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Although functional programming languages simplify writing safe parallel programs by helping programmers

to avoid data races, they have traditionally delivered poor performance. Recent work improved performance by

using a hierarchical memory architecture that allows processors to allocate and reclaim memory independently

without any synchronization, solving thus the key performance challenge afflicting functional programs.

The approach, however, restricts mutation, or memory effects, so as to ensure “disentanglement”, a low-level

memory property that guarantees independence between different heaps in the hierarchy.

This paper proposes techniques for supporting entanglement and for allowing functional programs to use

mutation at will. Our techniques manage entanglement by distinguishing between disentangled and entangled

objects and shielding disentangled objects from the cost of entanglement management. We present a semantics

that formalizes entanglement as a property at the granularity of memory objects, and define several cost

metrics to reason about and bound the time and space cost of entanglement. We present an implementation of

the techniques by extending the MPL compiler for Parallel ML. The extended compiler supports all features of

the Parallel ML language, including unrestricted effects. Our experiments using a variety of benchmarks show

that MPL incurs a small time and space overhead compared to sequential runs, scales well, and is competitive

with languages such as C++, Go, Java, OCaml. These results show that our techniques can marry the safety

benefits of functional programming with performance.
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1 INTRODUCTION

Architectural advances of the past decade have motivated interest in parallel programming lan-
guages that can utilize modern multicore chip. To solve the challenges of parallel programming,
researchers have proposed functional languages because they can control and even outlaw per-
nicious data races [Adve 2010; Boehm 2011] and can naturally express bulk-parallel operations.
Parallel functional programming has, however, traditionally failed to deliver scalable performance,
because of its hunger for memory, which only increases with parallelism as multiple processor
allocate simultaneously. Tackling this problem proved difficult and even after decades of research
going back to 1980s performance, until recently, remained poor, especially compared to other
managed languages [Arvind et al. 1989; Blelloch 1996; Blelloch et al. 1994; Collins et al. 2014; Fluet
et al. 2011; Guatto et al. 2018; Halstead 1984; Hammond 2011; Li et al. 2007; Marlow and Jones 2011;
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Ohori et al. 2018; Peyton Jones et al. 2008; Raghunathan et al. 2016; Sivaramakrishnan et al. 2014;
Spoonhower 2009; Ziarek et al. 2011].

Recent work develops promising techniques to manage memory in parallel functional programs
by exploiting a property called disentanglement [Arora et al. 2021; Westrick et al. 2020]. Westrick
et al define disentanglement as a program property which guarantees that concurrent threads of a
program are oblivious to each other’s memory allocations. They show that determinacy race free
programs are disentangled and propose a hierarchical heap architecture for managing disentangled
programs. In followup work, Arora et al present a “heap scheduler”, which determines the time and
place (processor) for garbage collection of heaps in the hierarchy and guarantees space and work
efficiency [Arora et al. 2021]. Arora et al’s experimental results show important promise: assuming
disentanglement, parallel functional programs can deliver efficiency and scalability.
These results on disentanglement take a significant step towards bridging performance and

safety in parallel functional programs. But the work assumes disentanglement. This is a significant
restriction because it is difficult for a programmer to predict and eliminate all entanglement. In
addition, many interesting parallel programs use mutation in ways that create entanglement, by
for example, using various forms of concurrency to communicate between concurrent tasks [Acar
et al. 2017; Feldman et al. 2020; Fraser 2003; Gramoli 2015; Harris 2001; Kumar et al. 2017; Lindén
and Jonsson 2013; Michael and Scott 1996; Prabhu et al. 2018; Shun and Blelloch 2014].
In this paper, we design memory management techniques that support all programs, including

entangled ones, while preserving the benefits of the disentanglement-based designs, and realize
the following scalability properties:

• each thread can allocate memory without synchronizing with other threads,
• each thread can reclaim memory without synchronizing with other threads,
• threads may share objects without any copy operations (a.k.a promotions) or object movement
at a cost proportional to the amount of entanglement.

It is not difficult to support entanglement without retaining the properties above. For exam-
ple, we could synchronize concurrent tasks that communicate via a shared cell, we could rely
on a stop-the-world collection algorithm, or we could promote objects accessed by concurrent
tasks/threads [Guatto et al. 2018]. Our goal is to avoid all synchronization and promotion and
ensure good performance and scalability.
We achieve this goal by introducing the concept of object-level entanglement, a concept that

treats entanglement as a continuous property of memory objects as opposed to prior treatment of
entanglement as an all-or-none property of programs. To this end, we present a semantics that
classifies each memory object as entangled or disentangled (Section 2). To determine when an object
becomes entangled, the semantics tracks the threads forked by the program and observes their
memory actions. When threads join, the semantics resolves any entanglement that they created
and updates the corresponding objects to be disentangled. To quantify the amount of entanglement,
the semantics computes two cost metrics, entanglement factor and entanglement ceiling, allowing
us to account for the work/time ond space cost of our memory manager.
We present a memory manager that implements the semantics to distinguish between disen-

tangled and entangled objects and manages them within a hierarchical heap memory architecture
(Section 3). Our memory manager organizes memory as a dynamic hierarchy of heaps that mirrors
the parallel structure of a computation; it does this by creating/joining heaps for each task fork/join
operation. Within the heap hierarchy, the memory manager distinguishes between disentangled
and entangled objects by observing the memory actions of parallel threads using read/write barriers.
For efficiency, the memory manager only uses read and write barriers for mutable data and does
not use any barriers for immutable data and furthermore, the memory manager tracks entangled
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obejcts in a fully concurrent non-blocking fashion, i.e., without requiring any concurrent tasks
to synchronize and being lock free. The memory manager also tracks when threads join and
resolves the entanglement between them punctually, thereby ensuring that entanglement does not
“snowball” to include a large number of objects. We show that the memory manager implements
the semantics precisely, spending work and space proportional to the cost metrics defined by the
semantics.
The memory manager allows threads to allocate and reclaim memory independently with the

requirement that they may not relocate entangled objects. To support this, we design a “hybrid” col-
lection algorithm that mixes non-moving and copying collection. The algorithm pins live entangled
objects in place and copy-collects disentangled objects, satisfying the non-moving requirement
for entangled objects and also retaining the performance benefits of copying reclamation. This
algorithm solves a key challenge in memory management for hierarchical heaps which is to avoid
synchronization and blocking so as not to harm the scalability primitives by creating “choke points”
that require synchronization between concurrently executing tasks or garbage collections.

The proposed techniques use a relatively sophisticated memory architecture and lean heavily on
concurrency for efficiency and scalability. A natural concern therefore is practicality: can these
techniques be made to work well in practice. This paper includes a major implementation effort
that extends the MPL compiler suite for the Parallel ML language to support our techniques.
The extended compiler is able to compile all Parallel ML programs including unrestricted use of
references and mutation. Using this new compiler, we have implemented a variety of benchmarks,
including sophisticated parallel algorithms that use state-of-the-art nonblocking concurrent data
structures. Our experiments show that MPL performs well, incurring relatively small overheads
compared to sequential runs, and scaling well as the number of cores increase. Notably, MPL
delivers performance and compactness simultaneously: parallel runs on dozens of cores usually
consume less memory than sequential runs and deliver significant speedups. We also perform a
more modest comparison with several other languages including Go, Java, Multicore OCaml, and
C++. Our results show that MPL is competitive with these languages.

This paper shows that parallel functional programming—long lauded for its safety benefits—can
perform and scale well. Specific contributions that make this result possible include the following.

• Realization of entanglement as a continous property
• A semantics for identifying entanglement and metrics for quantifying its cost
• Memory management techniques for tracking and managing entanglement
• Proofs that the proposed tracking techniques incur small work/time and space overheads in
terms of the cost metrics
• An implementation that extends theMPL compiler for Parallel ML.
• Parallel benchmarks that use a variety of mutation (memory effects) and their evaluation

2 LANGUAGE AND ENTANGLEMENT

To characterize entanglement as an object-level property, we give a call-by-value functional lan-
guage with fork-join parallelism and mutable references. The language’s operational semantics
classifies memory objects as entangled or disentangled at each step of the evaluation. It identifies
entangled objects by tracking the parallel structure of evaluation and the memory accesses of
mutable references. At the end of evaluation, it computes two cost metrics: an entanglement

factor, n , which quantifies the total amount (size) of entangled objects, and an entanglement

ceiling, X , which tracks the peak amount (size) of entangled objects at any step.
We use the cost metrics to bound the overheads of our entanglement tracking techniques

(Section 3). In particular, we show that the techniques require $ (n) extra work $ (X) extra space.
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Types g ::= nat | g × g | g→g | g ref

Expressions 4 ::= ℓ | B | G | 4 4 | ⟨4, 4⟩ | fst 4 | snd 4 | ref 4 | ! 4 | 4 := 4 | ⟨4 ∥ 4⟩

Memory Locations ℓ

Numbers < ∈ N

Variables G, 5

Storables B ::= < | fun 5 G is 4 | ⟨ℓ, ℓ⟩ | ref ℓ | ref ℓ

Memory ` ∈ Locations ⇀ Storables

Task Identifiers E,D

Task Tree ) ::= Leaf (E) | Par(E,) ,) )

Reader History � ∈ Locations ⇀ 2Tasks

Allocation Map U ∈ Locations ⇀ Tasks

Fig. 1. Syntax

We note that our semantics only observes accesses on mutable objects and does not track accesses
on immutable objects. This allows us to skip read barriers on immutable objects which is crucial
for the performance of our entanglement tracking techniques.

2.1 Syntax

The syntax of the language, shown in Figure 1, includes the usual constructs and in addition
contains parallel pairs ⟨41 ∥ 42⟩ where 41 and 42 may execute in parallel. It includes expressions
ref 4 , ! 4 , and, 41 := 42 which introduce mutable references and operate on them. We can easily
extend the syntax, if desired, to have other mutable objects such as arrays.
To track memory operations, the language defines storables B , which are allocated in memory,

and memory locations ℓ , which are indices into the memory. The language steps storables to
locations by allocating new locations in a memory store ` and mapping them to the corresponding
storables. We write ` [ℓ ↩→B] to extend the memory ` by mapping ℓ to B and write ` (ℓ) to refer the
storable assigned to location ℓ .
Locations are the only irreducible form of the language. Locations that are mapped to mutable

references are called mutable locations and those that are mapped to other types of storables are
called immutable locations. We say that a location ℓ has a pointer to another location ℓ ′ if the
storable at location ℓ mentions ℓ ′. The pointer is mutable if the location ℓ is mutable and otherwise,
if the location ℓ is immutable, its pointers are immutable.

2.2 Task Tree

When evaluating a program, the semantics tracks the structure of evaluation using a task tree. The
task tree arranges the tasks of the program with vertices that represent tasks and edges that express
parent/child relationships between tasks. Each task is either a leaf task that has no children, or an
internal task that has children and is suspended while waiting for its children to complete.

When the evaluation starts, the task tree only contains the root task. The tree grows when a leaf
task forks and creates two child tasks in the tree; this suspends the parent until the children are
evaluated. The tree shrinks when the child tasks join after they finish as they are removed from the
tree; this makes their parent a leaf and it resumes.

We label the tasks of the task tree with identifiersD, E, etc. We represent the leaves of the tree with
the form Leaf (D) and internal vertices with the form Par(D,)1,)2), where )1 and )2 are subtrees.
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2.3 Entanglement Sources, Regions, and Cost Metrics

Tasks create entanglement when they read locations allocated by other concurrent tasks. To track
entanglement, the semantics intercepts the reads of mutable references and identifies entanglement

sources. Each entanglement source causes a region of memory to become entangled.

Entanglement sources. A memory location ℓ becomes an entanglement source when:

• a task D performs a mutable read (dereference) and obtains ℓ as the result, and
• the task D is concurrent with the task that allocated ℓ .

The semantics identifies entanglement sources by maintaining an allocator map U , mapping
each location to the task which allocates it, and a reader history � , mapping each location to a set
of tasks where each task has performed a dereference operation resulting in that location. Given a
task tree ) , reader history � , and allocation map U , the set of entanglement sources, E(� ), is:

E(� ) = {ℓ | ∃ D ∈ � (ℓ) : concurrent(D, U (ℓ))},

where the relation concurrent(D, E) holds if neither D nor E is an ancestor of the other in tree ) .

Entanglement region. An entanglement source affects its vicinity: a task can use the entanglement
source to read locations that are reachable from it and create more entanglement. If the source is
mutable, such reads will be accounted by the reader history. However, the reader history does not
track reads of immutable locations.
To account for this, we associate with each entanglement source an entanglement region

which contains all locations reachable from the source using immutable pointers only. We can
formally define it as follows: let out(ℓ) be the set of locations to which location ℓ points to. Then
the entanglement region of location ℓ , written er(ℓ), is defined by the recurrence:

er(ℓ) =

{

{ℓ} ∪
⋃

ℓ ′∈out(ℓ )
er(ℓ ′), if ℓ is immutable

{ℓ} if ℓ is mutable

If a location ℓ belongs to an entanglement region, we say that ℓ is entangled.

Cost metrics. To quantify the amount of entanglement, the semantics calculates entanglement
factor and entanglement ceiling. The entanglement factor, n , accumulates the amount of memory
that becomes entangled throughout an execution. The entanglement ceiling, X , tracks the maxi-
mum amount of entangled objects at any point of the execution. The ceiling provides a reference for
the peak amount of entanglement by accounting for the fact that this amount decreases when tasks
join. As an example, consider two parallel subcomputations whose executions have entanglement
factors n1, n2 and ceilings X1, X2. Then for their sequential composition, the entanglement factor
is n1 + n2 and the ceiling is max(X1, X2). Because the first computation finishes before the second
begins, its entanglement is resolved and does not affect the second. The entanglement ceiling
accounts for this resolution.

2.4 Semantics

Our semantics, presented in Figure 2, is a transition relation that steps a program state consisting
of six components: allocator map U , reader history � , memory `, entanglement factor n , task tree
) , and expression 4 . The relation has the form: (U ;� ; ` ; n ;) ; 4) → (U ′ ;� ′ ; `′ ; n′ ;) ′ ; 4′).

Fork and parallel evaluation. The rule Fork (see Figure 2) forks two children, E andF to evaluate
the components of the parallel pair ⟨41 ∥ 42⟩. It creates the par-node Par(D, Leaf (E), Leaf (F)). Then,
the rule ParL steps the left side of the parallel pair 41 with subtree )1. The rule ParR for stepping
the right side is similar. Rules ParL and ParR may interleave non-deterministically.
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ℓ ∉ dom(` ) `′ = ` [ℓ ↩→B ] U ′ = U [ℓ ↩→E ]

U ; n ;� ; ` ; Leaf (E) ; B → U ′ ; n ;� ; `′ ; Leaf (E) ; ℓ
Alloc

U ; n ;� ; ` ;) ; 4 → U ′ ; n′ ;� ′ ; `′ ;) ′ ; 4′

U ; n ;� ; ` ;) ; (ref 4 ) → U ′ ; n′ ;� ′ ; `′ ;) ′ ; (ref 4′ )
RefS

U ; n ;� ; ` ;) ; 4 → U ′ ; n′ ;� ′ ; `′ ;) ′ ; 4′

U ; n ;� ; ` ;) ; (!4 ) → U ′ ; n′ ;� ′ ; `′ ;) ′ ; (!4′ )
BangS

` (ℓ ) = ref ℓ ′ � ′ = � [ℓ ′ ↩→� (ℓ ′ ) ∪ {E} ] n′ = n + |er(E (� ′ ) ) \ er(E (� ) ) |

U ; n ;� ; ` ; Leaf (E) ; (! ℓ ) → U ; n ;� ′ ; ` ; Leaf (E) ; ℓ ′
Bang

U ; n ;� ; `0 [ℓ ↩→ref ℓ ′′ ] ; Leaf (E) ; (ℓ := ℓ ′ ) → U ; n ;� ′ ; `0 [ℓ ↩→ref ℓ ′ ] ; Leaf (E) ; ℓ ′
Upd

U ; n ;� ; ` ; Leaf (D ) ; ⟨41 ∥ 42 ⟩ → U ; n ;� ; ` ; Par(D, Leaf (E), Leaf (F ) ) ; ⟨41 ∥ 42 ⟩
Fork

U ; n ;� ; ` ;)1 ; 41 → U ′ ; n′ ;� ′ ; `′ ;) ′1 ; 4′1

U ; n ;� ; ` ; Par(E,)1,)2 ) ; ⟨41 ∥ 42 ⟩ → U ′ ; n′ ;� ′ ; `′ ; Par(E,) ′1 ,)2 ) ; ⟨4
′
1 ∥ 42 ⟩

ParL

U ′ = U {D/E}{D/F} � ′ = � {D/E}{D/F}

U ; n ;� ; ` ; Par(D, Leaf (E), Leaf (F ) ) ; ⟨ℓ1 ∥ ℓ2 ⟩ → U ′ ; n ;� ′ ; ` ; Leaf (D ) ; ⟨ℓ1, ℓ2 ⟩
Join

Fig. 2. Language Dynamics.

Allocation. The rule Alloc (see Figure 2) shows how storables are allocated. The rule steps a
storable B to a fresh location ℓ (ℓ ∉ dom(`)), and extends the memory store ` with location ℓ

mapped to storable B . It assigns the location its allocator task in the allocator map U .

Mutable reads and entanglement factor. The rules RefS and BangS step ref 4 and ! 4 respectively
by stepping the sub expression 4 .

Rule Bang performs the dereference operation and updates the reader history and the entangle-
ment factor. When a task E dereferences a mutable location ℓ to read a location ℓ ′, the rule adds the
reader E to the reader history of location ℓ ′. Because this dereference may increase the amount
of entanglement, the rule updates the entanglement factor. To update the entanglement factor,
the rule first identifies locations entangled because of this read. We can write the set of entangled
locations as ∪ℓ∈E (� )er(ℓ), where er computes the region for a source, � is a reader history, and
E(� ) contains all the sources for history � . This set is the union of entanglement regions of all the
entanglement sources. We write this concisely as er(E(� )).

The rule computes the set difference er(E(� ′)) \ er(E(� )) because the difference represents all
entangled locations in the new (after the read) reader history � ′ that were not entangled in the
old (before the read) history � . The rule increases the entanglement factor by the size of this set,
which it computes with |.| (see Figure 2).

Mutable updates. Rule Upd creates a pointer from a mutable location ℓ to a location ℓ ′. Mutable
updates do not affect entanglement because the task already can access both locations.

Join. Once a parallel pair is fully evaluated, we turn it into a sequential tuple. When this happens,
we remove the children from the tree and as a result, the parent becomes the leaf. The rule Join
replaces the par-node Par(D, Leaf (E), Leaf (F)) with the leaf node Leaf (D). Because the children
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have terminated, we transfer the ownership of the allocations of the children to the parent. The Join
rule does this by substituting task D for the children tasks E andF in the allocator map U .
After the join, the locations entangled between children tasks E andF are no longer entangled

because tasks E andF are no longer concurrent (they have joined). To reflect this in the program
state, the Join rule remaps the accesses of the children tasks (E and F ) to the parent task (D). In
the semantics, the rule modifies the reader history and substitutes task D for tasks E and F . The
modified reader history � ′ is equal to � {D/E}{D/F}.

Entanglement ceiling. Entanglement ceiling quantifies the maximum amount of memory reach-
able from entanglement sources at any step of an execution. Formally, suppose an execution starts
with state (0, proceeds as (0 → (1 . . . (= , and finishes with state (= . Then, the entanglement ceiling,
represented as X , for this execution is max8 |`

+ (E(�8 )) |, where E(�8 ) is the set of entanglement
sources for history�8 and `

+ computes memory reachable from them. Entanglement ceiling bounds
the space cost incurred by our memory manager for managing entanglement, as the memory
manager preserves all memory reachable from entanglement sources.

Other rules. Other rules are standard and we skip them for brevity. The evaluation begins from
the state (∅ ; ∅ ; ∅ ; 0 ;Leaf (E) ;4) where the allocator map U , the reader history � , and the memory `
are empty, the task tree is Leaf (E), the entanglement factor is 0, and 4 is the program. At the end of
evaluation, the program state contains the result and also the entanglement factor of the execution.

3 MEMORY MANAGEMENTWITH ENTANGLEMENT

The memory manager for a parallel functional language must support high rates of allocation and
scalable, parallel collection. Recent work proposed a new memory architecture for task-parallel pro-
grams that assigns each task its own heap and organizes the heaps into a dynamic tree that mirrors
the dependencies between tasks [Westrick et al. 2020]. This architecture allows each processor to
allocate and reclaim heaps independently without any synchronization, as long as the computation
is “disentangled”. Disentanglement disallows inter-heap pointers between heaps belonging to con-
current tasks, removing all memory dependencies between their heaps and enabling independent
memory management. For programs with restricted effects that guarantee disentanglement, prior
work demonstrates provable and practical efficiency [Arora et al. 2021]. However, unrestricted
effects and entanglement present a challenge for this architecture, because they create inter-heap
pointers without any limitation, creating thus dependence between concurrent tasks.

We tackle this challenge by tracking the memory objects affected by entanglement and shielding
other objects and operations from entangled objects. We track entanglement sources—the objects
where entanglement begins and their entanglement regions—the objects that become dependent
on other concurrent tasks as a result of entanglement sources. To reclaim memory independently,
we use algorithms that keep the objects of entanglement regions in place, but move and compact
other objects. By identifying the entanglement region and keeping its objects in place, we resolve
the dependence between concurrent tasks. For example, if a task decides to reclaim its heap, it does
not relocate the entangled objects, allowing the other concurrent tasks to access the objects.
The reader may now be concerned that in an execution a large number of objects will become

entangled. This turns out to be not the case, because entanglement is rare and temporary: entangle-
ment is rare, because it results only due to non-deterministic races; entanglement is temporary
because in fork-join task parallel programs any two concurrently executing tasks will eventually
synchronize and a vast majority will synchronize quickly.

To identify entanglement regions, we use the ideas of our entanglement semantics, described in
Section 2. Doing so correctly and efficiently poses several challenges. First, unlike the semantics,
we must support simultaneous execution of tasks and consider that entanglement may be created
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concurrently by several tasks. Second, like the semantics, we must recognize the resolution of en-
tanglement so as not to penalize computations more than necessary, but do so without maintaining
any access records (reader history in the semantics) per object. Finally, we must mediate between
the concurrent tasks and the collector, e.g., as a task is in the process of pinning the entanglement
region of an object, the objects within the region may be undergoing relocation by the collector.
In the rest of this section, we present our techniques and describe how we overcome these

challenges. Our techniques culminate in a theorem that bound the work (run-time) and space cost
of tracking entanglement in terms of the cost metrics defined by the semantics. Before we dive into
details we illustrate our data structures, give an overview, and consider a simple example.

3.1 Data Structures and Overview

Our memory manager partitions the memory into heaps and gives each task its own heap, which
the task uses to allocate. The memory manager organizes the heaps as a heap tree that mirrors the
task tree. In this tree, the internal heaps correspond to the suspended tasks (that are waiting for
the children to finish) and the leaf heaps are used for new allocations by the active leaf tasks.

The memory manager maintains the heap tree data structure and also maintains, for each task,
a source set for tracking entanglement sources, and a remembered set for tracking other roots.
At a fork, it creates two empty heaps for the children tasks and initializes their source set and
remembered set as empty sets. At a join, it merges the parent heap with the children heaps and
merges the respective source and remembered sets of the children with those of the parent. 1

Barriers and collector. To enable independent memory management, the barriers and the collector
work together and account for pointers between independent heaps by tracking the entanglement
that creates such pointers. The barriers intercept memory accesses and identify entanglement
sources. When they identify a source, they add it to the source set of the task that allocated it. The
collector treats the sources as roots and keeps them live.
The barriers and the collector also achieve a key performance goal: “barrier-less immutable

accesses”. Rather than intercepting immutable accesses to manage entanglement, the barriers pin
the entanglement region of every source and the collector refrains from reclaiming or relocating
pinned objects. The entanglement region spans all immutable objects that may be accessed via the
source: it starts at the source (which may be mutable or immutable) and goes up to its “mutable
frontier”, i.e., it contains all objects reachable from the source by only considering immutable
pointers. Here immutable pointers mean pointers of immutable objects. When a barrier identifies
an entanglement source, it pins the source’s entanglement region to ensure that the collector does
not relocate or reclaim any object of the region. This way the barriers and the collector manage
entangled immutable objects without intercepting immutable accesses.

Example. Consider the heap tree shown in Figure 3 with mutable objects depicted as squares
and immutable objects as circles. The black pointers are either internal to a heap or are between
objects of ancestor-descendant heaps whereas the red pointers are between objects of independent
heaps. The objects at the end of red pointers are entanglement sources. The regions of the sources
are represented with blue bubbles. One of the bubbles wraps only a single square demonstrating
that if the source is mutable, its region only contains the source itself. Another bubble illustrates
that the entanglement region does not extend beyond mutable objects, but may contain series of
immutable objects (circles). As the figure shows, entanglement regions may overlap.

Expired entanglement sources. Entanglement sources increase space usage because the collector
assumes that these sources are live. However, we can remove entanglement sources when two

1The merging of heaps step is a constant time operation and does not involve any copying of data.
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Fig. 3. The figure shows a heap tree with mutable and immutable objects represented as squares and circles

respectively. The black pointers are between ancestor-descendant objects and the red pointers are between

concurrently allocated objects. The targets of the the red pointers are the entangled roots that are added to

the ent-set. Each entangled root has a entanglement region, which includes objects upto a mutable frontier.

The entanglement regions are depicted using blue bubbles. The figure shows two entanglement regions that

overlap and also shows an entangled region with a single mutable object.

tasks join and the entanglement between them is resolved, leading to the expiration of the sources
entangled between them. By removing expired sources, we can remove the space cost of keeping
them live. The challenge lies in tracking when sources expire. To do this, the barriers track an
exp-depth (expiration depth) for each entanglement source. The exp-depth represents the depth at
which all tasks that read the source through a mutable reference join. Once a source’s heap reaches
exp-depth in the heap tree, it is guaranteed that all the relevant joins have occurred and the source
has expired. At this point, we can discard the source.
To avoid any bottlenecks and preserve parallelism, we discard expired sources lazily. When

discarding a source, we must unpin its entanglement region and if we do so eagerly at joins, it
would delay the joins and harm parallelism. We observe that keeping expired sources only impacts
the garbage collector’s efficiency, and therefore we filter expired sources at the time of collection.

Collection algorithms. The barriers guarantee that entangled objects are pinned. With this guar-
antee, we can collect any heap of the tree as long as the we respect pinning and not move pinned
objects. We can use a variety of collection algorithms. In our design, we treat internal and leaf
heaps differently. We collect internal heaps by adapting a concurrent mark-sweep algorithm for our
heap hierarchy. For leaf heaps, we pause the corresponding leaf task and use a hybrid algorithm,
an algorithm that does not relocate pinned objects because they are entangled, but copies and
compacts other objects. The compaction aspect of this algorithm is crucial for our performance
because it improves locality and defragments the heap. In fact, initially we tried a mark-sweep
approach for the leaf heaps and observed performance hits of upto 20% in time and 75% in space.

3.2 Barriers

We use read and write barriers on mutable objects to track entanglement sources, entanglement
regions, and their expiration depth. The barriers ensure the following invariants for each source:

(1) the source is in the source set of the task that allocated it,
(2) the source’s entanglement region is pinned, and
(3) the source’s exp-depth is correct, i.e., it expires once its heap reaches the exp-depth.

We give pseudocode for the barriers that shows how these invariants are maintained. In addition,
the code considers the interaction between the collector and the barrier, e.g., it shows how a barrier

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 170. Publication date: June 2023.



170:10 Jatin Arora, Sam Westrick, and Umut A. Acar

may find a “forwarding pointer” on an object it is about to pin, because the collector has moved it.
To ensure that a barrier is never blocked by a collection and vice versa, our code is lock-free.

1 procedure read (ℓ, C):

2 ℓ ′ = !ℓ

3 C ′ = allocator(ℓ ′ )

4 if (concurrent(C, C ′ )) {

5 (is_source, ed) = get_sinfo(ℓ)

6 if (is_source) {

7 set_sinfo(ℓ ′)

8 return ℓ ′

9 }

10 else {

11 ℓ ′′ = pin_region(ℓ ′ )

12 4C ′ ← 4C ′ ∪ {ℓ
′′ }

13 set_sinfo(ℓ ′′)

14 return ℓ ′′

15 }

16 }

17 // fast path for disentangled reads

18 else return ℓ ′

19

20 procedure set_sinfo (ℓ, C, C ′):

21 sinfo = get_sinfo(ℓ)

22 (is_source, ed) = sinfo

23 if (!is_source)

24 ed = DCADepth (C, C ′)

25 else

26 ed = min (DCADepth (C, C ′), ed)

27 nsinfo = (true, ed)

28 if cas (sinfo_addr(ℓ), sinfo, nsinfo)

29 return

30 else set_source (ℓ, C, C ′)

31 procedure write (ℓ, ℓ ′):

32 C ′ = allocator(ℓ ′)

33 if (allocator(ℓ) ≠ C ′)

34 AC ′ ← AC ′ ∪ { (ℓ, ℓ
′ ) }

35 ℓ ← ℓ ′

36 return

37

38 procedure pin_region (ℓ):

39 ℎ = get_header (ℓ)

40 if (forwarded(ℎ)) {

41 ℓ ′ = get_forward_object (h)

42 return pin_region (ℓ ′)

43 }

44 if (is_pinned(ℎ)) {

45 return ℓ

46 }

47 if (mutable(ℎ)) {

48 if cas (addr_header(ℓ), h, pinned_version(h))

49 return ℓ

50 else return pin_region (ℓ)

51 }

52 else {

53 foreach 8 ∈ ptr_fields(ℓ ) {

54 ℓ ′
8
= pin_region(ℓ [8 ])

55 if (ℓ ′
8
≠ ℓ [8 ]) {

56 ℓ [8 ] ← ℓ ′
8

57 }

58 }

59 if cas(addr_header(ℓ), h, pinned_version(h))

60 return ℓ

61 else return pin_region (ℓ)

62 }

Fig. 4. Pseudocode read shows our read barrier. It uses pin_region and set_sinfo as helper functions to pin

entanglement regions and maintain the exp-depth of entanglement sources respectively. The procedures

account for concurrency with other tasks and also with the garbage collector. All procedures are lock-free.

3.2.1 Read barrier for mutable objects. Procedure read in Figure 4 shows the pseudocode for the
read barrier. It takes as arguments the reader task C and an object ℓ and returns the result of the
read, the object ℓ ′. But first, it performs an entanglement check by comparing task C to the allocator
task of object ℓ ′, task C ′. The procedure allocator returns the task which allocated the object. If C ′ is
concurrent to C (line 4), then the read is entangled, otherwise the read is disentangled. In the case
of disentanglement, the barrier returns without further actions.

In case of entanglement, object ℓ ′ is an entanglement source and the read barrier acts to ensure
the three invariants. It calls the procedure get_sinfo to check if the object is already flagged as a
source. The procedure get_sinfo returns an object called sinfo, a tuple of two elements containing
a boolean flag that tells if the object is a source and the exp-depth of the source. If the object is
flagged as a source then the first two invariants are guaranteed and we only need to ensure the
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third invariant, i.e., ensure that the exp-depth is correct. The read barrier calls set_info, to update
the exp-depth appropriately (discussed later in detail).
If the object is flagged as a source, the barrier (i) calls procedure pin_region to pin the entan-

glement region of ℓ ′, (ii) adds the object to the source set 4C ′ of task C ′, and (iii) calls procedure
set_sinfo to mark the object ℓ ′ as a source and set its exp-depth (see lines 11-13).

3.2.2 Entanglement region and its pinning. We implement pinning by reserving a bit in the header
of each object, and when we set it we say that we pin the object. The procedure pin_region pins
the objects in the entanglement region of its argument, accounting for the facts that that each
object in the region may be relocated by the collector, or may simultaneously be pinned by other
tasks. The procedure’s pseudocode is shown by Figure 4.

Relocation by the collector. First, the procedure checks if its argument object has been relocated
by the collector. When a collector relocates an object, it creates a copy of the object and installs
a forwarding pointer to the copy in the header of the object. The procedure pin_region calls
get_header to read the header of the argument object ℓ and calls forwarded to check if the header is
a forwarding pointer (see Figure 4). If the header is a forwarding pointer, the procedure pin_region
recursively calls itself on the copy of the object and returns (line 40). This recursive call pins the
entanglement region of the object’s copy and returns it.
When the header is not a forwarding pointer, the procedure pin_region checks if the header is

pinned. If the header is pinned, it is guaranteed that the entanglement region of the object is also
pinned (see “pin sharing” below). In this case, the procedure returns (line 45).

Mutable and immutable objects. In the case where the object is not pinned, the procedure
pin_region pins the entanglement region of the object, a region that only includes the object
itself when it is mutable, but goes up to the object’s mutable frontier when it is immutable.

When the object is mutable, the procedure attempts to pin the object by calling cas (which stands
for atomic compare-and-swap) on the header of the object (line 48). The procedure cas takes three
arguments: the address of the header addr_header(ℓ), the expected version of the header ℎ, and
the pinned version of the header pinned_version(ℎ). The cas updates the object’s header if it finds
the expected version ℎ, returning true and otherwise performs no updates, returning false. If the
cas fails, the procedure loops by calling itself.

When the object is immutable, the procedure must pin the entanglement region of the immutable
object, consisting of all objects pointed by the immutable object and their respective entangle-
ment regions. To do so, it recursively calls itself on each object pointed by the immutable object.
Specifically, it calls procedure ptr_fields to obtain a sequence of pointers in the immutable object
and recurses on the 8th pointer ℓ [8], thereby pinning the entanglement region from ℓ [8] (line 54).
However, this recursive call may return a copy of the argument object ℓ [8], if that object has been
forwarded by the collector. In such a case, the procedure pin_region deletes the pointer from the
immutable object to the relocated object and replaces it with a pointer to the copy (ℓ ′8 in line 56).
After it iterates through all the pointers, the procedure attempts to pin the immutable object. If it
succeeds it returns the immutable object, and otherwise, it recurses.

Pin sharing. Multiple tasks may concurrently attempt to pin the same objects, raising the question
if we can use the efforts of one to help others. To do so, tasks pin objects in a specific order. The
order is determined by pointers of immutable objects: if an immutable object ℓ points to another
object ℓ ′, then object ℓ ′ is pinned before object ℓ . This ordering guarantees that when an object
is pinned all objects in its entanglement region are also pinned, because the region only contains
immutable pointers from the object. Thus, if an object is pinned, we can return without pinning
any further, see line 45 in Figure 4.
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3.2.3 Expiration depth of entanglement sources. An object becomes an entanglement source when
it is read by concurrent tasks through some mutable object. When all such concurrent tasks join
with the allocator task of the source, the object ceases to be a source and becomes expired. We can
determine when a source expires by tracking its depth in the heap tree. An entanglement source
expires when its depth in the heap tree becomes shallower than its exp-depth. The exp-depth of a
source can be calculated as follows:

Definition 3.1. The exp-depth of an entanglement source ℓ is equal toDCADepth(E0, E1 . . . E=, U (ℓ)),
where tasks E0 . . . E= read object ℓ from some mutable object and the function DCADepth calculates
the depth of the deepest common ancestor of a set of tasks in the task tree.

The key insight is that when the readers (E0 . . . E=) and the allocator (U (ℓ)) of the entanglement
source have joined, the depth of the entanglement source becomes equal to the depth of their
deepest common ancestor. This depth is the exp-depth.
The procedure set_sinfo calculates the exp-depth in an online fashion. It takes the source ℓ , its

allocator C , and its reader C ′ and sets the sinfo object of source ℓ . Recall that sinfo is a tuple which
contains a flag that tracks whether the object is a source and also contains its exp-depth. We give
the pseudocode of the procedure in Figure 4. The procedure first reads the sinfo of the object ℓ by
calling get_sinfo and then checks if the object is already a source. If not, then the exp-depth of the
source is equal to DCADepth(C, C ′). Otherwise, if the object is a source, it already has exp-depth ed,
and the procedure picks the minimum among that depth and the depth DCADepth(C, C ′). To update
the object’s depth, it creates a new sinfo object named nsinfo, containing the correct exp-depth.
Then, it attempts to install the nsinfo on the object using a cas and if it fails (because another task
updated the sinfo), it tries again. In our implementation we flatten the sinfo tuple to a word.

3.2.4 Write barrier for mutable updates. The write barrier tracks inter-heap pointers created by
mutable updates and adds such pointers to the remembered sets. We show its pseudocode in
procedure write of Figure 4. It takes as arguments a mutable object ℓ and an object ℓ ′, and compares
their allocator tasks to check if they are in different heaps (line 33). If so, it adds the tuple (ℓ, ℓ ′) to
the remset (AC ′ ) of task C

′. After this, it performs the update. The collector treats remembered set
entries as roots, ignoring those that may have become internal as a result of joins.

3.3 Cost Analysis

We analyze the performance of our entanglement tracking algorithm by giving bounds on its work
cost and space cost (in terms of liveness). Our proofs are in the Appendix.

Theorem 3.2 (Work bound). An execution with work, requires $ (, + n) work to execute

including the cost of entanglement tracking, where n is the entanglement factor of the execution.

Our entanglement tracking algorithm has three sources of overhead: identifying entanglement
sources, pinning their entanglement region, and maintaining the exp-depth. The work bound shows
that these overheads are localized to entangled objects, i.e., accesses to disentangled objects are not
penalized. The bound also confirms that the penalty to entangled objects is additive: it is paid once
per entangled object and does not increase with the number of times an entangled object is accessed.
Our proof assumes that contention per object is low, i.e., we assume that each compare-and-swap
(cas) instruction succeeds after a constant number of attempts.

Theorem 3.3 (Liveness bound). If ' is the maximum live memory of an execution of a parallel

program, then maximum live memory of that execution, including the impact on liveness from

entanglement tracking, is $ (' + X), where X is the entanglement ceiling of that execution.
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Our entanglement tracking algorithm keeps entanglement sources live and increases the liveness
of the execution for the garbage collector. The bound states that the algorithm only keeps $ (X)
additional memory live, confirming that our entanglement tracking is precise: entanglement sources
are kept live only for the duration they are entangled.

3.4 Garbage Collection

The collector collects internal heaps and leaf heaps with different algorithms. For internal heaps,
the collector uses a snapshot-at-the-fork strategy: before a task forks and its heap becomes internal,
the collector creates a snapshot of the heap’s live objects. In this snapshot, the collector includes
the source set and the remembered set of the heap. Later, at the time of collection, the collector uses
this snapshot and keeps the reachable objects of the “snapshotted heap” in place and reclaims the
unreachable objects of the heap; it does so with a concurrent mark-sweep algorithm. The collector
deletes the snapshot, after a join, when the internal heap becomes a leaf again.

For leaf heaps, the collector uses a hybrid collection algorithm that does not move pinned objects
(because they may be read by other tasks), but relocates unpinned objects to compact the heap. The
algorithm runs in three parts. First, it prepares the roots by deleting expired entanglement sources
from the source set and by deleting stale entries from the remembered set. Second, it traces the
heap from these roots, keeping the pinned objects in place and relocating the others. Third, it frees
the garbage objects, and also frees old objects that were relocated. In all three parts, the algorithm
accounts for concurrent readers, consisting of other tasks that concurrently attempt to read and
pin the objects of the heap. To guarantee that the collector never blocks a concurrent reader, the
hybrid algorithm is lock-free. We discuss how it traces a heap and frees objects below. We leave the
details of filtering entanglement sources and remembered set entries to the Appendix.

3.4.1 Tracing. To trace a heap, our hybrid algorithm maintains amark bit in the object header
and maintains a to-space for relocating the objects. Initially, every object is unmarked. By the
end, the algorithm ensures that every pinned object is marked and every unpinned object is either
garbage (unreachable) or has a forwarding pointer, pointing to the object’s copy in the to-space.

The algorithm uses a stack of objects to trace the heap and begins by adding all the roots to the
stack. Then, it iteratively pops an object from the stack and checks if the popped object is pinned.
If so, it marks the object; otherwise, if the object is unpinned, it copies the object to the to-space
and installs a forwarding pointer in the header of the object (unless the object is already in the
to-space). After either marking the object or copying it, the algorithm adds the pointers within the
object to the stack. This continues until the stack is empty.

1 procedure try_copy (ℓ):

2 h = get_header (ℓ)

3 if (is_pinned (h)) return ℓ

4 ℓ ′ = copy_in_tospace(ℓ)

5 if cas (addr_header(ℓ), h,

6 fwd_ptr(ℓ ′))

7 return ℓ ′

8 else {

9 delete_in_tospace (ℓ ′)

10 return ℓ

11 }

Fig. 5. procedure try_copy

To copy an unpinned object to the to-space, the collector
must account for concurrent readers that may attempt to pin the
object. Figure 5 presents the pseudocode that accounts for such
readers. The procedure try_copy takes an object ℓ and attempts
to copy it to the to-space. The procedure reads the header of the
object and checks if the header is pinned. If the header is pinned,
it returns the object without copying it. Otherwise, it copies
the object and attempts to replace the object’s header with a
pointer to the object’s copy. This pointer is called a forwarding
pointer because it “forwards” the readers of the object to the
object’s copy. The procedure try_copy uses a cas operation
(atomic compare and-swap) to install the forwarding pointer
on the header. If the cas succeeds, the procedure returns the
copy of the object. The cas operation can fail if a concurrent
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reader changes the header by pinning the object before the procedure replaces the header with a
forwarding pointer. Because the object is pinned in this case, the procedure deletes the copy and
returns the original object.

3.4.2 Freeing objects. By tracing the heap, the hybrid algorithm pins or relocates live objects to
the to-space, leaving the garbage unpinned objects in the from-space. But, it cannot immediately
free unpinned objects of the from-space as they may be accessed by concurrent tasks that have not
detected that the algorithm has relocated them. Specifically, a read barrier issued by a concurrent
task may attempt to pin an unpinned object of the from-space because it has not reached the point
where it discovers the forwarding pointer. The algorithm can only free objects in the from-space
after all barriers have crossed this “discovery point” and discovered the relocation. The read barrier
discovers the relocation when it attempts to pin the object with a cas operation (compare-and-swap),
but the operation fails because the collector has forwarded the object. (See line 11 in Figure 4: the
location ℓ ′ may be in the from-space because the object has been relocated to location ℓ ′′. In this
case, the procedure pin_region discovers the forwarding pointer to location ℓ ′′ after a cas fails.)

To ensure that all read barriers have crossed the discovery point, the hybrid algorithm employs
epoch-based reclamation [Brown 2015]. 2 This technique retires from-space objects instead of
freeing them, marking the objects with the current global epoch. It frees retired objects only after
all the read barriers have crossed into a future epoch. Because epochs are incremented after read
barriers cross the discovery point, all retired objects from the old epoch become safe to reclaim.
To amortize the work cost of retiring, our algorithm retires whole pages instead of individual

objects. That is, the algorithm retires a page only if all objects within that page are garbage. As
an optimization, the algorithm avoids the cost of retiring by directly freeing pages that are not
susceptible to entanglement. (For example, if a garbage page is only reachable from the “local roots”
of the collection, then the algorithm frees the page directly.)
After the algorithm retires the unpinned objects of the from-space, it traces the to-space to

unmark the marked objects.

4 IMPLEMENTATION

To support parallel functional programming with effects, we extend the run-time system of the
open-source 3 MPL (MaPLe) compiler for Parallel ML [Arora et al. 2021; Westrick et al. 2022, 2020].
MPL supports the entire Standard ML language and extends it with parallel tuples, i.e., fork-join
parallelism. We extend the runtime system to support entanglement by implementing the memory
management techniques described in Section 3. We also extend these techniques to (i) directly
support operations such as compare-and-swap, (ii) remove all barriers on unboxed values, and (iii)
reduce the overhead for mutable accesses, by only calling the read barrier on select mutable objects.

Reducing barrier overhead with entanglement frontier. Our entanglement tracking algorithm issues
a read barrier on mutable reads, thereby triggering an entanglement check: when a task E reads a
mutable location ℓ , the check performs a graph query that tests whether the read is entangled, i.e.,
if concurrent(E, allocator(ℓ)). This check has non-zero overhead and slows the barrier down. We
reduce the read barrier’s overhead by reducing the frequency of these checks with a conservative
heuristic.
We track an entanglement frontier which spans all mutable objects whose reads may cause

entanglement. We only perform entanglement checks for frontier objects. When a frontier object is

2Epoch-based reclamation is a technique developed for lock-free data structures which face a similar problem: when a

thread removes a node from a lock-free data structure, it is not safe to immediately free that node, because other threads

may still access the node.
3https://github.com/MPLLang/mpl
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read, the read barrier triggers an entanglement check as described in Section 3. In contrast, when a
non-frontier object is read, the read barrier skips entanglement checking and takes a fast path, a
path has no overhead except for the cost of testing whether the object is in the frontier. Testing
this is cheap: we maintain a bit in the object header and set it for frontier objects. Since the object
is already being read, testing this bit has near zero overhead.

Our barriers add two types of mutable objects to the frontier because they may create entangle-
ment. First, if an object points to another object outside its heap, it allows a task to read a pointer
into another task’s heap and create entanglement. The write barrier detects when a task creates an
inter-heap pointer from an object (to some other object) and adds the object to the entanglement
frontier. Second, when an object is at the boundary of an entanglement region, it is entangled,
and other (concurrent) tasks may read it, creating more entanglement. The read barrier adds such
objects to the frontier when it pins an entanglement region.

Frontier objects become non-frontier after joins. Because joins merge heaps, they turn inter-heap
pointers into internal pointers and void the first type of frontier objects. Furthermore, because joins
expire entangled objects, they void the second type of frontier objects. To identify these changes to
the frontier, the barriers associate a“join point” with every frontier object. When a frontier object
reaches its join point, it is removed from the frontier. We reserve a bit in the header of mutable
objects and toggle it to add/remove objects from the frontier.

5 EVALUATION

In this section, we evaluate and establish the practicality of our techniques. We compare our
implementation, calledMPL*, against multiple other language implementations (including both
procedural and functional languages) and demonstrate its efficiency and scalability.

Benchmarks. Our evaluation considers two different benchmarking suites, totaling 48 benchmarks
across five different languages.

The first suite includes 26 different benchmarks written in MPL*. Half (thirteen) of these bench-
marks are highly concurrent and entangled. To implement these benchmarks, we first implemented
a number of non-blocking concurrent data structures, including Harris’s non-blocking list [Harris
2001], the Lindén-Jonsson priority queue [Lindén and Jonsson 2013], theMichael-Scott non-blocking
queue [Michael and Scott 1996], Kumar et al.’s persistent arrays [Kumar et al. 2017], and many
others. Using these, we then implemented sophisticated parallel algorithms for

• quantum circuit synthesis,
• delaunay triangulation,
• various graph analyses, including reachability/connectivity, $ (:)-spanner, low-diameter
decomposition boundaries, etc., and
• deduplication via concurrent hashing.

In addition, we implemented synthetic benchmarks that operate on concurrent data structures by
mixing parallelizable work with updates and queries on the shared data structure(s).
Some of our benchmarks—such as the quantum synthesis and delaunay triangulation—are

complex and have taken multiple person-months of work (each) to implement. The benchmarks
are heavily concurrent; for example, the quantum circuit synthesizer implements a parallel version
of the Solovay-Kitaev algorithm [Dawson and Nielsen 2006; Kitaev et al. 2002] and uses both
concurrent hash tables and concurrent lists. Other benchmarks are from various problem domains,
such as graph analysis, text processing, digital audio processing, image analysis and manipulation,
numerical algorithms, computational geometry, and others; some are from prior work [Westrick
et al. 2022].
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Our second benchmarking suite contains the implementations of eight benchmarks in four
languages (other thanMPL*) : C++, Go, Java, and Multicore OCaml. The C++ benchmarks come
from PBBS [Anderson et al. 2022; Shun et al. 2012] and ParlayLib [Blelloch et al. 2020]. We ported
these to Go, Java, and OCaml, while re-using existing Java implementations of two benchmarks.
We selected these benchmarks for diversity (covering both disentanglement and entanglement, as
well as both memory- and compute-intensive benchmarks), and for ease of implementation, as it
takes significant work to implement each benchmark in multiple languages.

Methodology. To measure timings, we first do a warmup by running the benchmark back-to-back
for at least 5 seconds, and then do 20 back-to-back runs. All of this happens in the same program
instance. The number reported is the average of the 20 runs, and the warmup is disregarded.

To measure space usage, we measure the average of the maximum resident set size (as reported
by Linux) of 20 back-to-back runs of the benchmark. Back-to-back runs are executed in the same
program instance to ensure that any effects of memory management amortization thresholds are
taken into account (for example, a garbage collection might run only once every five runs). We use
the maximum resident set size measurement because it takes into account all potential sources of
space usage, including allocation freelists, GC metadata, etc., thus allowing for comparison across
systems with different memory management strategies.
We write )% for time on % processors, and similarly '% for the max residency on % processors.

Unless stated otherwise, all times are in seconds and all space numbers (max residencies) are in GB.

Experimental Setup. We run all of our experiments on a 72-core Dell PowerEdge R930 consisting of
4 × 2.4GHz Intel (18-core) E7-8867 v4 Xeon processors, 1TB of memory, and running Ubuntu version
16.04.7 with Linux version 4.10.0-40-generic x86_64. In Section 5.1, we use MLton version
20210117. In Section 5.2, we useMPL version 0.3. For cross-language comparisons (Section 5.5),
we use the following systems: multicore OCaml version 5.0.0+dev4-2022-06-14 with default set-
tings and the library domainslib version 0.4.2; Go version 1.18.4; g++ version 10.3.0 with the
jemalloc library, and the compiler flags -O3, -march=native, -std=c++17, and -mcx16; Java Open-
JDK version 11.0.14. For Java, we used the G1GC collector (which we found yielded the best per-
formance) and controlled the number of threads with the setting -XX:ActiveProcessorCount=# .

5.1 Overheads and Scalability

In this section, we compare against theMLton [MLton] compiler, which is a compiler for (sequential)
Standard ML. OurMPL* extendsMLtonwith support for parallelism; there are minimal compilation
differences between the two systems. (For MLton, we compile the sequential elision of each
benchmark.) This comparison therefore allows us to determine the overheads and scalability of
our memory manager by using executables produced byMLton as a sequential baseline. We also
measure here the entanglement factor n of each benchmark.
The results of the comparison are shown in Figure 6. The column )B is the sequential baseline

time, using MLton. The columns )1 and )72 are the times of our MPL* on 1 and 72 processors,
respectively. Similarly, 'B is the maximum residency of the sequential baseline, and '1 and '72
are the single-processor and 72-processor residencies of MPL*. The overheads )1/)B indicates
the performance of MPL* on 1 processor relative to the sequential baseline; smaller numbers
are favorable. Speedups on 72 processors in comparison to the sequential baseline are calculated
as )B/)72, where larger numbers are favorable. To compare space usage, we compute the space
blowup on ? processors as '?/'B . This number indicates how much more memoryMPL* uses in
comparison to the sequential baseline. Larger blowups indicate more space usage.

We first observe that, on average,MPL* achieves 31x speedup on 72 processors overMLton. These
speedups range from 13-49x because some of these benchmarks, like interval-tree, quant-synth,
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Time (s) Space (GB) Bytes Entangled

OV SU BU1 BU72

Benchmark )B )1
)1
)B

)72
)B

)72
'B '1

'1
'B

'72
'72
'B

n72

centrality 14.7 20.9 1.42 .466 32 33 6.6 .20 5.8 .18 0

delaunay 8.65 17.1 1.98 .667 13 2.7 1.7 .63 11 4.1 9.5 M

find-influencers 14.5 15.5 1.07 .433 33 35 7.4 .21 5.8 .17 .23 M

grep 1.43 2.16 1.51 .041 35 4.6 .61 .13 .85 .18 0

harris-linked-list 5.84 5.97 1.02 .163 36 .034 .021 .62 .094 2.8 3.3 M

hash-dedup 2.46 3.79 1.54 .081 30 6.8 .92 .14 1.3 .19 .56 M

interval-tree 2.89 4.30 1.49 .067 43 .53 .12 .23 .64 1.2 0

ldd-boundary 22.3 30.8 1.38 .705 32 31 7.0 .23 17 .55 .12 G

linden-pq 5.84 6.98 1.20 .193 30 .14 .11 .79 .15 1.1 9.3 M

linefit 3.01 2.34 0.78 .149 20 8.5 8.2 .96 8.3 .98 .16 M

max-indep-set 13.2 16.3 1.23 .379 35 27 7.0 .26 5.7 .21 0

mcss 1.88 4.74 2.52 .080 23 4.3 4.1 .95 4.1 .95 0

ms-queue 5.95 7.94 1.33 .303 20 .27 .18 .67 3.3 12.2 80 M

msort-int64 3.30 4.45 1.35 .085 39 5.0 .66 .13 .93 .19 0

nearest-nbrs 1.32 1.69 1.28 .039 34 1.5 .98 .65 2.1 1.4 0

persistent-arr 4.61 7.60 1.65 .109 42 .65 .60 .92 1.5 2.3 3.6 K

quant-synth 12.9 17.2 1.33 .319 40 4.6 .99 .22 12 2.6 1.8 M

quickhull 2.50 3.59 1.44 .115 22 15 18 1.2 20 1.3 0

range-query 14.1 16.2 1.15 .287 49 13 4.5 .35 4.3 .33 0

reachability 11.3 14.7 1.30 .412 27 37 5.9 .16 15 .41 82 K

reverb 1.01 1.36 1.35 .043 23 6.9 1.5 .22 2.0 .29 0

seam-carve 7.58 7.95 1.05 .280 27 1.2 .13 .11 .33 .28 0

spanner 11.2 16.9 1.51 .421 27 34 8.8 .26 46 1.4 5.9 M

tokens 1.55 1.89 1.22 .042 37 13 1.1 .08 1.2 .09 0

triangle-count 4.67 5.18 1.11 .110 42 2.7 .76 .28 1.2 .44 0

wc 5.18 7.44 1.44 .120 43 1.9 3.6 1.9 3.6 1.9 .28 M

geomean 1.34 31 0.34 0.68

Fig. 6. Comparison with sequential baseline: times, max residencies, overheads (OV), speedups (SU), space

blowups (BU), and entanglement factors (n).

1 10 20 30 40 50 60 70
Processors

1

10

20

30

40

50

60

70

Sp
ee

du
p

centrality
delaunay
find-influencers
grep
harris-linked-list
hash-dedup
interval-tree
ldd-boundary
linden-pq
linefit
max-indep-set
mcss
ms-queue

1 10 20 30 40 50 60 70
Processors

1

10

20

30

40

50

60

70

Sp
ee

du
p

msort-int64
nearest-nbrs
persistent-arr
quant-synth
quickhull
range-query
reachability
reverb
seam-carve
spanner
tokens
triangle-count
wc

Fig. 7. Speedups

and triangle-count are compute bound and see higher speedups, whereas others like seam-carve,
delaunay, and reverb arememory bound. The Figure 7, wherewe plot the speedup of MPL* relative
toMLton, also shows this trend. Some benchmarks plateau in speedup before 72 processors (e.g.,
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delaunay, seam-carve, linefit). This is expected, as these benchmarks are memory-bound. All
other benchmarks scale approximately linearly with the number of processors.

Across the board, we also see that MPL* almost always uses less memory than MLton (Figure 6).
On average, MPL* uses approximately 30% less memory on 72 processors than MLton does se-
quentially. This is becauseMPL* has a more aggressive GC policy thanMLton; in anticipation of
high memory usage for parallel applications,MPL* collects aggressively. One could make MLton

just as aggressive by adjusting MLton’s default GC parameters. In the Appendix, we compare with
aggressive settings for MLton that force it to spend more time on GC and use less space. Even
under this setting, MPL*’s memory blowup on 72 processors increases to only 2x on average.
For reference, we report entanglement factors n72, which are measured in terms of the number

of bytes pinned by the entanglement manager on 72 processors. We observe that entanglement
factors are low in practice. Approximately half of the benchmarks considered here are naturally
disentangled, and therefore have an entanglement factor of 0. Amongst the entangled benchmarks,
we can see that the number of bytes pinned is generally small, especially in comparison to the
maximum resident memory needed for 72 processor execution. For example, ldd-boundary has
n72 = .12GB, which is less than 1% of its resident memory '72 = 17GB.

Altogether, these results demonstrate thatMPL* is able to achieve significant speedups while
controlling space usage effectively.

5.2 Disentanglement is Not Penalized

To show that our entanglement management techniques do not penalize disentanglement, we
compare ourMPL* againstMPL (version 0.3).MPL is specialized for disentangled programs, and
cannot run entangled programs. For this comparison, we include all disentangled benchmarks
from Figure 6 as well as multiple other programs from the Parallel ML Benchmark Suite, for a
total of 30 benchmarks. Across these benchmarks, we find thatMPL* generally has very similar
performance toMPL, with no time overhead on average, and less than 4% space overhead on average.
(Full data available in the Appendix.) These results show thatMPL* is able to take advantage of
disentanglement just as well MPL, while being significantly more general: that is, MPL* can safely
execute any program, not just disentangled programs. The results are also a sanity check for our
theory (Theorem 3.2), which bounds the overhead of tracking entanglement to$ (n), where n is the
amount of entanglement. Because these benchmarks are disentangled, we expect to see 0 overhead.

5.3 Entanglement Management Overhead
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1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

Ov
er

he
ad

Fig. 8. Stress test for entanglement man-

agement overhead

To further investigate the cost of managing entanglement,
we developed a stress test for which we can control the
amount of entanglement. The total program work, live mem-
ory, and parallelism of this benchmark all stay approximately
the same regardless of the amount of entanglement intro-
duced. On this stress test, we varied the amount of entangle-
ment and measured the overhead on 72 processors. Specif-
ically, if the benchmark is G% entangled, then overhead is
the ratio ) (G)/) (0), where ) (G) is the running time with
G% entanglement. The results of this stress test are shown
in Figure 8. First, we observe that the overhead increases
linearly with the amount of entanglement. It is 1 (i.e., no
overhead) at 0% entanglement and grows upto a factor of
approximately 3 near 100% entanglement. This agrees with
our theory: the work of entanglement tracking increases
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Time (s) on 72

processors:

C/C++ MPL* (Ours) Go Java OCaml

C C
M M M

M G G
M J J

M O O
M

hash-dedup .043 0.53 .081 1.00 .127 1.57 .052 0.64 .174 2.15

linefit .150 1.01 .149 1.00 .157 1.05 .405 2.72 1.18 7.92

mcss .038 0.47 .080 1.00 .105 1.31 .507 6.34 .588 7.35

msort-int64 .058 0.68 .085 1.00 .280 3.29 .242 2.85 .489 5.75

primes .072 0.58 .124 1.00 .189 1.52 .211 1.70 .166 1.34

sparse-mxv .050 1.04 .048 1.00 .092 1.92 .089 1.85 .727 15.15

tokens .020 0.48 .042 1.00 .484 11.52 .256 6.10 .947 22.55

wc .058 0.48 .120 1.00 .171 1.43 .052 0.43 .910 7.58

geomean 0.63 1.00 2.07 2.00 6.30

Fig. 9. MPL* vs C++, Java, Go, and OCaml: time (seconds) on 72 processors. The time

ratios are relative to MPL* and show how fast it runs w.r.t. other languages (larger

ratios favor MPL*). The geomeans show the average of these ratios.

Space (GB) on 72

processors:

C/C++ MPL* (Ours) Go Java OCaml

C C
M M M

M G G
M J J

M O O
M

hash-dedup 1.40 1.08 1.30 1.00 1.10 0.85 7.70 5.92 1.10 0.85

linefit 8.80 1.06 8.30 1.00 8.40 1.01 23.0 2.77 33.0 3.98

mcss 4.80 1.17 4.10 1.00 4.90 1.20 27.0 6.59 4.20 1.02

msort-int64 1.40 1.51 .930 1.00 1.70 1.83 2.40 2.58 6.80 7.31

primes .920 2.30 .400 1.00 .470 1.17 1.90 4.75 1.80 4.50

sparse-mxv 4.90 1.09 4.50 1.00 6.30 1.40 17.0 3.78 7.30 1.62

tokens 1.70 1.42 1.20 1.00 4.60 3.83 15.0 12.50 17.0 14.17

wc 2.50 0.69 3.60 1.00 3.60 1.00 5.60 1.56 1.90 0.53

geomean 1.22 1.00 1.36 4.20 2.47

Fig. 10. MPL* vs C++, Java, Go, and OCaml: space (GB) on 72 processors. The space

ratios are relative to MPL* and show the proportion of memory MPL* saves, w.r.t.

other languages. (larger ratios favor MPL*). The geomeans average these ratios.

linearly with entanglement (Theorem 3.2). Furthermore, the constant factor hidden in the work
bound $ (, + n) is relatively small (approximately 3 in this case)

5.4 GC Performance

We collected a number of statistics on GC performance and summarize the data here (the full table
is in the Appendix). We observed that the total amount of time spent on GC is generally low, with
about half of the benchmarks on 72 processors spending less than 1% work on GC, with a maximum
of 25%. This indicates that GC work is well-amortized against program work. We also observe that
in almost all benchmarks (22 out of 26), the average time for a leaf GC is less than a millisecond.
Furthermore, the leaf GCs reclaim approximately three times as much memory than internal GCs.
This is because (i) leaf GCs can happen simultaneously and independently on % processors, and (ii)
leaf heaps largely contain young allocations and leaf GC benefits from the generational hypothesis

5.5 Cross-Language Comparisons

In this section, we compare MPL* with four other languages, C/C++, Go, Java, and multicore
OCaml, all of which support nested fork-join parallelism in the same style as MPL*. In Go, we
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use goroutines and channels to implement nested fork-join parallelism. In Java, we use parallel
streams and the Java Fork/Join framework. (Note also that we account for Java warmup in our
benchmarking methodology, discussed at the top of Section 5.) In OCaml, we use parallel primitives
from the domainslib library.
We compare these languages on eight benchmarks, which come from the PBBS benchmark

suite [Anderson et al. 2022; Shun et al. 2012] and the ParlayLib [Blelloch et al. 2020] library of
parallel algorithms and data structures. We port these benchmarks from C/C++ into each of Parallel
ML, Go, Java, and OCaml, preserving the underlying algorithms. For example, an array of structs in
C/C++ is represented as (i) an array of tuples in Parallel ML and OCaml, (ii) an array of structs in Go,
and (iii) an array of objects in Java. Where possible, we use external codes implemented by experts.
In Java specifically, we use the ConcurrentHashMap and parallelSort implementations from the
java.util.concurrent and java.util.Arrays libraries, respectively, for the hash-dedup and
msort-int64 benchmarks. Three benchmarks use lock-free data structures and have entanglement:
hash-dedup, linefit, and wc.

Results. The results of this comparison are shown in Figures 9 and 10. Figure 9 shows the time of
each benchmark, as well as the ratio relative to ourMPL*; Figure 10 similarly reports space of each
benchmark. Here, the abbreviations are C for C/C++, M for our MPL*, G for Go, J for Java, and O

for OCaml. For example, in the time figure, the column J is the running time (in seconds) for Java,
and next to it, the column J/M is the ratio of Java’s running time toMPL*’s running time. Higher
ratios are favorable for MPL*.
The results show that among memory-managed languages, MPL* is faster and more space-

efficient on all but two benchmarks. In particular, on benchmarks hash-dedup and wc, Java runs
faster thanMPL* but consumes more space; on the same benchmarks, both Go and OCaml consume
less space than MPL*, but run slower than it. On all other benchmarks MPL* performs better
in terms of both speed and space consumption. On the tokens benchmark, we observe a large
performance gap between MPL* and the other languages, where MPL* is significantly faster and
also consumes less space. This performance difference is due to the memory layout of a key data
structure—specifically, an array with tuples for elements.MPL* is able to “unbox” the tuples and
flatten them into the array; note that MPL* is based on MLton which performs optimizations such
as data flattening. In Java, each element of the array is “boxed” and therefore incurs additional
allocations. We confirmed that by pre-allocating the elements of the array and excluding this cost,
the runtime of Java improves by approximately 2x. We similarly investigated the performance of
Go and OCaml on this benchmark, and observed similar behavior.
We also compare against the C/C++ versions of these benchmarks, which (for our purposes

here) can be considered the “performance goal”. For time performance,MPL* is generally within
a factor of 2 of C/C++, and in two cases matches C/C++ (linefit and sparse-mxv). We observe
that MPL* is also competitive in terms of space, with approximately 22% less space on average.
This space difference is due to additional space consumed by the allocator used in the C/C++
benchmarks. In particular, the C/C++ benchmarks use an allocator provided by ParlayLib [Blelloch
et al. 2020], which is primarily optimized for running time performance and incurs some space
overhead to support fast parallel allocation. With the help of the ParlayLib authors, we were able
replace the allocator with jemalloc [Evans 2006] for some benchmarks. In particular, we were able
to rerun hash-dedup, msort-int64, and tokens benchmarks using jemalloc, and observed that
on these benchmarks, jemalloc yields similar time performance while using less space. (For these
benchmarks, jemalloc uses 0.75x space relative toMPL* on average; in comparison, the default
ParlayLib allocator uses 1.4x space relative toMPL* on this subset of benchmarks.) However, we
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also observed that some benchmarks crash with jemalloc, and we could not determine the source
of the bug. We have relayed these findings to the ParlayLib authors.
Overall, our conclusion from these results is that MPL* is generally fast, scalable, and space-

efficient. Our experiments suggest that parallel functional programming can deliver the same
performance and scalability as procedural and imperative languages.

6 RELATED WORK

Advances on multicore chips have motivated the design and implementation of parallel program-
ming languages or extensions to existing programming languages. A variety of programming
languages and libraries have converged on task parallelism, a form of parallelism that allows pro-
grammers to express parallelism at a high level of abstraction, leaving task creation and scheduling
decisions to the run-time system and a task scheduler [Acar et al. 2002, 2018, 2016a; Blelloch et al.
1999; Muller and Acar 2016]. C-based task-parallel systems include Cilk/Cilk++ [Blumofe et al. 1995;
Frigo et al. 2009; Intel Corporation 2009a], Cilk-F/L [Singer et al. 2020, 2019], I-Cilk [Muller et al.
2020], Grace [Berger et al. 2009], and Intel’s TBB [Intel Corporation 2009b]. Deterministic Parallel
Java [Bocchino, Jr. et al. 2009], Fork-Join Java [Lea 2000], and Habanero Java [Imam and Sarkar 2014],
extend the memory-managed Java language to support task parallelism. The memory-managed
X10 [Charles et al. 2005] was designed from grounds up with concurrency and parallelism in mind
and supports async-finish style of task parallelism. The Rust language supports concurrency and
parallelism and can ensure memory safety without using a garbage collector [Rust Team 2019].
The memory-managed Go language support task parallelism with go-routines. Parallel functional
languages extend Haskell [Chakravarty et al. 2007; Keller et al. 2010; Koparkar et al. 2021; Marlow
and Jones 2011] and the ML family, including Manticore [Fluet et al. 2008, 2011], MPL [Arora
et al. 2021; Westrick et al. 2022, 2020], MultiMLton [Sivaramakrishnan et al. 2014; Ziarek et al.
2011], multicore OCaml [Sivaramakrishnan et al. 2020], and SML# [Ohori et al. 2018]. Many of the
aforementioned languages are garbage collected and employ a variety of memory management
techniques.
Our work builds on the prior work on disentanglement and the MPL project. Disentanglement

was initially developed for purely functional programs [Raghunathan et al. 2016], and then extended
to include all determinacy-race free programs [Westrick et al. 2020]. More recently, techniques
were proposed to prevent undefined behavior in case of entanglement by safely terminating the
program when entanglement occurs [Westrick et al. 2022]. Other work presented a provably and
practically efficient memory manager for determinacy-race free programs [Arora et al. 2021]. This
was achieved by introducing a “heap scheduler” that takes decisions about when and where (on
what processor) a heap should be collected. By assuming determinacy-race-freedom, the authors
are able to use sequential execution as the “baseline” for their bounds. We expect the techniques
presented in this paper can enjoy work and space bounds similar to those of Arora et al [Arora
et al. 2021], but establishing such bounds seems challenging because of the difficulties of defining a
sequential baseline in the presence of arbitrary mutation (memory effects) and non-determinism.
The idea of organizing the memory of a parallel programs as a hierarchy of heaps goes back

to 1990s [Alpern et al. 1995] and has since been explored by different researchers [Bauer et al.
2012; Krishnamurthy et al. 1993; Numrich and Reid 1998; Yelick et al. 1998]. MPL’s approach differs
from prior work because in MPL hierarchical heaps are fully dynamic and are managed (created,
maintained, destroyed, and collected) without programmer intervention.

Other parallel functional languages—such as Haskell, Manticore, and Multicore OCaml—employ
a two-level memory hierarchy, consisting of a private heap for each processor, and a shared heap.
They rely on promotions of shared objects or stop-the-world collections [Auhagen et al. 2011; Le
and Fluet 2015; Marlow and Jones 2011; Sivaramakrishnan et al. 2020]. Promotions require copying
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reachable objects from a shared pointer and can be triggered by scheduler actions, making it difficult
to prove bounds on their run time and space impact. Indeed, promotions have proved to be expensive
in practice [Guatto et al. 2018; Sivaramakrishnan et al. 2020]. Blelloch and Cheng [Blelloch and
Cheng 1999] present provably efficient memory managers for real-time garbage collection for a
parallel dialect of ML. Their techniques rely on replication to ensure concurrency, which can incur
significant practical overheads.
One of our key contributions is to support unrestricted mutation in the hierarchical heap

architecture, and do so without breaking the key advantages of the architecture: independent
allocation, reclamation and promotion-free sharing.We propose techniques for dynamically tracking
“entanglements” that are created by cross-pointers between concurrent heaps. For garbage collection,
we use both concurrent and a hybrid collector. The concurrent collector never moves objects and
is similar to standard mark-sweep collectors [Jones et al. 2012] except that it only collects a
single heap (region) of memory. The hybrid collector moves non-entangled objects and leaves the
entangled objects in place. To accomplish this, our hybrid collector uses techniques that are similar
to the “mostly copying” collector of Bartlett [Bartlett 1988, 1989] and the Customizable Memory
Manager of Attardi et al [Attardi and Flagella 1994; Attardi et al. 1998], which was designed as a
garbage collector for C++ programs. The basic approach is to track “quasi” or “ambigious” pointers,
which may be pointers to objects and prevent these objects from moving during garbage collection.
Hosking [Hosking 2006] also presents a mostly copying algorithm; this work allows for concurrency
but relies on a stop-the-world phase to collect roots. Our approach applies ideas from these to
hierarchical heaps and entanglement but differs in the specific barriers used and specific ways of
handling pinned objects. These culminate in techniques that allow threads to allocate, access, and
reclaim memory independently without using locks or stop-the-world pauses.

In this paper, we consider fork-join programming model, which is a good fit for compute intensive
applications but makes it difficult if not impossible to express others such as, interactive parallel
applications, for which futures remain a better fit [twi 2011; fac 2015; Acar et al. 2016b; Halstead
1984; Muller et al. 2020; Muller and Acar 2016; Muller et al. 2017, 2018a,b]. It would be interesting
to extend these techniques to more general models of computation including futures.

7 CONCLUSION

Prior research proposed memory management techniques that meet the pressing memory demands
of parallel functional programs, but only if they do not create entanglement. In this paper, we
generalize the proposed techniques to support all programs by treating entanglement as a continu-
ous, object-level property. Specifically, we distinguish between two types of objects: disentangled
objects, which constitute a majority of objects, and entangled objects, which are typically a mi-
nority but present a significant obstacle to efficient memory management. We develop algorithms
that identify, track, and manage entangled objects to mitigate their impact, allowing for effective
memory management of the majority objects (i.e., of disentangled objects). Our implementation and
experiments demonstrate the effectiveness of this approach, establishing that functional languages
can deliver both performance and scalability, while offering important safety benefits.
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8 DATA AVAILABILITY

All of our implementation and data are recorded in the artifact [Arora et al. 2023]. The artifact
is published on Zenodo and it contains the code for our languageMPL* and the code for all our
benchmarks. We leave further instructions to the document on Zenodo.
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