑣] at a current timestamp 𝑡 ′, under the precondition that the

sub-expression 𝑒 reduced to a value 𝑣 at end timestamp 𝑡 ′.

Reasoning About a Parallel Tuple. A pivotal rule of DisLog is Par. Let’s first derive a naive

version ParWeak of this rule below before focusing on the ultimate rule given in Fig. 7.

∀ 𝑡1 𝑡2 . 𝑡 ≼ 𝑡1 −∗ wp ⟨𝑡1, 𝑒1⟩ {Ψ1} 𝑡 ≼ 𝑡2 −∗ wp ⟨𝑡2, 𝑒2⟩ {Ψ2}

wp ⟨𝑡, 𝑒1 | | 𝑒2⟩
{
_ 𝑡 ′ ℓ .

∃𝑡 ′
1
𝑣1 𝑡
′
2
𝑣2. Ψ1 𝑡

′
1
𝑣1 ∗ Ψ2 𝑡

′
2
𝑣2

𝑡 ′
1
≼ 𝑡 ′ ∗ 𝑡 ′

2
≼ 𝑡 ′ ∗ ℓ ↦→ [𝑣1; 𝑣2]

} ParWeak

This rule allows reasoning about a parallel tuple 𝑒1 | | 𝑒2 at current timestamp 𝑡 . The premise

universally quantifies over two fresh timestamps 𝑡1 and 𝑡2, which are used for 𝑒1 and 𝑒2, respectively.

We focus on the left-hand side of the tuple as the right-hand side is handled similarly. The user should

verify 𝑒1 with the postcondition Ψ1, under the hypothesis 𝑡 ≼ 𝑡1 witnessing that 𝑡 precedes 𝑡1. This

information allows the user to safely acquire any location that was safe to acquire from 𝑡 . Indeed,

if the user has an assertion ℓ � 𝑡 , they can use the ClockMono rule to obtain an assertion ℓ � 𝑡1.

We emphasize that the above rule ensures that the two fresh timestamps 𝑡1 and 𝑡2 are unrelated.
Hence, an assertion ℓ � 𝑡1 cannot be converted to an assertion ℓ � 𝑡2. This would indeed be unsafe,

as a location allocated by the left task could be acquired by the right one, creating entanglement.

After the join point, the postcondition of the ParWeak rule asserts that 𝑒1 reduced to a value 𝑣1
at end timestamp 𝑡 ′

1
, and that 𝑒2 reduced to a value 𝑣2 at end timestamp 𝑡 ′

2
. The postcondition

also produces witnesses that 𝑡 ′
1
and 𝑡 ′

2
precede the (new) current timestamp 𝑡 ′. Thanks to these

two assertions any locations allocated by either of the two tasks are now accessible by any task

at timestamp 𝑡 ′′ such that 𝑡 ′ ≼ 𝑡 ′′. Finally, the postcondition asserts that the parallel tuple itself

reduced to a location ℓ , pointing to the two resulting values 𝑣1 and 𝑣2.

Unfortunately, the ParWeak rule is tedious to use in practice. It fails to support a common

pattern underlying our proof rules, which would allow the postconditions Ψ1 and Ψ2 of the newly

forked tasks to depend on the tasks’ timestamps 𝑡1 and 𝑡2. This dependence is rendered impossible

by the universal quantification of the timestamps 𝑡1 and 𝑡2. Our final rule Par presented in Fig. 7

facilitates the wished-for pattern. The premise of the Par rule quantifies universally over the two

timestamps, and after the quantification, allows the user to choose two existentially quantified

postconditions Ψ1 and Ψ2 that can depend on the two timestamps. Moreover, the user is free to

choose the postconditions after a potential ghost update; for example, to allocate an invariant that

depends on both 𝑡1 and 𝑡2. The user should then verify the two parts of the parallel tuple with their

respective timestamps, as in the ParWeak rule. Finally, the user has to show that the resulting

values and timestamps entail the postcondition Ψ. This is formally expressed in the second line of

the precondition of the rule.

4.4 Soundness
Finally, we devote our attention to stating and proving soundness of DisLog. For our disentanglement

logic to be sound it has to hold that the reduction of a program verified using the rules of DisLog

leads to a disentangled program state. Our semantics is phrased in terms of a transition system that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:15

RedSched

𝑆 /𝑇 /𝑒 sched−−−−→ 𝑆 ′ /𝑇 ′ /𝑒′

red 𝑆 𝑇 𝑒

RedCtx

red 𝑆 𝑇 𝑒

red 𝑆 𝑇 (𝐾 [𝑒])

RedPar

(𝑒1 ∉ V ∨ 𝑒2 ∉ V)
(𝑒1 ∉ V =⇒ red 𝑆 𝑇1 𝑒1) (𝑒2 ∉ V =⇒ red 𝑆 𝑇2 𝑒2)

red 𝑆 (𝑇1 ⊗ 𝑇2) (𝑒1 | | 𝑒2)

Fig. 8. Reducibility of a configuration

wp ⟨𝑡, 𝑒⟩ {Ψ} ≜ wpg ⟨𝑡, 𝑒⟩ {Ψ}
wpg ⟨𝑇, 𝑒⟩ {Ψ} ≜(

⌜𝑒 ∈ V⌝ ∗ (∀𝑆. interp 𝑆 𝑇 𝑒 ⇛ ⌜𝑇 ∈ T ⌝ ∗ interp 𝑆 𝑇 𝑒 ∗ Ψ𝑇 𝑒)
)

∨
(
⌜𝑒 ∉ V⌝ ∗ (∀𝑆. interp 𝑆 𝑇 𝑒 ⇛
⌜red 𝑆 𝑇 𝑒⌝ ∗ ∀𝑆 ′𝑇 ′ 𝑒′ . ⌜𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′⌝ ⇛ ⊲ ⇛ interp 𝑆 ′𝑇 ′ 𝑒′ ∗ wpg ⟨𝑇 ′, 𝑒′⟩ {Ψ})

)
Fig. 9. Definition of the weakest precondition modalities

gets stuck if entanglement is encountered, ensured by the highlighted premises for head reductions

in Fig. 4. Soundness of our logic thus must entail that verified programs cannot get stuck.

Since we use a small-step semantics in a parallel world, the definition of “not getting stuck” needs

careful wording. In particular, it is not enough to say that “the configuration can take a step”. Indeed,

one step of DisLang corresponds to a step of one task, whereas we want to ensure that every task
can take a proper step. The adequacy theorem of the Iris WP makes use of the notion of reducibility
to capture the fact that a thread can take a proper step. The judgment red 𝑆 𝑇 𝑒 presented in Fig. 8

adapt this notion, ensuring that every task of the task tree can take a step. The RedSched rule

asserts that a configuration that can make a scheduling step (either a head step, a fork, or a join) is

reducible. The RedCtx rule asserts that the reducibility of a configuration facing an expression

under an evaluation context amounts to the reducibility of this very expression. The RedPar rule

asserts that a configuration facing a node of the task tree and a parallel tuple is reducible if at least

one side of the pair is not a value (otherwise, a join should be possible), and each side that is not a

value is reducible.

An expression 𝑒 is safe if (∅, ∅, ∅) /𝑡 /𝑒 step−−−→ ∗ 𝑆 ′ /𝑇 ′ /𝑒′ implies that either the configuration

𝑆 ′ /𝑇 ′ /𝑒′ is reducible, or that 𝑒′ is a value and 𝑇 ′ a single leaf. Our soundness theorem asserts that

if an expression 𝑒 can be verified using DisLog, then it is safe.

Theorem 4.1 (Soundness of DisLog). If wp ⟨𝑡, 𝑒⟩ {_ _ _. ⌜𝑇𝑟𝑢𝑒⌝} holds, then 𝑒 is safe.

As the semantics of DisLang cannot progress when entanglement is detected, the soundness

theorem asserts that 𝑒 cannot reach an entangled state. The formal proof Theorem 4.1 can be found

in our Coq formalization [Moine et al. 2023b]. We detail below the main definitions and invariants.

Definition of the Weakest Precondition. The formal definition of the wp ⟨𝑡, 𝑒⟩ {Ψ} assertion can

be found in Fig. 9. The key to our approach is to define the wp modality with respect to a more

general—hidden from the user—weakest precondition modality that we refer to as wpg modality.

The wpg modality is parameterized not with a single timestamp, but a whole task tree: we found

this generalization crucial for the various proofs to succeed. Nevertheless, reasoning always takes

place at the leaves. Hence, we can hide the details of the task tree from the user.

The definition of the wpg modality appears also in Fig. 9 and follows the traditional Iris

recipe [Jung et al. 2018, §6]. As usual, the WP is defined as a guarded fixpoint, and makes use

of a state interpretation predicate (or central invariant), written interp, which relates the ghost

state and the physical state. The definition of wpg cases on whether the expression is a value or

not. If the expression is a value, we can access the state interpretation, and deduce that the task

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:16 Alexandre Moine, Sam Westrick, and Stephanie Balzer

RDeLeaf

∀ℓ . ℓ ∈ 𝑙𝑜𝑐𝑠 (𝑒) =⇒ 𝛼 (ℓ) ≼𝐺 𝑡
rootsde𝛼 𝐺 𝑡 𝑒

RDePar

rootsde𝛼 𝐺 𝑇1 𝑒1 rootsde𝛼 𝐺 𝑇2 𝑒2
rootsde𝛼 𝐺 (𝑇1 ⊗ 𝑇2) (𝑒1 | | 𝑒2)

RDeCtx

rootsde𝛼 𝐺 𝑇 𝑒 ∀ℓ 𝑡 . ℓ ∈ 𝑙𝑜𝑐𝑠 (𝐾) ∧ 𝑡 ∈ leaves(𝑇) =⇒ 𝛼 (ℓ) ≼𝐺 𝑡
rootsde𝛼 𝐺 𝑇 (𝐾 [𝑒])

interp (𝜎, 𝛼,𝐺)𝑇 𝑒 ≜
⌜dom(𝜎) = dom(𝛼) ∧ rootsde𝛼 𝐺 𝑇 𝑒⌝ ∗
•𝐺 𝛾 ∗ Heap𝜎 ∗ ∗(ℓ,𝑡) ∈𝛼 (meta ℓ 𝑡)

edge 𝑡 𝑡 ′ ≜ ◦{(𝑡, 𝑡 ′)} 𝛾
𝑡 ≼ 𝑡 ′ ≜ rtc edge 𝑡 𝑡 ′ ℓ � 𝑡 ≜ ∃𝑡0. meta ℓ 𝑡0 ∗ 𝑡0 ≼ 𝑡

Func 𝑣 𝑓 ®𝑥 𝑒 ≜ ⌜𝑣 = ˆ̀𝑓 . _®𝑥 . 𝑒⌝ ∨(
⌜𝑣 ∈ L⌝ ∗ 𝑣 ↦→� (`𝑓 . _®𝑥 . 𝑒) ∗ ∃𝑡 . meta 𝑣 𝑡 ∗ ∗ℓ ′∈𝑙𝑜𝑐𝑠 (𝑒) (ℓ ′� 𝑡)

)
Fig. 10. Definition of the state interpretation predicate and of base assertions

tree consists of a single leaf and the postcondition. Otherwise, if the expression is not a value,

the wpg modality asserts that the configuration is reducible, and that for any possible step, the

state interpretation must continue to hold, as well as the WP of the reduced program. Apart from

its mention of timestamps, our WP distinguishes itself from the standard Iris WP by making the

state interpretation available in the value case, and making use of our custom red judgment.

The State Interpretation Predicate. Our WP maintains a state interpretation predicate between

each reduction step, which is defined in Fig. 10. We review its definition next.

We first focus on the roots disentanglement judgment rootsde𝛼 𝐺 𝑇 𝑒 . This judgment asserts each

task of the expression 𝑒 only uses locations allocated before its associated timestamp. This judgment

allows stating theMementoPre rule. If the task tree consists of a single leaf 𝑡 , the RDeLeaf rule

requires that the locations of 𝑒 were allocated before 𝑡 . The RDePar rule requires that both sides of

a parallel tuple satisfy the rootsde judgment. In the case of an evaluation context, RDeCtx requires

that the judgment holds for the expression under the context, and that the locations occurring in

the evaluation context itself are allocated before all the leaves of the task tree.

The state interpretation predicate also gives meaning to the ghost state from the physical state.

We first briefly explain the construction of ghost state in Iris abstractly, before detailing the part

of interp that concerns ghost state. In Iris, ghost state is defined in terms of so-called cameras (CMRA)

which can be thought as “step-indexed partial commutative monoids” [Jung et al. 2018], detailing a

resource algebra. Iris provides predefined notions of resource algebras. For example, the resource

algebra Auth(𝑀) describes the authoritative resource algebra over the resources𝑀 . This resource

algebra gives access to •𝑎, the authoritative ownership of 𝑎, and ◦𝑏, the fragmentary ownership

of 𝑏. Together, these two assertions entail that there exists an element 𝑐 of the algebra such that

𝑎 = 𝑏 · 𝑐 . The resource algebra Set(𝑀) describes the set resource algebra, where the composition

of resources is described by set union. For our state interpretation predicate, we define a ghost

cell 𝛾 which we equip with the resource algebra Auth(Set(T × T)). The ghost cell 𝛾 stores the

computation graph and gives meaning to the precedence assertion.

Iris moreover provides a generic construction to define points-to assertions via the gen_heap
library [Iris Development Team 2023]. This library defines a certain piece of ghost state, defines an

assertionHeap𝜎 that ties a store 𝜎 to this ghost state, and defines the points-to assertion ℓ ↦→𝑝 ®𝑤 in

terms of this ghost state. Moreover, the gen_heap library allows associating persistent information

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:17

to locations via a mechanism of meta assertions. In our case, we associate to each location ℓ the

timestamp 𝑡 of the task that allocated it, and write meta ℓ 𝑡 . The main property of this assertion is

that, from the knowledge meta ℓ 𝑡 and meta ℓ 𝑡 ′, we can deduce that 𝑡 = 𝑡 ′.
We are now able to review the details of the definition of our state interpretation predicate

shown in the lower part of Fig. 10. First, it asserts that the domain of the store is the same as the

allocation map, and the roots disentanglement judgment. The state interpretation also asserts the

ghost authoritative ownership of the computation graph •𝐺 𝛾
and the ownership of the store via

theHeap𝜎 assertion. Moreover, the state interpretation asserts, for every mapping from a location ℓ

to a timestamp 𝑡 in the allocation map 𝛼 , that the persistent knowledge meta ℓ 𝑡 was set.
We define an edge between 𝑡 and 𝑡 ′ as a ghost fragmentary ownership of the singleton ◦{(𝑡, 𝑡 ′)} 𝛾

.

The conjunction of •𝐺 𝛾
and ◦{(𝑡, 𝑡 ′)} 𝛾

allows to deduce that (𝑡, 𝑡 ′) ∈ 𝐺 . We define the prece-

dence assertion 𝑡 ≼ 𝑡 ′ as the reflexive-transitive-closure (rtc) over the edge predicate. The clock
assertion ℓ � 𝑡 is defined as a paraphrase of its informal definition. The location ℓ was allocated

before timestamp 𝑡 if there exists a timestamp 𝑡0 such that ℓ was allocated at 𝑡0, and 𝑡0 precedes 𝑡 .

The representation predicate of a _-abstraction Func 𝑣 𝑓 ®𝑥 𝑒 is a disjunction: either 𝑣 is a top-level
function, or a heap-allocated closure. In that case, we use a discarded fraction for the points-to

assertion, as the closure is immutable. The predicate also asserts the existence of a timestamp 𝑡 at

which the closure was allocated, and that every location of its environment (the locations occurring

in 𝑒) was allocated before 𝑡 . We make use of this knowledge to verify the Call rule of Fig. 7. The

closure’s location is allocated before the current timestamp (thanks to the rootsde judgment), but

since the locations of the environment were allocated before the allocation time of the closure itself,

they are also allocated before the current timestamp, and hence safe to acquire.

5 A HIGH-LEVEL LOGIC: DISLOG+
In this section, we introduce DisLog+, an almost standard concurrent separation logic allowing

proof of disentanglement for a large class of programs. DisLog+ is defined in terms of DisLog using

monotonicity arguments, a technique that first appeared in program logics targeting weak-memory

models [Dang et al. 2020; Kaiser et al. 2017; Mével et al. 2020].

5.1 Don’t Poke the Bear
Disentanglement is preserved by restricting reads: when a task acquires a location, the programmer

must ensure that this location was allocated by a preceding task. However, numerous programs

“don’t poke the bear”, that is, are disentangled because they do not comprise reads of shared, and

hence potentially hazardous, locations.

Determinacy-race-free programs are an example of such cautious programs. A determinacy
race [Feng and Leiserson 1999] occurs when two concurrent tasks access the same location atomi-

cally, and at least one of these accesses is a write. As noticed by Westrick et al. [2020], such race-free

programs are trivially disentangled: shared locations cannot be written to from different tasks,

which prevent the communication of freshly allocated data between tasks. Moreover, they noticed

that there exist some races that are also trivially disentangled. Races that fall into this category

are: (i) write-write races, because a write does not acquire a location, and (ii) read-write races on
data that was allocated before the beginning of the parallel phase, because tasks are allowed to

communicate previously-allocated data.

What is the common denominator of all these cautious programs? Rather than categorically

restricting reads, they demand a more nuanced consideration of writes. More precisely, these

programs ensure that when a task writes a value to a location, this value is safe to read for any

task that can access the said location. Race-free programs prevent concurrent reads, because a task

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:18 Alexandre Moine, Sam Westrick, and Stephanie Balzer

𝑣𝑃𝑟𝑜𝑝 ≜ T 𝑚𝑜𝑛−−−−→ 𝑖𝑃𝑟𝑜𝑝 𝑃 ⊢𝑣𝑃𝑟𝑜𝑝 𝑃 ′ ≜ ∀𝑡 . 𝑃 𝑡 ⊢𝑖𝑃𝑟𝑜𝑝 𝑃 ′ 𝑡

𝑃 ∗ 𝑃 ′ ≜ _𝑡 . 𝑃 𝑡 ∗ 𝑃 ′ 𝑡 ⌈Φ⌉ ≜ __.Φ
𝑃 −∗ 𝑃 ′ ≜ _𝑡 . ∀𝑡 ′ . 𝑡 ≼ 𝑡 ′ −∗ 𝑃 𝑡 ′ −∗ 𝑃 ′ 𝑡 ′ 𝑃@𝑡 ≜ 𝑃 𝑡

∀𝑥 . 𝑃 ≜ _𝑡 . ∀𝑥 . 𝑃 𝑡 ℓ � now ≜ _𝑡 . ℓ � 𝑡

∃𝑥 . 𝑃 ≜ _𝑡 . ∃𝑥 . 𝑃 𝑡 ℓ ↦→𝑝 ®𝑤 ≜ ⌈ℓ ↦→𝑝 ®𝑤⌉ ∗ ®𝑤 � now

wpm 𝑒 {𝑄} ≜ _𝑡 . ∀𝑡 ′ . 𝑡 ≼ 𝑡 ′ −∗ wp ⟨𝑡 ′, 𝑒⟩ {_𝑡 ′′ 𝑣 . (𝑄 𝑣)@𝑡 ′′}
Fig. 11. DisLog+ separation logic and assertions

must have unique ownership of a location to write to it. Write-write races do not restrict writes, as

there is no concurrent read, and read-writes races are permitted as long as the written value was

allocated before the beginning of the parallel phase.

For this large class of programs that don’t poke the bear, we provide an almost traditional separa-

tion logic called DisLog+. By “traditional”, we mean that the weakest precondition of DisLog+ takes

a form which does not mention timestamps (§5.2). Moreover, its syntax-directed reasoning rules do

not mention clock nor precedence assertions: they are the standard reasoning rules of concurrent

separation logic (§5.3). By “almost”, we stress that DisLog+ restricts the use of ghost state to prevent

races, but is otherwise a standard separation logic. DisLog+ is hence ideally suited to reason about

race-free programs. To cater to the benign races identified above, we extend DisLog+ with (i)
write-only assertions to reason about write-write races (§5.4) and (ii) three rules to reason about

read-write races on previously allocated data that we refer to as the objectivity lemmas (§5.5).

5.2 Monotonicity to the Rescue
Our development of DisLog+ was triggered by two observations about race-free programs: (i)
race-free programs ensure that, when a task accesses a location, any value referenced by the

location is safe for the task to acquire, and that (ii) this property is monotonic with respect to the

precedence pre-order. Indeed, if all the pointed-to values are safe to read for a given task, then

these values are also safe to read for any of the task’s descendants in the computation graph.

We define a new separation logic, in which every assertion is parameterized by a timestamp,

called the ambient timestamp, and is monotonic with respect to the precedence pre-order. Fig. 11

presents the formal definitions of these assertions, written 𝑃 and of type 𝑣𝑃𝑟𝑜𝑝 .

The user can always project a 𝑣𝑃𝑟𝑜𝑝 assertion 𝑃 to a particular timestamp 𝑡 in 𝑖𝑃𝑟𝑜𝑝 via the

construction 𝑃@𝑡 . Conversely, the lifting construction ⌈Φ⌉ allows to lift an 𝑖𝑃𝑟𝑜𝑝 assertion Φ
into 𝑣𝑃𝑟𝑜𝑝 . Hence, the whole ghost-state theory of 𝑖𝑃𝑟𝑜𝑝 is available in 𝑣𝑃𝑟𝑜𝑝 . When the context

allows it, we write Φ instead of ⌈Φ⌉ for the lifting of an 𝑖𝑃𝑟𝑜𝑝 assertion into 𝑣𝑃𝑟𝑜𝑝 . The entailment

of 𝑣𝑃𝑟𝑜𝑝 (written ⊢𝑣𝑃𝑟𝑜𝑝) is defined using the entailment of 𝑖𝑃𝑟𝑜𝑝 (written ⊢𝑖𝑃𝑟𝑜𝑝). The definition
ensures that an entailment 𝑃 ⊢𝑣𝑃𝑟𝑜𝑝 𝑃 ′ is valid if and only if, for any timestamp 𝑡 the projection 𝑃@𝑡

of the premise entails the projection 𝑃 ′@𝑡 of the conclusion.
Fig. 11 also defines the assertions relative to DisLog+. The ℓ � now assertion asserts that ℓ

was allocated before the ambient timestamp. This is a persistent assertion, whose monotonicity is

ensured by theClockMono rule. Again, we overload this assertion to arbitrary values and collection

of values. The key idea of DisLog+ is its definition of the points-to assertion. The assertion ℓ ↦→𝑝 ®𝑤
is defined as the conjunction of the points-to assertion in 𝑖𝑃𝑟𝑜𝑝 , written ⌈ℓ ↦→𝑝 𝑣⌉, as well as the
knowledge that every value pointed-to by the location was allocated before the ambient timestamp,

using the ®𝑤 � now assertion. Hence, the points-to assertion of 𝑣𝑃𝑟𝑜𝑝 asserts that every load for

this location is safe for this particular task, and any subsequent task!

The WP of DisLog+ takes the form wpm 𝑒 {_ 𝑣. 𝑃}, where the variable 𝑣 denotes the resulting
value of 𝑒 and is bound in 𝑃 . To abstract over the details of the postcondition, we write 𝑄 instead

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:19

Alloc+

wpm (alloc 𝑛 𝑣) {_ ℓ. ℓ ↦→ 𝑣𝑛}

Store+

⌜0 ≤ 𝑖 < | ®𝑤 |⌝ ℓ ↦→ ®𝑤
wpm (ℓ [𝑖]←𝑣) {_ _. ℓ ↦→ [𝑖 := 𝑣] ®𝑤}

Load+

⌜0 ≤ 𝑖 < | ®𝑤 | ∧ ®𝑤 (𝑖) = 𝑣⌝ ℓ ↦→𝑝 ®𝑤
wpm (ℓ [𝑖]) {_ 𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝ ∗ ℓ ↦→𝑝 ®𝑤}

Par+

wpm 𝑒1 {𝑄1} wpm 𝑒2 {𝑄2}
wpm (𝑒1 | | 𝑒2) {_ ℓ. ∃𝑣1 𝑣2 . ℓ ↦→ [𝑣1; 𝑣2] ∗ 𝑄1 𝑣1 ∗ 𝑄2 𝑣2}

Fig. 12. Selected rules of DisLog+

of _ 𝑣. 𝑃 . The assertion wpm 𝑒 {𝑄} asserts that 𝑒 is safe to execute at any timestamp succeeding

the ambient one, and that if 𝑒 reaches a value 𝑣 , then 𝑄 𝑣 holds at the end timestamp (or at any

subsequent timestamp, since 𝑄 is monotonic).

The user can freely go between DisLog+ and DisLog using the following Conversion rule.(
𝑃 ⊢𝑣𝑃𝑟𝑜𝑝 wpm 𝑒 {𝑄}

)
⇐⇒

(
∀𝑡 . 𝑃@𝑡 ⊢𝑖𝑃𝑟𝑜𝑝 wp ⟨𝑡, 𝑒⟩ {_ 𝑡 ′ 𝑣 . (𝑄 𝑣)@𝑡 ′}

)
(Conversion)

This rule needs a careful reading. It asserts that the precondition 𝑃 entails wpm 𝑒 {𝑄} in 𝑣𝑃𝑟𝑜𝑝
if and only if (in the meta-logic), for any timestamp, the projection of the precondition at this

timestamp entails the WP of DisLog with the postcondition projected at the end timestamp. Notice

that the Conversion rule is an equivalence. While it is not surprising that a specification in DisLog+

is valid in DisLog (the former being more restrictive than the latter), the converse is also true: the

user can use the full power of DisLog rules to verify a DisLog+ interface.

The soundness of DisLog+ is a direct corollary of the soundness of DisLog (Theorem 4.1), thanks

to the Conversion rule.

Theorem 5.1 (Soundness of DisLog+). If wpm 𝑒 {_ _. ⌜𝑇𝑟𝑢𝑒⌝} holds, then 𝑒 is safe.

5.3 Reasoning Rules of DisLog+
We showcase the most important reasoning rules of DisLog+ in Fig. 12, which are similar to the

reasoning rules of the original concurrent separation logic with fractional permissions [Bornat

et al. 2005]. These rules are expressed at the 𝑣𝑃𝑟𝑜𝑝 level, where the horizontal bar stands for 𝑣𝑃𝑟𝑜𝑝

entailment. In particular, the points-to assertion occurring in the rules is the one defined in Fig. 11,

guaranteeing that any load will be safe. Nevertheless, all the rules of Fig. 12 are derived from the

rules of DisLog (§4.3) using the Conversion rule.

The rules we present in Fig. 12 prevent races. Indeed, the only way to allow a race is by sharing

a points-to assertion between tasks, which is only possible via invariants [Jung et al. 2018, §2.2].

Because invariants can only be installed for assertions of type 𝑖𝑃𝑟𝑜𝑝 , but points-to assertions in

DisLog+ are of type 𝑣𝑃𝑟𝑜𝑝 , DisLog+ rules out races by construction. We alluded to this restricted

use of Iris ghost state by referring to DisLog+ as an “almost” standard separation logic (§5.1).

TheAlloc+ rule produces a valid points-to assertion, that is, both the ownership information and

the proof that the default value is safe to read at the ambient timestamp. As the default value 𝑣 occurs

in the expression alloc 𝑖 𝑣 , if 𝑣 is a location, then it was already acquired, and hence already safe.

This is reminiscent of theMementoPre rule (Fig. 6). The Store+ rule is also standard and preserves

the fact that any subsequent load will be safe. The stored value 𝑣 occurs in the expression ℓ [𝑖]←𝑣 ,

and is hence safe to read. The Load+ rule is the standard rule of separation logic, as it internally

rests on the fact that all the values pointed-to by the location are safe to read. Finally, the Par+

rule heavily makes use of the monotonicity of 𝑣𝑃𝑟𝑜𝑝 assertions. Indeed, the two postconditions 𝑄1

and 𝑄2 are valid for the end timestamp of the two forked tasks. Hence, they are also valid for the

end timestamp of the parallel tuple, that succeeds them.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:20 Alexandre Moine, Sam Westrick, and Stephanie Balzer

WOStart

ℓ ↦→ [𝑣] ⇛ ∃𝛿. orig𝛿 𝑣 ∗ ℓ Z⇒𝛿
1
∅

WOFrac

ℓ Z⇒𝛿
(𝑝1+𝑝2) (𝑋1 ∪ 𝑋2) ⊣⊢ ℓ Z⇒𝛿

𝑝1
𝑋1 ∗ ℓ Z⇒𝛿

𝑝2
𝑋2

WOStore

ℓ Z⇒𝛿
𝑝 𝑋

wpm (ℓ [0]←𝑣) {_ _. ℓ Z⇒𝛿
𝑝 {𝑣}}

WOCancel

orig𝛿 𝑣 ∗ ℓ Z⇒𝛿
1
∅ ⇛ ℓ ↦→ [𝑣]

WOEnd

𝑋 ≠ ∅
ℓ Z⇒𝛿

1
𝑋 ⇛ ∃𝑣 . ⌜𝑣 ∈ 𝑋 ⌝ ∗ ℓ ↦→ [𝑣]

Fig. 13. Fractional write-only points-to assertions

5.4 Write-Write Races are Disentangled: Fractional Write-Only Assertions
A write-write race occurs when two or more tasks race to write to a shared location, but neither of

them (or any other task) ever reads from the said location.Write-write races are always disentangled,

as a write does not acquire any location. However, from the point of view of functional correctness,

write-write races are subtle: once the tasks join and the program reads the shared location, all the

outcomes of the race should be taken into account.

To verify such races in more standard Iris settings, the user typically installs an invariant

containing the points-to assertion, quantifies existentially over the pointed-to value, and constrains

it using ghost state. This existential quantification allows the user to change the pointed-to value

while preserving the invariant. In DisLog+, invariants are restricted to 𝑖𝑃𝑟𝑜𝑝 assertions, and thus

the user cannot store a (𝑣𝑃𝑟𝑜𝑝) points-to assertion inside an invariant. To allow the verification

of write-write races in DisLog+ without the need of an invariant, we introduce the notion of a

fractional write-only assertion presented in Fig. 13.

A write-only assertion takes the form ℓ Z⇒𝛿
𝑝 𝑋 , where 𝛿 is a list of ghost names, 𝑝 a positive

fraction less or equal to 1, and 𝑋 a set of possible values. When 𝑝 = 1, the set 𝑋 contains all the

values possibly written to ℓ . The write-only assertion comes with a companion assertion orig𝛿 𝑣 ,
which is persistent and describes the original value of the points-to assertion. The WOStart rule

consumes a points-to assertion and produces an orig assertion and an empty write-only assertion.

The WOFrac rule asserts that the write-only assertion is fractional: the user can always arbitrarily

split and join it. The WOStore rule allows executing a store operation, overwriting the set of

possible values. This rule only requires a fraction of the write-only assertion: a concurrent task

could have another fraction and race to write.

Fig. 13 also includes two rules for getting back a points-to assertion from a write-only assertion.

In both cases, the full fraction 1 must be given back. TheWOCancel rule can be used if no write

occurred, as witnessed by the empty write-only assertion. The rule produces the original points-to

assertion. If at least one write has occurred, the WOEnd rule can be used. The rule produces a

points-to assertion and a proof that the pointed-to value is in the set of possible values.

The definition of write-only assertions appears in our Coq formalization [Moine et al. 2023b].

This definition makes use of standard ghost state and in particular a cancellable invariant [Jung et al.
2018, §7.1] in which a points-to assertion of DisLog is stored. Notably, the assertion ℓ Z⇒𝛿

𝑝 𝑋 carries

not only information on the contents of the cancellable invariant, but also a witness 𝑋 � now that

the set of possible values was allocated before the ambient timestamp. Hence, after an application

of the WOEnd rule, we can reconstruct back a 𝑣𝑃𝑟𝑜𝑝 points-to by canceling the invariant and

exhibiting a witness that the pointed-to value was allocated before the ambient timestamp.

While write-only assertions fit well in the context of 𝑣𝑃𝑟𝑜𝑝 , we stress that they are not specific to

it. Similar definitions can be proposed for regular points-to assertions at the 𝑖𝑃𝑟𝑜𝑝 level, dropping

assertions related to timestamps. In our discussion of write-only assertions, we focus on references,
which in DisLang are represented by arrays of size 1. To target arbitrary arrays, we assume that

our approach can be generalized to a more detailed interface with a per-index write-only points-to

assertion. This generalization should be purely mechanical.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:21

GetClock

ℓ ↦→𝑝 ®𝑤
ℓ ↦→𝑝 ®𝑤 ∗ ®𝑤 � now

MementoPre+

⌜ℓ ∈ 𝑙𝑜𝑐𝑠 (𝑒)⌝ ℓ � now −∗ wpm 𝑒 {𝑄}
wpm 𝑒 {𝑄}

SplitSubjObj

𝑃 ⊣⊢ ∃𝑡 . ↑𝑡 ∗ ⌈𝑃@𝑡⌉

Objectivize

ℓ ↦→𝑝 ®𝑤 ⌈𝑙𝑜𝑐𝑠 (®𝑤)� 𝑡⌉
⌈(ℓ ↦→𝑝 ®𝑤)@𝑡⌉

Fig. 14. Objectivity lemmas

5.5 Many Read-Write Races are Disentangled: Objectivity Lemmas
Read-write races can create entanglement: a task could communicate a memory location it allocated

to a concurrent task. Verifying that such races are safe often requires the full expressiveness of Dis-

Log. However, some read-write races are trivially disentangled: if written values are unboxed (that

is, not allocated in the heap), or were allocated before the beginning of the race. This section

explains how to reason about such races within DisLog+.

In the extreme case where a location points to a block of unboxed values, read-write races are

tolerated without additional work. Recall (Fig. 11) that ℓ ↦→𝑝 ®𝑤 ≜ ⌈ℓ ↦→𝑝 ®𝑤⌉ ∗ ®𝑤 � now. If ®𝑤
contains only unboxed values, the assertion ®𝑤 � now holds trivially true, and we thus have that

ℓ ↦→𝑝 ®𝑤 ⊣⊢ ⌈ℓ ↦→𝑝 ®𝑤⌉. Therefore, the points-to assertion of ℓ can be stored directly inside an

invariant, and read-write races on ℓ can be verified, as long writes concern unboxed values.

In a more general case, Fig. 14 presents an interface of “objectivity lemmas” to reason about

trivially disentangled read-write races. Objectivity lemmas offer two mechanisms. First, they allow

witnessing that a set of locations were allocated before a program point (rules GetClock and

MementoPre+). Second, they allow sharing a points-to assertion through an invariant, and allow

updating this points-to assertion as long as new values are unboxed or were allocated before the

installation of the invariant (rules SplitSubjObj and Objectivize).

To witness that a set of locations were allocated before a given program point, the user can use

two rules and combine their result using the equivalence (𝐴1 ∪𝐴2)� now ⊣⊢ 𝐴1 � now ∗𝐴2 � now.
First, the GetClock rule allows extracting from a points-to assertion that every pointed-by value

was allocated before the ambient timestamp. Second, theMementoPre+ rule asserts that every

location occurring in the current expression was allocated before the ambient timestamp.

The SplitSubjObj rule allows in particular sharing a points-to assertion through an invariant,

while fixing the set of possibilities for newly written values. We present the general form of the rule,

adapted from Cosmo [Mével et al. 2020, §4.1]. The SplitSubjObj rule asserts that owning a 𝑣𝑃𝑟𝑜𝑝

assertion 𝑃 is equivalent to owning its 𝑖𝑃𝑟𝑜𝑝 projection to some timestamp ⌈𝑃@𝑡⌉ (the objective
part of 𝑃), and the information that this timestamp precedes the ambient timestamp, written ↑𝑡 (the
subjective part of 𝑃). The assertion ↑𝑡 is persistent and defined as _𝑡 ′ . 𝑡 ≼ 𝑡 ′. The objective part 𝑃@𝑡
is an 𝑖𝑃𝑟𝑜𝑝 assertion and can hence be shared through an invariant. The subjective part ↑𝑡 cannot
be shared through an invariant, but it can be given to subsequent tasks and used to convert back

the objective part into the original 𝑣𝑃𝑟𝑜𝑝 assertion, by using again the SplitSubjObj rule.

We now focus on a contrived example to illustrate how the objectivity lemmas are intended to

be used, and why an additional rule, Objectivize, is needed. Sec. 6.1 and 6.3 provide more realistic

examples, based on the same idea. Our contrived example is:

let ℓ = alloc 1 () in (ℓ [0] | | ℓ [0]← ℓ)
This example allocates a reference ℓ (that is, an array of size 1), initialized to (). It then forks

two tasks, one reading from ℓ and the other storing ℓ inside itself. This is a trivially disentangled

read-write race: the only written value is allocated before the beginning of the race.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:22 Alexandre Moine, Sam Westrick, and Stephanie Balzer

To verify this example, we first use the Alloc+ rule (Fig. 12) and obtain the assertion ℓ ↦→ [()].
Then, we use theMementoPre+ rule to generate a witness ℓ � now that ℓ was allocated before the

execution of the par. Then, we use the SplitSubjObj rule on the assertion (ℓ ↦→ [()] ∗ ℓ � now).
We obtain the assertion ↑𝑡 ∗ ⌈(ℓ ↦→ [()] ∗ ℓ � now)@𝑡⌉. Unfolding definitions, the objective part is

equivalent to (ℓ ↦→ [()])@𝑡 ∗ ℓ � 𝑡 . We then allocate an invariant containing the assertion:

∃𝑣 . (ℓ ↦→ [𝑣])@𝑡 ∗ ⌜𝑣 = () ∨ 𝑣 = ℓ⌝
Next, we apply the Par+ rule (Fig. 12), and give each task a copy of the invariant, of the assertion ↑𝑡
and of the assertion ℓ � 𝑡 . For the two tasks, the proof is similar. First, we open the invariant. Then,

use the SplitSubjObj rule to convert back the assertion (ℓ ↦→ [𝑣])@𝑡 into ℓ ↦→ [𝑣], instantiating
the existential with 𝑡 . We then execute the load or the store.

Finally, comes the time to close the invariant. We cannot use the SplitSubjObj rule again

because the existential quantification of this rule would generate a fresh timestamp 𝑡 ′, distinct
from 𝑡 . Thankfully, the Objectivize rule comes to save the day. This rule allows us to generate

an assertion ⌈(ℓ ↦→ ®𝑤)@𝑡⌉ as long as we can provide the assertion ⌈𝑙𝑜𝑐𝑠 (®𝑤)� 𝑡⌉, where 𝑙𝑜𝑐𝑠 (®𝑤)
denotes the set of locations of the list of values ®𝑤 . We apply the Objectivize rule, instantiating ®𝑤
by [𝑣], do a case analysis on 𝑣 and end the proof, given that we have at hand the assertion ℓ � 𝑡 .

Notice that, instead of writing ℓ into itself, we could have written any unboxed value, or any

location that was allocated before ℓ itself.

6 EVALUATION
We showcase DisLog+ and DisLog via a range of case studies. We first focus on the scratch example

of Sec. 2, and prove it correct in DisLog+ (§6.1). Then, we illustrate how to reason about a write-

write race using write-only assertions (§6.2) based on a parallel lookup in a lazy collection. We

conclude with a case study on concurrent hashing and deduplication (§6.3 and §6.3).

Deduplication refers to the process of removing duplicates from a collection. This task can be

efficiently done in parallel using concurrent hashing: each task tries to insert elements into a shared

concurrent hash set, which by construction does not store duplicates. If the collection is fully

allocated beforehand, we use a folklore hash set [VerifyThis 2022], and verify both the hash set

interface and the duplication itself entirely within DisLog+ (§6.3), thanks to the objectivity lemmas.

In the case of a lazy collection, where elements may not be already allocated prior to the parallel

phase, the previous approach cannot be directly used: naïvely applying the previous deduplication

algorithm would result in entanglement, and so a different deduplication algorithm is needed. We

address this issue by first partially removing duplicates in parallel with a more subtle hash set, then

getting rid of the remaining duplicates by calling the previous deduplication function. Interestingly,

the proof requires the full power of DisLog (§6.4).

In the case studies, we write a non-recursive function as _®𝑥 .𝑒 , which is a sugar for `_._®𝑥 .𝑒.
where _ denotes an anonymous binding. We add a hat and write

ˆ_ to distinguish top-level functions.

We write 𝑒1 ; 𝑒2 for a sequence, which is encoded as let _ = 𝑒1 in 𝑒2.

6.1 The scratch Example
We first give an interface to a spin-lock. The verified code is a direct translation of the spin-lock

presented earlier (§2.2), which is implemented as a pair of closures sharing a reference to a boolean

named 𝑟 , initialized to false. The first closure attempts a lock by doing a CAS on 𝑟 from false to true.
The second closure releases the lock by setting the reference 𝑟 to false.

Our specification of locks in DisLog+ appears in Fig. 15 and is very similar to the standard

specification of locks in high-order separation logic [Gotsman et al. 2007; Svendsen and Birkedal

2014]. In DisLog+, a lock must be restricted to protect an 𝑖𝑃𝑟𝑜𝑝 assertion Φ, as a lock protects

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:23

⌈Φ⌉
wpm (new_lock []) {_ ℓ. ∃𝑙 𝑢. ℓ ↦→ [𝑙 ;𝑢] ∗ ⌈lock 𝑙 𝑢 Φ⌉}

⌈lock 𝑙 𝑢 Φ⌉
wpm (𝑙 []) {_ 𝑏. ⌜𝑏 = true⌝ −∗ (⌈locked 𝑙⌉ ∗ ⌈Φ⌉)}

⌈lock 𝑙 𝑢 Φ⌉ ⌈locked 𝑙⌉ ⌈Φ⌉
wpm (𝑢 []) {_ _. ⌜𝑇𝑟𝑢𝑒⌝}

Fig. 15. Case study: specification of a spin-lock

an invariant. The precondition of the specification of new_lock consumes Φ. The postcondition
produces a location ℓ pointing to a pair of closures (𝑙, 𝑢), for locking and unlocking, respectively, as
well as an 𝑖𝑃𝑟𝑜𝑝 assertion lock 𝑙 𝑢 Φ, which is persistent and asserts that the 𝑙 and 𝑢 describe a valid

lock. The specification of a call to the closure 𝑙 requires a valid lock, and returns a boolean. If this

boolean is true, then the lock was successfully locked: the user gains the protected assertion Φ as

well an exclusive token locked 𝑙 , witnessing that the lock is now locked. This token is required to

call the closure 𝑢, as well as Φ, which has to be given back when the user wants to unlock the lock.

We conduct the proofs of the interface of Fig. 15 entirely within DisLog+. Indeed, we are in an

extreme case: the shared reference points-to a boolean, which is unboxed. Hence, the points-to

of DisLog+ is equivalent to the points-to of DisLog (§5.5). Thus, we are able to define the lock 𝑙 𝑢 Φ
assertion using an invariant that stores directly the points-to assertion of the shared reference.

We make use of the interface of locks we just presented, as well as the objectivity lemmas, and

verify the following interface for the scratch example.

∗𝑖∈{0,1} ∀ℓ . ℓ ↦→ defaultElemN −∗ wpm (doWork [ℓ]) {_ _. 𝑄𝑖 ∗ ∃ ®𝑤. ℓ ↦→ ®𝑤}
wpm (scratch []) {_ _. 𝑄0 ∗ 𝑄1}

Recall that the scratch example allocates a shared reference, which is protected by a lock while

two parallel tasks attempt to access it. After allocating the shared reference, we have a points-to

assertion of the form shared ↦→ defaultElemN
. We use the GetClock rule to extract an assertion

defaultElem� now. Then, we use the SplitSubjObj rule and obtain the assertion ↑ 𝑡 as well as
the assertion that will be protected by the lock (shared ↦→ defaultElemN)@𝑡 . Each task gets an

assertion ↑𝑡 ∗defaultElem� 𝑡 . Then, if a task wins the lock, we reconstruct a points-to assertion with

the SplitSubjObj rule, call the doWork function, call the cleanScratchPad function, and restore

the invariant protected by the lock using the Objectivize rule.

6.2 Parallel Lookup in a Lazy Collection
The left part of Fig. 16 presents the code of a parallel loop parfor [𝑎;𝑏;ℎ], calling the function ℎ for

each index between 𝑎 and 𝑏. The presented code is a direct translation of the implementation used

in the standard library of MPL [MPL Development Team 2022]. The specification of parfor appears
below and should be unsurprising. The precondition requires, for every index 𝑖 between 𝑎 and 𝑏,

that ℎ [𝑖] is safe and satisfies a postcondition 𝑄 𝑖 . The postcondition of parfor [𝑎;𝑏;ℎ] produces the
iterated conjunction of the postconditions.

The right part of Fig. 16 presents the code of the lookup [𝑘 ;𝑛] function that searches for a

non-unit value in the lazy collection 𝑘 up to index 𝑛. To do so, the function uses a reference 𝑟 , and

a closure ℎ that takes an index 𝑖 , produces the 𝑖-th index of the lazy collection, and writes it in 𝑟 if

it is non-unit. The closure ℎ is then called in parallel for every index between 0 and 𝑛. This is a

typical example of a write-write race: each call on ℎ may write in 𝑟 , but never read from it.

The specification of lookup [𝑘 ;𝑛] appears at the bottom of Fig. 16. Its precondition requires that 𝑘

is valid lazy collection: between indices 0 and 𝑛, 𝑘 produces a value satisfying a predicate 𝐾 . The

postcondition of the specification produces a value 𝑣 and asserts the existence of ®𝑤 , the collection

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:24 Alexandre Moine, Sam Westrick, and Stephanie Balzer

parfor ≜ ˆ̀ 𝑓 ._[𝑎;𝑏;ℎ] .
if (𝑏 − 𝑎) == 0 then ()
else if (𝑏 − 𝑎) == 1 then ℎ [𝑎]
else let𝑚𝑖𝑑 = 𝑎 + ((𝑏 − 𝑎)/2) in
(𝑓 [𝑎;𝑚𝑖𝑑 ;ℎ]) | | (𝑓 [𝑚𝑖𝑑 ;𝑏;ℎ])

lookup ≜ ˆ_[𝑘 ;𝑛] .
let 𝑟 = alloc 1 () in
let ℎ = _[𝑖] . let 𝑥 = 𝑘 [𝑖] in
if 𝑥 == () then () else 𝑟 [0]←𝑥 in

parfor [0;𝑛;ℎ] ; 𝑟 [0]

∗𝑖∈[𝑎;𝑏) wpm (ℎ [𝑖]) {_ _. 𝑄 𝑖}
wpm (parfor [𝑎;𝑏;ℎ]) {_ _.∗𝑖∈[𝑎;𝑏) (𝑄 𝑖)}

∗𝑖∈[0;𝑛) wpm (𝑘 [𝑖]) {𝐾}
wpm (lookup [𝑘 ;𝑛]) {_ 𝑣. ∃ ®𝑤. ⌜found𝑛 ®𝑤 𝑣⌝ ∗ ∗𝑣∈ ®𝑤 (𝐾 𝑣)}

Fig. 16. Case study: parallel lookup in a lazy collection

itself. The found𝑛 ®𝑤 𝑣 judgment asserts that ®𝑤 has size 𝑛 and that either 𝑣 is not the unit value and

occurs in ®𝑤 , or 𝑣 is the unit value and every value in ®𝑤 is the unit value. It is defined as:

found𝑛 ®𝑤 𝑣 ≜ | ®𝑤 | = 𝑛 ∧ (𝑣 ≠ () ∧ 𝑣 ∈ ®𝑤) ∨ (𝑣 = () ∧ ∀𝑤. 𝑤 ∈ ®𝑤 =⇒ 𝑤 = ())
The proof of our specification makes use of a write-only assertion (§5.4). Indeed, just after the

allocation of 𝑟 , we convert its points-to assertion into a write-only assertion 𝑟 Z⇒𝛿
1
∅, and split it

into 𝑛 fractions. Then, we call the parfor specification and instantiates 𝑄 with:

_ _. ∃𝑣 . 𝐾 𝑣 ∗ ((⌜𝑣 ≠ ()⌝ ∗ 𝑟 Z⇒𝛿
1/𝑛 {𝑣}) ∨ (⌜𝑣 = ()⌝ ∗ 𝑟 Z⇒𝛿

1/𝑛 ∅))
This postcondition asserts that the lazy collection produced a value and that if it is not the unit

value, then it was written into 𝑟 , else nothing was written to 𝑟 . After applying the specification

of parfor, we gather all the fractions of the write-only assertion. We then do a case analysis on

whether a non-unit value is in the lazy collection 𝑘 , and convert the write-only assertion back to a

normal points-to assertion accordingly.

6.3 Deduplication via Concurrent Hashing
In the next two sections, we suppose a user-chosen capacity 𝐶 , which bounds the number of

elements within hash sets. We also suppose a hash function from values to integers.

We present a folklore [VerifyThis 2022] concurrent, lock-free, fixed-capacity hash set using open
addressing and linear probing to handle collision [Knuth 1998]. The code of our hash set appears in

the upper part of Fig. 17. The hash set consists of an array of size 𝐶 . When created, the array is

filled with a dummy element 𝑑 , which cannot be inserted in the hash set as it denotes an empty slot.

Inserting an element is done by the add [𝑠;𝑑 ;𝑥] function, where 𝑠 is the hash set, 𝑑 the dummy

element and 𝑥 the element being inserted. The function calls the 𝑝𝑢𝑡 auxiliary closure, which tries

to insert 𝑥 at a given index, originally the hash of 𝑥 , using a CAS. If this index is already taken by a

distinct value, potentially due to a collision, the 𝑝𝑢𝑡 closure tries the next index. (We do not resize:

the 𝑝𝑢𝑡 function loops if the table is full.) The function elems [𝑠;𝑑] function returns the elements

of 𝑠 : that is, all the elements distinct from the dummy element 𝑑 . Occurrences of 𝑑 are removed via

a call to a dedicated filter_compact function, which filters the array, and returns a compacted array

where 𝑑 does not appear anymore. For brevity here, we omit the implementation of filter_compact,
as it can be implemented entirely race-free and therefore disentangled. We instead focus on the

nuance of disentanglement for concurrent operations on the hash set.

The hash set can be used to insert values concurrently and in parallel. However, in order

to preserve disentanglement, the user should only insert values that were allocated before the

beginning of the parallel phase [Westrick 2022]. Indeed, the 𝑝𝑢𝑡 auxiliary function does a CAS

operation on an a priori arbitrary index, which may have been filled by a concurrent task. Our

interface hence restricts insertions to a set of values that were allocated before the hash set itself.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:25

init ≜ ˆ_[𝑑] . alloc 𝐶 𝑑

add ≜ ˆ_[𝑠;𝑑 ;𝑥] .
let 𝑝𝑢𝑡 = ` 𝑓 ._[𝑖] .
if (CAS ℓ 𝑖 𝑑 𝑥 ∨ ℓ [𝑖] ==𝑥) then ()
else 𝑓 [(𝑖 + 1) mod 𝐶] in

𝑝𝑢𝑡 [hash [𝑥] mod 𝐶]

elems ≜ ˆ_[𝑠;𝑑] . filter_compact [𝑠;𝑑]

dedup ≜ ˆ_[𝑑 ; ℓ] .
let 𝑠 = init [𝑑] in
let ℎ = _[𝑖] . add [𝑠;𝑑 ; ℓ [𝑖]] in
parfor [0; length ℓ ;ℎ] ;
elems [𝑠;𝑑]

⌜𝑑 ∉ 𝐴⌝ 𝐴� now

wpm (init [𝑑]) {_ 𝑠. hset 𝑠 𝑑 𝐴 ∅ 1}
⌜𝑥 ∈ 𝐴⌝ hset 𝑠 𝑑 𝐴𝑋 𝑝

wpm (add [𝑠;𝑑 ;𝑥]) {_ _. hset 𝑠 𝑑 𝐴 (𝑋 ∪ {𝑥}) 𝑝}

hset 𝑠 𝑑 𝐴𝑋 1

wpm (elems [𝑠;𝑑]) {_ ℓ. ∃ ®𝑤. ℓ ↦→ ®𝑤 ∗ ⌜deduped ®𝑤 𝑋 ⌝}

⌜𝑑 ∉ ®𝑣⌝ ℓ ↦→𝑝 ®𝑣
wpm (dedup [𝑑 ; ℓ]) {_ ℓ′ . ∃ ®𝑤. ℓ′ ↦→ ®𝑤 ∗ ℓ ↦→𝑝 ®𝑣 ∗ ⌜deduped ®𝑤 ®𝑣⌝}

Fig. 17. Case study: deduplication of an array by concurrent hashing

The representation predicate of a hash set 𝑠 is written hset 𝑠 𝑑 𝐴𝑋 𝑝 , where 𝑑 is the dummy element,

𝐴 a set of values that were witnessed as allocated before the hash set, 𝑋 a set of values that were

inserted, and 𝑝 a fraction in (0; 1]. This predicate can be split and joined, allowing for parallel use.

hset 𝑠 𝑑 𝐴 (𝑋1 ∪ 𝑋2) (𝑝1 + 𝑝2) ⊣⊢ hset 𝑠 𝑑 𝐴𝑋1 𝑝1 ∗ hset 𝑠 𝑑 𝐴𝑋2 𝑝2

Such a predicate is created by the init [𝑑] function. Its precondition requires a witness that a set 𝐴

of values were allocated before the current timestamp, via the 𝐴� now assertion. Such an assertion

can be obtained via the GetClock and SplitSubjObj rules. The precondition also requires that the

dummy element 𝑑 is not an element of 𝐴. The postcondition produces a valid empty hash set with

fraction 1. The specification of add [𝑠 ;𝑑 ;𝑥] requires a valid hash set with an arbitrary fraction, and

that the element being inserted is in the authorized set of values. The specification of elems [𝑠;𝑑]
consumes a hash set with fraction 1 with content 𝑋 and produces an array ℓ with content ®𝑤 .
The deduped ®𝑤 𝑋 assertion asserts that ®𝑤 contains no duplicate and has the same elements as 𝑋 :

deduped ®𝑤 𝑋 ≜ NoDup ®𝑤 ∧ (∀𝑣 . 𝑣 ∈ ®𝑤 ⇐⇒ 𝑣 ∈ 𝑋)

The proofs of the hash set interface of Fig. 17 rest on the objectivity lemmas. Indeed, parallel insertion

may imply read-write races, but only on data allocated before the parallel phase. Intuitively, the

hset predicate involves a cancellable invariant, storing an assertion (𝑠 ↦→ ®𝑤)@𝑡 , as well as an
assertion 𝐴� 𝑡 , where 𝑡 comes from an application of the SplitSubjObj rule. The invariant also

records that 𝑙𝑜𝑐𝑠 (®𝑤) ⊆ 𝐴, allowing the use of the Objectivize rule during the proofs. In addition

to this cancellable invariant, the hset predicate also involves the (persistent) assertion ↑𝑡 , allowing
to retrieve and update the points-to assertion of 𝑠 using the SplitSubjObj rule.

Fig. 17 also presents the code and specification of the dedup [𝑑 ; ℓ] function. This function

deduplicates the array ℓ using our concurrent hash set. The function first creates a hash set 𝑠 .

Then, the function allocates a closure which, given an index 𝑖 , inserts the element ℓ [𝑖] inside 𝑠 .
Next, the function calls the closure in parallel for every index of the array. Finally, the function

returns the elements of the hash set. The precondition requires that ℓ points to an array ®𝑣 and
the existence of a dummy element 𝑑 that is not in the array. The postcondition returns a fresh

location ℓ ′ pointing to an array ®𝑤 that is a deduplicated version of ®𝑣 . Making use of our hash

set, the proof is straightforward: each task gets an assertion hset 𝑠 𝑑 ®𝑣 ∅ (1/|®𝑣 |), enabling them to

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:26 Alexandre Moine, Sam Westrick, and Stephanie Balzer

init ≜ ˆ_[𝑑] .
pair [alloc 𝐶 𝑑 ; alloc 𝐶 (−1)]

add ≜ ˆ_[𝑠;𝑑 ;𝑥 ;𝑢] .
let 𝑝𝑢𝑡 = ` 𝑓 ._[𝑖] .

if tryput [𝑠;𝑑 ;𝑥 ;𝑢; 𝑖] then ()
else 𝑓 [(𝑖 + 1) mod 𝐶] in

𝑝𝑢𝑡 [hash [𝑥] mod 𝐶]

tryput ≜ ˆ_[𝑠;𝑑 ;𝑥 ;𝑢; 𝑖] .
let 𝑙1 = 𝑠 [0] in let 𝑙2 = 𝑠 [1] in
if 𝑙2 [𝑖] ==𝑢 ∨ CAS 𝑙2 𝑖 (−1) 𝑢 then

let 𝑒 = 𝑙1 [𝑖] in
if 𝑒 ==𝑑 then 𝑙1 [𝑖]←𝑥 ; true

else 𝑒 ==𝑥

else false

⌜𝑛 ≠ 0⌝

wp ⟨𝑡, init [𝑑]⟩ {_ 𝑡 ′ 𝑠 . ∗𝑢∈[0;𝑛) (lhset 𝑠 𝑑 𝑢 ∅ 𝑡 ′)}
⌜𝑥 ≠ 𝑑⌝ lhset 𝑠 𝑑 𝑢 𝑋 𝑡

wp ⟨𝑡, add [𝑠;𝑑 ;𝑥 ;𝑢]⟩ {_ 𝑡 ′ _. lhset 𝑠 𝑑 𝑢 (𝑋 ∪ {𝑥}) 𝑡 ′}

∗𝑖∈[0;𝑛) wpm (𝑘 [𝑖]) {_ 𝑣. ⌜𝑣 ≠ 𝑑⌝ ∗ 𝐾 𝑣}
wpm (dedup_lazy [𝑑 ;𝑘 ;𝑛]) {_ ℓ. ∃®𝑣 ®𝑤. ⌜ |®𝑣 | = 𝑛 ∧ deduped ®𝑤 ®𝑣⌝ ∗ ℓ ↦→ ®𝑤 ∗ ∗𝑣∈®𝑣 (𝐾 𝑣)}

Fig. 18. Case study: deduplication of a lazy collection by concurrent hashing

insert their element. At the end, the fractions of the hset predicate are joined, and the specification

of elems concludes the proof.

6.4 Deduplication of a Lazy Collection via Concurrent Hashing
We cannot reuse the hash set of the previous section to deduplicate a lazy collection in parallel: its

elements might not be allocated before the parallel phase. To address this issue, we implement and

verify a more subtle hash set that can store elements allocated by concurrent tasks, while having a

small number of duplicates. After the parallel phase, we use the previous dedup function to get rid

of the remaining duplicates.

The hash set consists of a pair of arrays of the same size 𝐶 , and takes inspiration from the lock
striping technique [Herlihy and Shavit 2012]. The first array is similar to the hash set of the previous

section and contains the inserted elements. The second array stores task identifiers, represented as

(unboxed) integers. Each task is given a distinct identifier. Intuitively, before loading or writing an

index of the first array, a task must ensure with a CAS that its identifier is written inside the second

array at the same index. Otherwise, the task is not allowed to load or write the desired index in the

first array. The races on the second array are disentangled: it stores only unboxed integers. This

design has two consequences. First, duplicates may occur in the hash set: two tasks could insert the

same element at distinct indexes. The number of tasks bounds the number of duplicates. Second,

disentanglement of loads on the first array relies on a subtle invariant: if a task has written its

identifier at an index of the second array, this task uniquely owns the same index of the first array.

Fig. 18 presents the implementation of our new hash set. The init [𝑑] function initializes

the first array with the dummy element 𝑑 and the second array with a dummy identifier −1.
The add [𝑠 ;𝑑 ;𝑥 ;𝑢] function inserts the element 𝑥 inside the hash set 𝑠 with dummy element 𝑑 and

the task identifier 𝑢. This function differs from the add function of the previous section in two

points. First, it is parameterized by the identifier of the task inserting the element. Second, instead

of inserting an element at index 𝑖 using a direct CAS, it uses the auxiliary function tryput.
The tryput function first loads the first array 𝑙1 and the second array 𝑙2 of the hash set. Then, the

function tests if it has already written its identifier at index 𝑖 inside 𝑙2. If yes, or if a CAS succeeds

in writing the identifier 𝑢, the task has unique ownership of the index 𝑖 in 𝑙1. The task can then

load the content of 𝑙1 [𝑖], and tries to insert the desired element.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

DisLog: A Separation Logic for Disentanglement 11:27

To prove this data structure correct, the full power of DisLog is needed. The lower part of Fig. 18

shows the specifications of init and add, where 𝑛 is the number of tasks that will use the hash

set. They involve a representation predicate lhset 𝑠 𝑑 𝑢 𝑋 𝑡 , which asserts that the hash set 𝑠 with

dummy element 𝑑 can be used with the task identifier 𝑢, contains elements in 𝑋 and is valid

at timestamp 𝑡 . The specification of init generates 𝑛 pieces of the lhset predicate, one for each
task. The add function must be called with the correct identifier. The key idea is that the lhset
representation predicate is monotonic with respect to the precedence pre-order. We derive similar

specifications in DisLog+ using the Conversion rule, confining the timestamp-related reasoning.

Given a number of tasks 𝑃 , our deduplication function dedup_lazy [𝑑 ;𝑘 ;𝑛] allocates a hash set

and generates 𝑃 parallel tasks using parfor. For each element of its designated range, each task

sequentially generates the element on-the-fly before trying to insert it inside the lazy collection.

When all tasks end, the dedup_lazy function extracts the elements of the hash set, and remove the

remaining duplicates using the previous dedup function.

The last part of Fig. 18 presents the specification of our deduplication function dedup_lazy [𝑑 ;𝑘 ;𝑛].
The precondition requires that the lazy collection 𝑘 is safe between index 0 and 𝑛, that it returns a

value that is not the dummy element, and that satisfies a given postcondition𝐾 . A call to dedup_lazy
returns a location ℓ and guarantees the existence of ®𝑣 and ®𝑤 such that ®𝑣 contains 𝑛 elements and ®𝑤
is a deduplicated version of ®𝑤 . The postcondition then asserts that the returned location ℓ points

to ®𝑤 , and that for every value 𝑣 in ®𝑣 , the assertion 𝐾 𝑣 holds.

7 MECHANIZATION
All our results are mechanized in the Coq proof assistant [Moine et al. 2023b] using Iris [Jung et al.

2018] and its dedicated Proof Mode [Krebbers et al. 2018]. Rounding and excluding comments,

the definition of the language takes 1200LOC, the proofs of the two logics and their soundness

theorems, 4600LOC, and the verification of case studies 3700LOC.We provide tactics to be usedwhile

reasoning with the two logics, and automation to DisLog+ thanks to the Diaframe library [Mulder

et al. 2022].

8 RELATEDWORK
Disentanglement. There has been a variety of work on disentanglement [Arora et al. 2021, 2023;

Guatto et al. 2018; Raghunathan et al. 2016; Westrick 2022; Westrick et al. 2022, 2020]. This work

focuses on dynamic techniques that exploit disentanglement for improved efficiency, especially

for parallel memory management. In particular, Arora et al. [2021] developed a provably efficient

memory manager for functional programs based on disentanglement, and Arora et al. [2023]

extended this approach to support unrestricted effects by accounting for the cost of entanglement.

These works rely on disentanglement for efficiency and scalability, and leave the task of reasoning

about disentanglement to the programmer. The first formal definition for disentanglement was given

by Westrick et al. [2020] using traces of memory operations, and Westrick et al. [2022] developed a

semantics which detects entanglement during execution. Our semantics for disentanglement is

similar in the sense that it becomes stuck when entanglement occurs. In this context, the logics

developed in this paper statically verify that execution never becomes stuck.

Linearity and Concurrency. Our “plain vanilla” DisLog+ (i.e., without fractional write-only as-

sertions and objectivity lemmas) is related to reasoning approaches establishing race freedom

by a linear treatment of resources. These approaches comprise type systems for the 𝜋-calculus

[Igarashi and Kobayashi 2001, 2004] as well as session type systems [Balzer and Pfenning 2017;

Caires et al. 2016; Jacobs et al. 2022; Lindley and Morris 2015; Toninho et al. 2013]. The latter are

based on a Curry-Howard correspondence established between linear logic and the session-typed

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

11:28 Alexandre Moine, Sam Westrick, and Stephanie Balzer

𝜋-calculus [Caires and Pfenning 2010; Wadler 2012]. Most closely related to our work in terms of

employed techniques is the work by Jacobs et al. [2022], which mechanizes safety of a session-typed

language in Coq, where safety encompasses freedom of memory leaks and deadlocks. The authors

introduce the notion of a connectivity graph, which is acyclic by construction due to linearity, and

use concurrent separation logic to prove acyclicity-preservation graph transformations. Our work,

in contrast, is not confined to a linear setting.

Separation Logics. Multiple Iris-based concurrent separation logic were developed. Among

them, logics targeting weak-memory models inspired DisLog+, namely iGPS [Kaiser et al. 2017],

iRC11 [Dang et al. 2020] and Cosmo [Mével et al. 2020]. Indeed, they all build a high-level logic

on top of a low-level logic using monotonicity arguments. In their case, assertions are monotonic

predicates over the view of the memory: assertions remain valid even after observing additional

memory events. In their case, the view ordering of the memory is a pure assertion. We generalize

their approach to a pre-order within 𝑖𝑃𝑟𝑜𝑝 . Moine et al. [2023a] present a separation logic to reason

about heap space for a sequential language with garbage collection. Their language is similar to

the sequential subset of DisLang. In particular, they also make the difference between top-level

functions and heap-allocated closures. Disentanglement is closely related to garbage collection:

disentanglement ensures in particular that locations occurring in the program are always safe

to read for a task-local garbage collector: this is reminiscent of the free variable rule [Felleisen

and Hieb 1992]. Outside the Iris world, Fu et al. [2010] present a concurrent separation logic with

temporal reasoning. Contrary to them, our notion of time only relates to the pre-order induced by

the fork-join structure of the program.

9 CONCLUSION AND FUTUREWORK
Disentanglement is an important property for parallel performance, but prior work leaves the

challenge of reasoning about disentanglement to the programmer. We address this challenge by

presenting DisLog, the first program logic to formally verify that a program is disentangled. Addi-

tionally, we present DisLog+, which allows for mostly standard separation logic proofs and offers

proofs of disentanglement “for free” for many programs. Using these logics, we prove disentangle-

ment for a number of examples, including several lock-free data structures. Our experience with

DisLog and DisLog+ is that the effort required to prove disentanglement is often small and can

be confined to the daring parts of the program. In future work, we plan to develop a type system

to automatically infer disentanglement where possible. We hope that a semantic type soundness

approach making use of DisLog could be used to prove such a system sound.

DATA AVAILABILITY STATEMENT
The DisLog and DisLog+ logics, their soundness proofs and all our case studies are mechanized (§7).

This mechanization is recorded in an artifact available on Zenodo [Moine et al. 2023b].

ACKNOWLEDGMENTS
We would like to thank Clément Allain and Arthur Charguéraud for insightful discussions, Ike

Mulder for his help with Diaframe, and the anonymous reviewers for their helpful feedback. This

research was supported by NSF grants CCF-1901381, CCF-2115104, CCF-2119352, and CCF-2107241,

and also by a gift from Intel.

REFERENCES
Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. 2016. Dag-calculus: a calculus for parallel

computation. In International Conference on Functional Programming (ICFP). 18–32. https://doi.org/10.1145/2951913.

2951946

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

https://doi.org/10.1145/2951913.2951946
https://doi.org/10.1145/2951913.2951946

DisLog: A Separation Logic for Disentanglement 11:29

Sarita V. Adve. 2010. Data races are evil with no exceptions: technical perspective. Commun. ACM 53, 11 (2010), 84.

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press. http://www.cambridge.org/

9780521033114

Jatin Arora, Sam Westrick, and Umut A. Acar. 2021. Provably Space-Efficient Parallel Functional Programming. Proc. ACM
Program. Lang. 5, POPL, Article 18 (jan 2021), 33 pages. https://doi.org/10.1145/3434299

Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. Efficient Parallel Functional Programming with Effects. Proc. ACM
Program. Lang. 7, PLDI, Article 170 (jun 2023), 26 pages. https://doi.org/10.1145/3591284

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. Proceedings of the ACM on Programming
Languages 1, ICFP (2017), 37:1–37:29. https://doi.org/10.1145/3110281

Hans-Juergen Boehm. 2011. How to Miscompile Programs with "Benign" Data Races. In 3rd USENIX Workshop on Hot Topics
in Parallelism, HotPar’11, Berkeley, CA, USA, May 26-27, 2011.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Permission accounting in separation logic.

In Principles of Programming Languages (POPL). 259–270. http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_

paper.pdf

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis Symposium (SAS) (Lecture Notes
in Computer Science, Vol. 2694). Springer, 55–72. http://www.cs.uwm.edu/~boyland/papers/permissions.pdf

Stephen Brookes. 2007. A semantics for concurrent separation logic. Theoretical Computer Science 375, 1–3 (2007), 227–270.
https://doi.org/10.1016/j.tcs.2006.12.034

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In 21th International Conference
onf Concurrency Theory (CONCUR) (Lecture Notes in Computer Science, Vol. 6269). Springer, 222–236. https://doi.org/10.

1007/978-3-642-15375-4_16

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic Propositions as Session Types. Mathematical
Structures in Computer Science 26, 3 (2016), 367–423. https://doi.org/10.1017/S0960129514000218

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt meets relaxed memory.

Proceedings of the ACM on Programming Languages 4, POPL (2020), 34:1–34:29. https://hal.inria.fr/hal-02351793/

Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding data races in space and time. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018. 242–255.

Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theoretical Computer Science 103, 2 (1992), 235–271. https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf

Mingdong Feng and Charles E. Leiserson. 1999. Efficient Detection of Determinacy Races in Cilk Programs. Theory of
Computing Systems 32, 3 (1999), 301–326. https://doi.org/10.1007/s002240000120

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a Program

Logic for History. In CONCUR 2010 - Concurrency Theory, Paul Gastin and François Laroussinie (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 388–402.

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. 2007. Local Reasoning for Storable Locks

and Threads. In Asian Symposium on Programming Languages and Systems (APLAS) (Lecture Notes in Computer Science,
Vol. 4807). Springer, 19–37. http://dx.doi.org/10.1007/978-3-540-76637-7_3

Adrien Guatto, SamWestrick, Ram Raghunathan, Umut A. Acar, andMatthew Fluet. 2018. Hierarchical memory management

for mutable state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2018, Vienna, Austria, February 24-28, 2018, Andreas Krall and Thomas R. Gross (Eds.). ACM, 81–93. https:

//doi.org/10.1145/3178487.3178494

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming, Revised Reprint (1st ed.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Atsushi Igarashi and Naoki Kobayashi. 2001. A Generic Type System for the Pi-calculus. In 8th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). 128–141. https://doi.org/10.1145/360204.360215

Atsushi Igarashi and Naoki Kobayashi. 2004. A Generic Type System for the Pi-calculus. Theoretical Computer Science 311,
1-3 (2004), 121–163. https://doi.org/10.1016/S0304-3975(03)00325-6

Iris Development Team. 2023. iris.base_logic.lib.gen_heap. https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.

gen_heap.html.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Connectivity Graphs: a Method for Proving Deadlock Freedom

Based on Separation Logic. Proceedings of the ACM on Programming Languages 6, POPL (2022), 1–33. https://doi.org/10.

1145/3498662

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

http://www.cambridge.org/9780521033114
http://www.cambridge.org/9780521033114
https://doi.org/10.1145/3434299
https://doi.org/10.1145/3591284
https://doi.org/10.1145/3110281
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://hal.inria.fr/hal-02351793/
https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf
https://doi.org/10.1007/s002240000120
http://dx.doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1145/3178487.3178494
https://doi.org/10.1145/3178487.3178494
https://doi.org/10.1145/360204.360215
https://doi.org/10.1016/S0304-3975(03)00325-6
https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.gen_heap.html
https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.gen_heap.html
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3498662
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

11:30 Alexandre Moine, Sam Westrick, and Stephanie Balzer

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris. In European Conference on Object-Oriented Programming (ECOOP).
17:1–17:29. https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison Wesley

Longman Publishing Co., Inc., USA.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.

Proc. ACM Program. Lang. 2, ICFP, Article 77 (jul 2018), 30 pages. https://doi.org/10.1145/3236772

Peter J. Landin. 1964. The Mechanical Evaluation of Expressions. Computer Journal 6, 4 (Jan. 1964), 308–320.
Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In 24th European Symposium on

Programming (ESOP) (Lecture Notes in Computer Science, Vol. 9032). Springer, 560–584. https://doi.org/10.1007/978-3-662-

46669-8_23

Alexandre Moine, Arthur Charguéraud, and François Pottier. 2023a. A High-Level Separation Logic for Heap Space under

Garbage Collection. Proc. ACM Program. Lang. 7, POPL, Article 25 (jan 2023), 30 pages. https://doi.org/10.1145/3571218

Alexandre Moine, Sam Westrick, and Stephanie Balzer. 2023b. DisLog: A Separation Logic for Disentanglement - Artifact.
https://doi.org/10.5281/zenodo.8414566 Last version available at: https://gitlab.inria.fr/amoine/dislog.

MPL Development Team. 2022. The MaPLe (MPL) compiler v0.3. https://github.com/MPLLang/mpl.

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: Automated Verification of Fine-Grained Concurrent

Programs in Iris. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 809–824.

https://doi.org/10.1145/3519939.3523432

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: A Concurrent Separation Logic for Multicore OCaml.

Proceedings of the ACM on Programming Languages 4, ICFP, Article 96 (June 2020), 29 pages. http://cambium.inria.fr/

~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In Programming Languages and Systems, Zhong Shao (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 290–310.

Peter W. O’Hearn. 2007. Resources, Concurrency and Local Reasoning. Theoretical Computer Science 375, 1–3 (May 2007),

271–307. http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy E. Blelloch. 2016. Hierarchical memory management for

parallel programs. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 392–406.

https://doi.org/10.1145/2951913.2951935

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In European Symposium on
Programming (ESOP) (Lecture Notes in Computer Science, Vol. 8410). Springer, 149–168. http://cs.au.dk/~birke/papers/icap-

conf.pdf

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In 22nd European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer,
350–369. https://doi.org/10.1007/978-3-642-37036-6_20

VerifyThis. 2022. Challenge 3 - The World’s Simplest Lock-Free Hash Set. https://ethz.ch/content/dam/ethz/special-

interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue. In Certified Programs and
Proofs (CPP). 76–90. https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf

Philip Wadler. 2012. Propositions as Sessions. In ACM SIGPLAN International Conference on Functional Programming (ICFP).
ACM, 273–286. https://doi.org/10.1145/2364527.2364568

Sam Westrick. 2022. Efficient and Scalable Parallel Functional Programming Through Disentanglement. Ph. D. Dissertation.
Carnegie Mellon University. https://www.cs.cmu.edu/~swestric/22/thesis.pdf

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement Detection with Near-Zero Cost. Proc. ACM Program.
Lang. 6, ICFP, Article 115 (aug 2022), 32 pages. https://doi.org/10.1145/3547646

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020. Disentanglement in Nested-Parallel Programs. Proc.
ACM Program. Lang. 4, POPL, Article 47 (jan 2020), 32 pages. https://doi.org/10.1145/3371115

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 11. Publication date: January 2024.

https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/3571218
https://doi.org/10.5281/zenodo.8414566
https://gitlab.inria.fr/amoine/dislog
https://github.com/MPLLang/mpl
https://doi.org/10.1145/3519939.3523432
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
https://doi.org/10.1145/2951913.2951935
http://cs.au.dk/~birke/papers/icap-conf.pdf
http://cs.au.dk/~birke/papers/icap-conf.pdf
https://doi.org/10.1007/978-3-642-37036-6_20
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://doi.org/10.1145/2364527.2364568
https://www.cs.cmu.edu/~swestric/22/thesis.pdf
https://doi.org/10.1145/3547646
https://doi.org/10.1145/3371115

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 Background
	2.2 Running Example
	2.3 Disentanglement: Timestamps, Reads, and How to Reason about Them
	2.4 Going High-Level: Simple Programs Should Have Simple Proofs

	3 Language and Semantics
	3.1 Syntax
	3.2 Computation Graphs and Disentanglement
	3.3 Operational Semantics

	4 DisLog, a Program Logic for Disentanglement
	4.1 Assertions and Weakest Preconditions
	4.2 Timestamps Management
	4.3 Reasoning Rules for Expressions
	4.4 Soundness

	5 A High-Level Logic: DisLog+
	5.1 Don't Poke the Bear
	5.2 Monotonicity to the Rescue
	5.3 Reasoning Rules of DisLog+
	5.4 Write-Write Races are Disentangled: Fractional Write-Only Assertions
	5.5 Many Read-Write Races are Disentangled: Objectivity Lemmas

	6 Evaluation
	6.1 The scratch Example
	6.2 Parallel Lookup in a Lazy Collection
	6.3 Deduplication via Concurrent Hashing
	6.4 Deduplication of a Lazy Collection via Concurrent Hashing

	7 Mechanization
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

