Dynamic Mechanism Design for Markets with Strategic Resources

Swaprava Nath1 Onno Zoeter2 Yadati Narahari1 Chris Dance2

1 Indian Institute of Science, Bangalore 2 Xerox Research Centre Europe

Conference on Uncertainty in Artificial Intelligence

July 15, 2011
Markets with Strategic Resources: An Example

Task difficulties (Low, Medium, High) and team efficiencies (Low, Medium, High) follow Markov chain.

Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.

If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).
Markets with Strategic Resources: An Example

At round t

- Tasks
 - Alice
 - Carol
 - Dave

- Teams
 - Bob

At round $t + 1$

- Tasks
 - Alice
 - Carol
- Teams
 - Bob
 - Dave

- Task difficulties (Low, Medium, High) and team efficiencies (Low, Medium, High) follow Markov chain.

- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.

- If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).
Markets with Strategic Resources: An Example

- Task difficulties (Low, Medium, High) and team efficiencies (Low, Medium, High) follow a Markov chain.
- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.
- If difficulties and efficiencies are known to the planner, this is a Markov decision problem (MDP).
Markets with Strategic Resources: An Example

At round t

- **Tasks**: Alice, Teams: Bob, Carol, Dave

At round $t+1$

- **Tasks**: Alice, Teams: Bob, Carol, Dave

- Task difficulties (**Low**, **Medium**, **High**) and team efficiencies (**Low**, **Medium**, **High**) follow Markov chain.

- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.

- If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).

This talk: task difficulties and team efficiencies (elements in the state of the MDP) are *private information* of *strategic agents*: this is a *mechanism design* problem.
MDP notation for our setting

Agents 0 task owner (one for ease of notation)
\{1, \ldots, n\} =: N set of resources.

State is concatenation of agent types

\[\theta_t = (\theta_{0,t}, \theta_{1,t}, \ldots, \theta_{n,t}) \]
\[\theta_{i,t} : i's \ type, \ e.g. \ \theta_{i,t} \in \{L, M, H\} \]

Action is an assignment of resources to tasks

\[a_t \in 2^N \] for our 1 task example.

State transition function is Markov and independent per agent

\[F(\theta_{t+1} | a_t, \theta_t) = \prod_i F_i(\theta_{i,t+1} | a_t, \theta_{i,t}) . \]
MDP notation for our setting: interdependent valuations

Reward function is sum of all agents’ valuations (social welfare)

\[R(\theta_t, a_t) = \sum_{i=0}^{n} v_i(a_t, \theta_t) \]

with

\[v_0(a_t, \theta_t) \geq 0 \] denoting returns

\[v_i(a_t, \theta_t) \leq 0 \] for \(i > 0 \) denoting costs.

Note: valuations are dependent, compare with \(v_i(a_t, \theta_{i,t}) \).

E.g. task owner’s return depends on task difficulty and team strength.
Consider infinite horizon problem with discount parameter δ.

Controller’s goal is to determine and execute optimal (static) policy π^*

$$W^*(\theta_t) = \max_a \left[R(a, \theta_t) + \delta \mathbb{E}_{a, \theta_t} W^*(\theta_{t+1})\right] \quad (\text{maximal social welfare})$$

$$\pi^*(\theta_t) \in \arg \max_a \left[R(a, \theta_t) + \delta \mathbb{E}_{a, \theta_t} W^*(\theta_{t+1})\right].$$
Markets with strategic resources

In our strategic setting everything remains common knowledge, except θ_t, $\theta_{i,t}$ is only observed by i.

We consider a quasi-linear setting: agents care about sum of discounted utilities:

$$\sum_{t=0}^{\infty} \delta^t u_{i,t}$$

with

$$u_{i,t} = v_{i,t} + p_{i,t} \quad (utility)$$

$p_{i,t} > 0$ possible payment from controller to agent

$p_{i,t} < 0$ possible payment from agent to controller.
Mechanism designer’s goals
Design a repeated game with information exchange

At time t

Agents observe true types

$\theta_{0,t}$
$\theta_{1,t}$
$: $
$\theta_{n,t}$

Agents report types

$\hat{\theta}_{0,t}$
$\hat{\theta}_{1,t}$
$: $
$\hat{\theta}_{n,t}$

Mechanism Designer’s decision problem

Allocation a_t
Payment p_t

that achieves

Efficiency (EFF): mechanism yields $W^*(\theta_t)$ under equilibrium reporting strategies.

Truthfulness (Incentive compatibility) (EPIC): it is optimal for i to report $\theta_{i,t}$ truthfully when asked.

Voluntary participation (Individual rationality) (EPIR): agents stand to gain something from participating (non-negative utilities).

We consider (provide proofs for) *ex-post* equilibria: agent i does not make assumptions about other agent’s types, but does assume that other agents report truthfully.

Strictly speaking *within period* ex-post to emphasizes that agents can’t foresee the future.
Where does this work fit in?

<table>
<thead>
<tr>
<th>Valuations</th>
<th>STATIC</th>
<th>DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>VCG Mechanism</td>
<td>Dynamic Pivot Mechanism</td>
</tr>
<tr>
<td></td>
<td>(Vickery, 1961;</td>
<td>(Bergemann and Välimäki, 2010)</td>
</tr>
<tr>
<td></td>
<td>Clarke, 1971;</td>
<td>(Athey and Segal, 2007)</td>
</tr>
<tr>
<td></td>
<td>Groves, 1973)</td>
<td>(Cavallo et al., 2006)</td>
</tr>
<tr>
<td>Dependent</td>
<td>Generalized VCG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mezzetti, 2004)</td>
<td></td>
</tr>
</tbody>
</table>

- **VCG guarantees**
 - DSIC (stronger than EPIC), EFF, under certain conditions EPIR
- **GVCG guarantees**
 - EPIC, EFF, under certain conditions EPIR
- **DPM guarantees**
 - EPIC, EFF, EPIR, in non-exchange economies, budget balanced
Where does this work fit in?

<table>
<thead>
<tr>
<th></th>
<th>STATIC</th>
<th>DYNAMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>VCG Mechanism (Vickery, 1961;</td>
<td>Dynamic Pivot Mechanism (Bergemann and Välimäki, 2010)</td>
</tr>
<tr>
<td></td>
<td>Clarke, 1971; Groves, 1973)</td>
<td>(Athey and Segal, 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Cavallo et al., 2006)</td>
</tr>
<tr>
<td>Dependent</td>
<td>Generalized VCG (Mezzetti, 2004)</td>
<td>Generalized Dynamic Pivot Mechanism</td>
</tr>
</tbody>
</table>

- VCG guarantees
 - DSIC (stronger than EPIC), EFF, under certain conditions EPIR
- GVCG guarantees
 - EPIC, EFF, under certain conditions EPIR
- DPM guarantees
 - EPIC, EFF, EPIR, in non-exchange economies, budget balanced
- GDPM guarantees
 - EPIC, EFF, EPIR, but requires more reports from agents than DPM
The Interdependent Value Setting

- If values are dependent, *Efficiency* and *Truthfulness* cannot be guaranteed with single stage mechanisms even in static setting \(^1\)
 - Without imposing any voluntary participation or budget constraints
- Need to split the decisions of allocation and payment \(^2\)

The Interdependent Value Setting

- If values are dependent, *Efficiency* and *Truthfulness* cannot be guaranteed with single stage mechanisms even in static setting \(^1\)
 - Without imposing any voluntary participation or budget constraints
- Need to split the decisions of allocation and payment \(^2\)

The Generalized Dynamic Pivot Mechanism (GDPM)

The task is to design the allocation and payments on the reported types and values.

The allocation maximizes the social welfare taking reports as truth,

\[a^*(\hat{\theta}_t) \in \arg \max_{a_t} E_{a_t, \hat{\theta}_t} \left[\sum_{i \in N} v_i(a_t, \hat{\theta}_t) + \delta E_{\theta_{t+1}|a_t, \hat{\theta}_t} W(\theta_{t+1}) \right] \]

The payment to agent \(i \) at \(t \) is given by,

\[p^*_i(\hat{\theta}_t, \hat{v}_t) = \sum_{j \neq i} \hat{v}_{j,t} + \delta E_{\theta_{t+1}|a^*(\hat{\theta}_t), \hat{\theta}_t} W_{-i}(\theta_{t+1}) - \underbrace{W_{-i}(\hat{\theta}_t)}_{\text{Const. indep. of } \hat{\theta}_{i,t}} \]

Expected discounted sum of returns to other agents, based on reported valuations and allocation for this round.
Main Theorem

Theorem

GDPM is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.

Proof ingredients: The allocation and payment is chosen such that

- If everyone reported true $\theta_{i,t}$'s, each would have got their marginal contribution, $W(\theta_t) - W_{-i}(\theta_t)$ as the payoff (check for time instant t).
- Goal: to show that reporting true $\theta_{i,t}$'s maximizes i's payoff, given everyone else is reporting truth (EPIC).
- At t, player i cares about,
 - Current stage payoff, $v_i(a_t, \theta_t) + p_i^*(\hat{\theta}_t, \hat{v}_t)$ and,
 - Future payoffs, i.e., the expected discounted sum of the value + payment from $t + 1$ to ∞.
 - From time $t + 1$, the expected discounted sum of payoff of agent i is $W(\theta_{t+1}) - W_{-i}(\theta_{t+1})$, assuming agents report truthfully from $t + 1$.
- Putting together, agent i's utility is,

$$v_i(a_t, \theta_t) + p_i^*(\hat{\theta}_t, \hat{v}_t) + \mathbb{E}_{\theta_{t+1}|a_t, \theta_t}(W(\theta_{t+1}) - W_{-i}(\theta_{t+1}))$$

- This is maximized at the true θ_t reports (proved in paper).
The use of second phase reports

Proof ingredients:
Necessity of the second reporting phase:

- Controller can only influence assignment.
 With the second reporting phase, i can only influence his payoff via the assignment, i.e. his utility is of a form
 \[f(a^*(\hat{\theta}_{i,t})) \, . \]
 Since controller optimizes what i cares about, truthfulness is optimal.

- Without second phase, payment to i would be based on
 \[v_{j,t}(a_t, \hat{\theta}_{i,t}, \theta_{-i,t}) \quad (j \text{'s predicted value, based on } i \text{'s report}), \]
 instead of
 \[\hat{v}_{j,t} \quad (j \text{'s reported value, which is independent of } i \text{'s report}). \]
 What controller optimizes has form
 \[f(a^*(\hat{\theta}_{i,t}), \hat{\theta}_{i,t}) \, , \]
 hence i has a richer optimization problem than the controller, and might strategically manipulate his report $\hat{\theta}_{i,t}$.

Why care? A naïve alternative mechanism

Is obtaining efficiency straightforward?

Consider an alternative naïve mechanism

- The allocation maximizes the social welfare taking reports as truth.
- Task owner pays K to every assigned team (independent of outcome).

If you were Carol, would you report your low effectiveness state?
Simulation Setting

- 3 players: 1 Task owner (Image owner), 2 Teams (Annotators)
- $\theta_{i,t} \in \{L, M, H\}$ corresponding to the difficulty/effectiveness levels for all agents: $3^3 = 27$ possible states.
- Value structure represents law of diminishing returns.
- Transition probability matrices reflect risk of reduction in effectiveness when assigned, probability of recovery when not assigned.
- Annotators are symmetric, we need to study only one.
Simulation Results

Truthfulness:

Utility to the Center (GDPM)

Utility to Agent $i = 1$ (GDPM)

Allocation Profile for true reports (circle/cross = Selected/Not)

True type profiles (H: High, M: Medium, L: Low) -->
Simulation Results (Contd.)

Comparison with a Naïve Mechanism (CONST):

Utility to the Center (Constant Payment)

Utility to Agent i = 1 (Constant Payment)
Simulation Summary

Payment consistency (PC): task owners only make payments, teams only receive payments.

Budget balance (BB): controller does not need to inject money into the exchange.

<table>
<thead>
<tr>
<th></th>
<th>EFF</th>
<th>EPIC</th>
<th>EPIR</th>
<th>PC</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>CONST</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- All of these properties may not be simultaneously satisfiable
Discussion

Strategic extensions of dynamic decision problems are very important in practical problems.

We have presented a dynamic mechanism for exchange economies. It is (within period, ex-post)
 truthful, efficient, and voluntary participatory
but not
 budget balanced, payment consistent
in a setting with
 independent type transitions, and dependent valuations.

See also Cavallo et al. ’09 who consider dynamic problems with
dependent type transitions, and independent valuations.

Future work: complete this space and determine (im)possibilities.

What extra opportunities are there in the infinite discounted case over the single round setting?
Questions?