IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 6, SEPTEMBER 2001 663

Online Bayesian Tree-Structured Transformation
of HMMs With Optimal Model Selection
for Speaker Adaptation

Shaojun Wang and Yunxin Zha8enior Member, IEEE

Abstract—This paper presents a new recursive Bayesian enrollment speech from the user. In practical applications, it is
learning approach for transformation parameter estimation in  desirable that speaker adaptation be able to adjust a large set of

speaker adaptation. Our goal is to incrementally transform or model parameters by using a very small amount of enrollment
adaptasetofhic_;lden Markov model (HMM) parameters for a new s eechp which in yenergl re uyires exoloiting relationshi
speaker and gain large performance improvement from a small p ! 9 a P g p

amount of adaptation data. By constructing a clustering tree of @mong acoustic-phonetic units.
HMM Gaussian mixture components, the linear regression (LR) Speaker adaptation techniques can be categorized into the ap-

or affine transformation parameters for HMM Gaussian mix-  proaches of Bayesian estimation [22], [32] and parameter trans-
ture components are dynamically searched. An online Bayesian formation [16], [34]. Bayesian estimation has the asymptotic

learning technique is proposed for recursive maximuna posteriori tv that b - ficiently | t of adant
(MAP) estimation of LR and affine transformation parameters. property that Dy using a suticiently large amount ot adapta-

This technique has the advantages of being able to accommodatetion data from a speaker, Sl acoustic models will be converged
flexible forms of transformation functions as well asa priori to speaker-dependent acoustic models. On the other hand, the
probability density functions (pdfs). To balance between model adaptation effect of Bayesian estimation is limited when only a
complexity and goodness of fit to adaptation data, a dynamic gma|| amount of enroliment speech is available. By exploiting
programming algorithm is developed for selecting models using . . . -
a Bayesian variant of the “minimum description length” (MDL) transformatlon tying, parameter transformation can achieve a
principle. Speaker adaptation experiments with a 26-letter English large adaptation effect even when the amount of enroliment
alphabet vocabulary were conducted, and the results confirmed speech is small. However, parameter transformation may not
effectiveness of the online learning framework. lead to convergence to speaker-dependent models. Adaptation
Index Terms—Affine transformation, Bayesian model selection, @lgorithms have been proposed to exploit the advantages of both
hidden Markov models (HMMs), linear regression (LR), model approaches [6], [8], [17], [44]. These algorithms can achieve a
complexity, recursive Bayesian learning, robust priors, speaker |arge adaptation effect when using a small amount of data and
adaptation, tree-structure. maintain the asymptotic property when using a large amount of
data. Furthermore, speaker adaptation may operate in batch or
|. INTRODUCTION online modes [32], [33]. In batch mode, adaptation is performed
N over a set of enrollment speech data. In online mode, adaptation
N THE _Iast twq d_ecades, s_lgnn‘lcant advances .have be| nperformed incrementally and data are discarded after usage.
made in statistical-modeling-based automatic SPEEy| a consequence, online speaker adaptation in general requires

rec_ogr.u'tllon (ASR). However, due to complex interspeak Sss computation and memory as compared with batch adapta-
variabilities, the performance of speaker-independent ( n

large voca_bulary con_tinuous speech recognition (LVCS )Several approaches appeared in the literature for online adap-
syste_ms still lags beh_lnd_ _t_hat of speaker—d_ependent systefgﬁOn [7], [18], [23], [26], [27], [48], [50]. One approach [48],
The interspeaker variabilities may be attributed to speal r]applied expectation-maximization (EM) algorithm or seg-

I;O'CE char(‘jacte?stlgs, .g'?ledd a(icznts, edu;:‘attlo!’\ or sot ntalk-means algorithm sequentially to online test speech to
ackgrounds, €ic. A widely adopted approach to improve %complish unsupervised learning of model parameters. Since

pzrfotr rr:_ance ?‘f SI'tLr\]/ CSR systtems f;)rs?ew uset_rs IS zpfalfﬁﬁ accumulated sufficient statistics are computed from each ut-

ad_apta(ljor:, Vt\; ?tre f.te paramebers 0 aCOl:S_'C mo est ffance using the model parameters updated at that time, the pa-

adjusted to befter Tit a user by using a certain amoun Pa{meterestimates are not as accurate as batch training. Another

approach [20], [21], [23] used aimcrementalversion of the

, _ , _ EM algorithm proposed in [39]. In incremental EM approach,
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Fig. 1. Block-diagram of online Bayesian tree-structured transformation of HMM parameters.

been proved recently [24] by Csiszar’s alternating minimization Chien [7] recently developed an online Bayesian transfor-
procedure. However, as pointed out by Digalakis [18], this increration adaptation scheme that uses the online quasi-Bayes
mental EM algorithm is not an online algorithm since multiplalgorithm [26] to estimate the model transformation param-
passes through the data are performed and storage of curetdats. The HMM Gaussian parameters were incrementally
estimate of the conditional sufficient statistics from each pastiapted through a set of transformation functions. A hierar-
observation is required. To make the algorithm an online onghical tree of HMM parameters was built, with each HMM
Digalakis [18] suggested choosing the initial values of the coaussian component related to a set of nodes, one at each
ditional sufficient statistics to be zero and using a single palsyer of the tree. For each Gaussian component, the node at the
through the data. The convergence property of this modified ilowest layer of the tree that contains adaptation data tokens was
cremental EM is still open. Online quasi-Bayes learning [268letermined and its transformation parameters were used for
[27] first approximates the successa@osterioridistributions adaptation of the Gaussian component. With a small amount
by the “closest” tractable distribution within a given claB8s of adaptation data, this approach is capable of transforming all
under the criterion that both distributions have the same modMM Gaussian components and is proven superior to direct
The EM algorithm is next applied and the hyperparameters afiline quasi-Bayes adaptation of HMM parameters for various
the approximate posterioridistribution and model parametersupdate interval lengths and data amounts. Nevertheless, due to
are incrementally updated. Empirical evidence showed that tie use of quasi-Bayes estimation, the forms of transformation
guasi-Bayes algorithm does converge to a good solution that ifunctions were limited to those having reproducibleriori/a
proves recognition rate and it has a similar behavior with thposteriori probability density function (pdf) pairs, which were
batch maximuna posteriori(MAP) algorithm [26], [27]. either conjugate [22] or elliptically symmetric [5], [7], and

In recent years, modeling correlations among speech soumgse unfortunately few. Recognition performance was shown
for speaker adaptation has been widely studied. Since giveremsitive to the parameter update interval lengths, the longer
small adaptation data set, it is unlikely to have sufficient speetiie better.
data for all hidden Markov model (HMM) units, certain pa- In this paper, we propose applying a recursive Bayesian
rametercorrelation[1], [13] andtying [2], [25] are introduced learning technique that we developed recently for online
so that the model parameters can be consistently and fully &kyesian transformation of HMM parameters and use the hier-
justed.Correlationsamong Gaussian mean parameter vectoaschical tree-structure to control the degree of transformation
have been used in HMM parameter adaptation [31}tgimjhas tying. In recursive learning, parameter estimation is based on
been widely used in transformation-based adaptation [34]. Cgradient ascent rather than closed-form solution, and therefore
tain techniques also relate model parameters across all claskesconstraint of reproducibke priori/a posterioripdfs can be
by making Markovian assumptions on the dependency struetaxed. This flexibility allows us to use affine transformations
ture, where joint correlation is represented by a low-order coand linear regressions (LRs) in recursive online Bayesian
ditional distribution and hence a relatively small number of pdearning, and it also allows us to choose rokauptiori pdfs for
rameters are used to characterize the dependency. Exampleth@atransformation parameters. In addition, parameter updates
clude Markov random fields [41], multi-scale tree processean be made on each utterance, overcoming the sensitivity to
[28], tree-structural MAP adaptation [43], buried HMMs [3]updating interval lengths in quasi-Bayes methods.
and dynamic Bayesian networks [51]. Among these methodsA block-diagram of the proposed online Bayesian learning
Digalakiset al.[19] compared the first three and concluded thatee-structured transformation of HMM parameters is shown
significant gain in accuracy can be obtained by exploiting dé Fig. 1, where a hierarchical tree is preconstructed from the
pendency among acoustic model parameters. Gaussian densities of all HMMs of an Sl continuous speech
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recognition system. Given a new utterance, feature extractigrog p(n|$), where Q. +1(n, n'*)) denotes the auxiliary

is performed to derive a feature vector sequence that characfenction of log likelihood as defined in EM algorithm [15],
izes the speech input. The feature vectors are assigned to[8W and p(n|¢) is thea priori pdf of » with a hyperparam-
cluster nodes in the hierarchical tree according to the state aer ¢. It follows that maximizing R,«+:(n, 7*)) leads to
mixture occupancy probabilities. If the adaptation is supervisethprovements im(7|d*) [15], [37]. Inspired by Titterington’s
the node assignment is made by using the transcription inforngerk on recursive estimation using incomplete data [46], a
tion. Otherwise, the feature vector sequence is first recogniaegtursive estimation formula can be derived fpby taking
using the current set of HMM parameters, and the feature vele normalized auxiliary functioil/(k + 1)) R x+1(n, n'¥)
tors are then assigned to the cluster nodes by referencing disethe objective function. Maximizing the second-order Taylor
decoded transcription. For each node, the transformation garies expansion dft/(k + 1)) R x+1 (7, n*)) with respect to
rameters are adaptively learnt by the proposed online Bayesjpaind denoting the maximizing point W’“J’l)y we have

learning algorithm. An initial tree cut that determines the tree

size is heuristicly searched and initial transformation parame- (k4+1) _ (k) k1 )]
) . ) : 7 =n" + |H (", n

ters are obtained and applied to the Gaussian density parameters.

Using the transformed models, Viterbi decoding is performed to 1 OR.in (777 n(k))

)

obtain the optimal state and mixture sequence, and the feature
vectors are again assigned into the tree nodes for estimation of
transformation parameters. A Bayesian variant of the “mininuand
description length” (MDL) principle [30] is then used todeter- ;.\, 1 &Rpn (n,7*))
mine optimal tree size and transformation matrix forms and t (Q 7 ) S ononT
HMM parameters are adapted by the transformation functions. 1
The steps from Viterbi decoding through model parameter trans- = [IC (g’““ ‘n(’“) ) +1, (77(’“))} (3)
formation are iterated until convergence. k+1

This paper is organized as follows. In Section II, a theoreticgh, oo Ic(o ™) is the conditional expectation of the

formulation for online Bayesian learning of tramformaﬁo'&omplete-data information matrix givefi+! [37, p. 101] and
parameters is presented. Section Il describes the use gk g the independency amo/gsylc_(ok-i—lm(k)): Skt
tree-structured LR and affine transformations in the proposgg(o‘m(k))’ L(n) is the a pri(;ri information matrix,zféz.,
online adaptation. Abottom-up top-dowrprocedure is pro- nethive Hespsian matrix of log(n|¢), and H(o*t, n*)

P‘?S.e‘,’ n Section IV for online Baye3|an. learning and fOcfan be calledcomplete-data Bayesian information matrix
initialization of tree-structured transformation parameters.

I certain cases/c(o"+1|7™) can be replaced by its ex-

Section_ V. a Be_lyesian varjant ,Of Fhe MDL principle is usegectation, i.e., the complete-data Fisher information matrix
as an information-theoretic criterion to balance the mod§L+1(n(k)): Ellc(o* ™). In this paper, however, we

complexity yvith the gqodness of f_it to the_adaptation dat%ggsideronly the case of usidg(o*+!7(*)), and more details
and an efficient dynamic programming algorithm is develop Ior can be found in [47]. From (2) and (3), we can see that

for selecting models. Experimental results from the propos effect ofa priori information decreases as the number of
recursive Bayesian learning are provided and compared WiBservations becomes large

t_hos.e of quasi-Baye; methods in Sectiqn V,I' Finally, our The batch algorithm of (2) and (3) is next converted into a
findings, together with future research directions and OPeh-ursive estimation algorithm. Define

problems, are summarized in Section VII.
b (77, 77("‘)) =Ryt (77, 77("‘)) — Ryt (77, 77("‘))

Let ¢ s represent independent blocks of speech feature vec- = ng+1 (77, 77(’“)) .
tors with probability density functiop(o,|n). Assume that the
o}.s are received sequentially. Applying Bayes theorem, we obhen,
tain a recursive expression for theposterioripdf of 7, given
o* ={o,..., 0}, as ORgerr (0, n™) Ry (0, n™) 9t (n, n'V)
= +
an an an

kE+1 an S

Il. RECURSIVE BAYESIAN LEARNING

o o1
plogmp(nlo® ) 1)

ky
p(nle") = /p(o In)p(nlok‘l)dn' Assuming that;® maximizesR,« (n, n*)) such that
Yk o p

Bng (77, 77(’“))

=0
an

Successive computation of (1) fér= 1, 2, ... introduces an

ever-expanding combination of the previously obtaiagabs-

teriori pdfs and thus quickly leads to a combinatorial explosion

of product terms. we have
In this paper, we propose a new approach for recursive IR win (77 77(’“))

Bayesian learning. Define the auxiliary function of lag B S

posteriori likelihood as R,i+1(7, n*)y = Qor1 (1, 7)) an

17:17(")

9 (n, n®)
= S

=0 =)
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and
pFHD = ) 4 [H (Qk+17 n(k)):| -1

1 9 (0, W)
k+1 an

(4)

n=n(®)
where recursive computation af(o* 1,

)+ 1, (77(’“))] .

k+1

>t (aifr

In order to satisfy

k—i—l

8R2k+1 (77,
In

(k+1)
nkF1) .
=yt

we iterate (4) several times for eagp,; and denote the re-

sulting estimate ag(*+%).

7)) is approximated

where
flg) = (n— )2 01 — )
p(v)  =TLE/M)/LA/v);
~ shape parameter;

Gamma function.
The pdf is also known as the power exponential distribution, or
a-Gaussian. The GGD model contains the Gaussian and Lapla-
cian density functions as special cases when settiag2 and
~ = 1, respectively. For decreasing valuesypthe tails of the
distribution become increasingly flat. For< ~v < 1, the pdf
exhibits an algebraic singularity at = 1, and asy goes to
zero,p(1,) goes to infinity. For the GGD prior, the priori in-
formation matrix is given as

I,(n) =—8° log p(n|¢)/Onon*

= ()72 [AF k) S 2y (31) Fnlg) /2
(2= ) (25 = )" ] (7)

The empirical Bayes approach is adopted to estimate the

In most cases, the matrél (o**!, %)) will be positive def- parametersp of p(n|¢) [22]. A speaker independent training

inite. This implies strict concavity aR,«+:(n, n™)) and hence data setO is divided into subsete),, ...

s O , Or, that

the unique maximizing point fak 1 (7, n®)). It also implies correspond toL different speakers. The feature vectdrsg

that

-1 1 Aty (n, ™)
k+1 an

H (Qk+17 77(k))

is an ascent direction, and

(1/(k + 1))Ryss 0"+, 1), that is,

Ry (Qk+17 n(k+1)) > B i (Qk+17 77('“)) )

k—i—l E+1

Thus, we can modify (4) to be

D —p® 4 o g (Qk+17 n(k))—l

1 94 (n, 77““))]

k+1 on ©®)

n=n()

and the modified algorithm has the desirable property of bei
locally monotonic whel < e, < 2[37]. The optimal choice of
) at each step is determined by a line search [36] to maximize

(1/(k + 1)) Rorer (0, 7™), where(1/(k + 1)) Ryrer (7, n*)
is approximated by

o 3 o ) e ()]

In the choice of priori pdf p(n|¢), we adopt the generalized

Gaussian density (GGD), which has the form

TV2(3/7)

plake) = T 15 1172 e ot 0l @

therefore taking a frac-
tional stepe in the direction will lead to an increase in

g)%k—i—l) = argmax H p( 3r Mg, 3‘ %)

assigned to the cluster nogeare assumed to have the trans-
formation parametes, ;. The parametes, ; is accounted as
random observations generated by a prior distribution|¢,)

that is common to all speakers. The marginal distribution of the
training dataD can then be written as

L
p(Olgy) = / TT 2051 )6, 5105) g5 ®)
j=1

To alleviate the difficulty in integration, an approxi-
mation of the integral in (8) is maximized instead. We
assume that for anyp,, p(O, n, ;l¢$,) is sharply peaked
ati,, ; = argmaxy . p(O,n,, ;l¢,), and we try to find
J)g to maximizep(O, 7, ;|¢4). This leads to an alternating
maximization procedure ovef, and¢,, as suggested in [22],
ie.,

77; 3 = argmax p (Oj, Ny, j

(ng.,5)

o)

(10)

(¢q) j=1

In (9), thea posterioriestimate ofn, ;, can be solved by the
batch EM gradient method of (2). In (10), there is no closed form
solution except for the case of= 2 (Gaussian). In the case of
GGD, for each givemé’f}, ¢§k+1) can be iteratively solved, as
shown in

k+1 /21
S@) T

L

Zf(né'?
- (0| 041 ()2
31 (3] ®)

P i+ 1) = (11)



WANG AND ZHAO: ONLINE BAYESIAN TREE-STRUCTURED TRANSFORMATION OF HMMs 667

and (12), shown at the bottom of the page, where tfigne transformation functiorﬂ}(-) has a total ofG clusters

index i denotes iteration number. Note that when= 2, with »® = {A® ¥ g = 1,..., G}. Assume that each
f(ng, jl64)7/?71 = 1 and the above two equations provide thgsaussian densit\; . = (Wi m, 11, m, Li,m) belongs to a

eXp|ICIt SO|utI0n Of maXImum ||ke||h00d eSt|mat|0n (MLE) C|usterQ Theﬂ)\Z . the transformed\i . haS the form of

I1l. RECURSIVE BAYESIAN LEARNING FOR 3 : :
)\i m = (wi ) Agk)ui,rn + bék)v Ei,rn) - (13)
TRANSFORMATION PARAMETERS

We consider modeling isolated words Bitstate continuous  The recursive Bayesian learning algorithm as discussed in
density HMMs, where each data blogkcorresponds to aword, Section Il is used for estimation of the transformation parame-
with the understanding that the proposed adaptation method @&s. Assume that the length of tfe+ 1)th data block i/} 41,

plies to continuous speech recognition as well. The pdf of ae.,o0; , = (ox41,1, -- ., Or41,73,,)- Then
observatiorny, € ™ at time¢ given state is assumed to be a
mixture of M multivariate Gaussian distributions Y, (k) (k)
kLT T Ot
plyler =45 Ai) = Z Wi, m N (eltti, my Ei,m) 1 SR k
— b 1) T, M T, 1y T, M 1 S
m=1 2 Z Z St ([” m)

t=1 g=1 (i, m)CSl,

whereN (y¢| 1. m, £i m ) denotes a Gaussian density with mean * *) L
vectory,; », and covariance matrixX; .,,, w;_» denotes mixture : <(0k+1,t — Ay i, m — by, ) 2im
weight, and the parameters of the mixture densities are denoted
by A = )\zrn 7, 1) znmzinu'.:lv-"va = v ‘

y ]\4{} } {w H ’ ¢ m : (0k+1,t - Aék)lh‘,m - bé”) ) +C (14)

In recursive Bayesian learning of transformation parameters,
either the HMM parametera are transformed by a function Where
F,(-)inthe model space, or the observations are transformed by W )

2 D = () pik)
afunct|onF () in the feature space, whefes R represents &t (i, m) = Pf( i, % m‘ » Ay, by )
thenuisanceparameters to be estimated. Several transformation
functions have been introduced in literature for compensatifey (¢, m) € Q,4, andC is a constant that absorbs the terms
mismatch between test speech and trained speech models.imdependent of. For notational simplicity, the word indexes are
though in many cases the mismatch is nonlinear and the fukcoped, with the understanding that under each gotiee state
tional form is unknown, extensive studies show that LR arghd mixture indexe&, m) correspond to the appropriate word
affine transformation give rather large improvement to speetiMMs with their Gaussian components tied into the cluster. The
recognition performance [33], [45], and LR and affine transfoscore statistic can be derived as

mation can be viewed as first-order approximations to nonlinear .
k41

mismatch functions in both model and feature spaces. Howx (7, 77( ) koo

ever, previous efforts in online Bayesian estimation [7], [28] 4 () 9A% Z Z & (6, m)

could only consider bias transformation in mean parameters and =L Gm)ey

scaling transformation in variance parameters due to their lim- ) (E_l (0k+1 L — A(k)u‘ _ b(k)) T )
itation in reproducible priori/a posterioripairs. In this paper, L A VA
we are able to consider online Bayesian learning for paramet?? T,\+1

of both LR and affine transformations, since in the framewor 77’ 8 (i, m)

of recursive learning the form gdriors are relaxed and hence 8b(k) = 1 G, m)eg

the transformation functions are not as restricted.
. (E;}n (Ok-l-l,t - Aék)ui,m - bék))) .

In this subsection, LR transformation [34] is applied t®efine the precision matrix; ,,, = »1 with the (4, 1)th ele-

1, M

the mean vectors of Gaussian densities in the model spament ofr; ,,, denoted byr; ., ;. ;. Also defineq, , 4 to be the

A. Linear Regression Transformation

FH@) " (08 = i) (0 - @)

S 7 (n)] afro)

Lf(

=1
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(p, ¢)th element of4, andb, , thegqth element ob,,. The en- where
tries of the information matridc(o;, , |7*’) which is the neg-
ative of the second derivative of (14) are given as k@i, m) = Pr (a;g") =i, 2" = m oy, AW, bé’c))

Ico,  (ag,5,15 ag,p, : :
9041 (29.5.1> 9..0) for (¢, m) € Q, andC is a term independent of

Tit1 . The score statistic can be derived as
== Z Z St (L7 m)ﬂi,rn,lTi,rn,j,p/vLi,rn,q
t=1 (i, m)ey, afk(ﬁﬂ?(k))
forj,l,p,g=1,....n aflék)
IC,o' (a,/',hb, ) Th1 ‘ oy -1 T
2t (39,0 bor ==Y > dam(-[(Aa9) 7] e
Tpi1 N t=1 (i,’rn)EQg
= Z Z St (L’ m)/vbi,nl,lTi,nl,j,p T
=L G mcs : (flé’“)okﬂ,t — Mi,m — Aék)bék)) (Ok+l,t - bék)) )
forj, ,p=1,...,n
Ic 2y, (bg,ps bg,q) 9 (77 n(k)) o :
12541 ; ’ 7‘ - 55(1’7 m)
Tt ) 223 (i,,%égg
D SR e A
=G mcRy ) <(A§zk)) Ei_,in (Aék)ok-l—l,t = Mi,m Aék)bék))> .
forp,q=1,..., n.

The score statistic and the information matrices are used in B§fin€ s, », 4 anday, ,, , to be the(p, ¢)th element o4, and
for estimation ofp*+1) = {A(k+1) plk+1) g=1 G} Ay, and defineb, ,, to be thepth element ofb,;, respectively.
- g ) g 1 - R 1 - . k . . .
and the HMM parameters are transformed according to (13)1€ entries of the matriZc (o 1,17*), which is the negative
This estimation and transformation procedure repeaté fer ©! the second derivative of (16), is given as
1,2, ...
IC:QHI(%,J’J? Gg,p,q)
B. Affine Transformation

Tht1
Inthis subsection, LR is applied to the observationsinthe fea- — Z Z &R (i, m)
ture space, i.e), = AY, + b, which is often termed as affine =1 (i, m)e,
transformation [16]. It is equivalent to a constrained model
space transformation on both the mean vectors and covariance  ° (=ag,0,p0g,q,7 + (Ont1,,0 = bg,1)

matrices. The transformation 00 ,, = (wi,m, f4,m, 2, m) i p(Okt1t.q — ba )
has the form of

o IC,Q, (&g,j,lv bg,p)
)\i, m = (wi, s A(k)ui,nl + bgk)a Agk)zz,nl(Agk))T) . (15) o

! ( Tt
Asin the case of LRy®) = {4 ¥ g=1,..., G}. ; ‘ > & m)
Recursive Bayesian learning of (5) is used for estimation of =1 G m)e,
the transformation parameters by making the same assumption "
on data blocks. Denoting{® = (A$”)=1, then _231 (Or41,1,1 = bg,1)
Ek (777 U(k)) = Q2k+1 (777 U(k)) )
Ti,m,j,vqg,v,p | » forl 75 P
Thp1 G

M

Z 55(% m) = Thy1
L i Gomen, S O% e m)

A =1 (¢,m
: <10g|2i7m| — 210g‘A§k)‘ t (i, m)EQ,

n n
_E :Ti,m,j, v Gg, v, w
w=1

v=1

t

1, m

. NN A
4 (Aforss = m— AP0 27
(Ok—l—l, tow T bg, 'w) — Hi,m, v
) (Aék)ok—l—l, t—Hi,m _Aék)bék)) ) + C
(16)

—I—&g? v, l(0k+1,t,l — bg7 1)]) s forl = P
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Ic,o,, (bg,p, bg,q) the transformation functions should be as fine as possible. In
[7], a bottom-upstrategy is proposed to automatically search
s for the transformation parameters of each Gaussian mixture
= ‘ > 7 & (1, m) component with the computational cost®fG log, d) for the
search of the closest transformation node. We propose a more
noon efficient strategy, referred to as the white-black tree-based
: <Z Z g, v, pTi, m, v, w&g,w,q> bottom-up top-dowstrategy which has the computational cost
w=1 v of O(G). A bottom-upprocedure is first used to perform online
Bayesian learning of the transformation paramemé’%for the
nodes containing adaptation data, antbp-downprocedure
IS next used to perform transformations on all the Gaussian
IXture components.
In the bottom-upprocedure, we first mark all the nodes by
hite. We then find the leaf nodes of Gaussian mixture compo-
. nents with adaptation data and mark themselves and their par-
log p (0t|37t =1, 2 = M5 Wi, my 2, my Ag, bg) ents by black. We then move up one layer and for each black
R R node in this layer, we collect adaptation data and perform on-
= log (N (Ag(ot = bo)lti, m. Ei,m)) — 5 log (|Ag|2) - line Bayesian learning of transformation parametgfd, and
mark the parent of the node by black. When reaching the end of
the current layer, we go up one layer. This procedure is repeated
IV. TREESTRUCTURED TRANSFORMATION until reaching the root node.

i . , . In thetop-downprocedure, we start from the layer immedi-
When LR or affine transformation functions are tied acros S .
i ) . ately below the root node, visit each node in the layer from left to
Gaussian mixture components, each transformation function . . ” .
. . . i -_night, perform transformations on Gaussian densities according
is associated with a number of mixture components. This | . : :
. o . ta the coloring of each node, and iterate over layers until com-
achieved by defining a set of transformation clusters where .. )
X . pletion of the bottom layer of the tree:
each cluster covers the mixture components associated wi

the same transformation function. An assumption is made that !f the current node is white and its parent is black o
mixture components with similar parameter values will change ~ then transform the parameters of the Gaussian densities
in a similar manner in each variation condition and these that' are covered under this nOde. by using the transfor-
mixture components should therefore be assigned to the same ~ Mation parameters estimated at its parent node;
transformation cluster. The tree-structured clustering technique ©!S€ if the current node is black and the node is a leaf

wherej, I, p,q =1, ..., n.

As noted by Gales [21], the affine transform can be impl
mented as a transformation of the speech features and a si
addition of the term- log(|A,|?) in the likelihood score. Thus,
during recognition the log-likelihood scores are calculated as,

provides a hierarchical way of defining transformation clusters. ~ then transform the parameters of the Gaussian density
To construct a hierarchical tree, we follow the procedure of the node by using the transformation parameters esti-
of Chien [7], [42] where the Gaussian mixture components mated at this node;
of HMMs are clustered by using the binary splif-means else move to next node.
algorithm with a divergence measure, i.e., Fig. 2 gives an illustration for thiottom-upestimation and
top-downtransformation procedure.
d :% tr [(& = Eg,b)(E;ﬁ, _ Ei_,in,):| After this bottom-up top-dowprocedure, all the Gaussian

mixture components are updated by fireesttransformation
+itr [(E;lb + Ei_,in)(ui, m — 1ig.0) (i m — Ngjb)T:| parameters available.
where A, » = (pg.0, Z45) Was obtained by merging the V. BAYESIAN MODEL SELECTION
Gaussian pdfs grouped in the clustgr[49, p. 360]. The A transformation matrix can be chosen as full, diagonal, or
clustering yields a hierarchical binary tree withlayers and block diagonal. The use of block diagonal matrix is based on
2¢ — 1 nodes where each node corresponds to a cluster ahd assumption that a separate transformation can be used for
therefore there are a total §f= 2¢ — 1 clusters. Each Gaussianeach type of speech features, including cepstral coefficients,
mixture component correspondsdmodes in the tree, one atenergy, first-order time derivatives, resulting in a block diag-
each layer. The root node covers Gaussian mixture componesral structure with parameter correlation considered only within
of all HMMs and each of the leaf node covers one distinetach type of features. The choice of the transformation matrix
Gaussian mixture component. structure is in general a tradeoff between the number of pa-
In the hierarchical tree, the model state and mixture imameters to be estimated and the amount of adaptation data re-
dexes of each Gaussian mixture component are stored in tlugred. The problem is referred to asdel parameterization
corresponding tree node. The transformation parameterscofmplexity When building a hierarchical transformation tree,
each tree node are estimated by using the proposed onliveecan tie all Gaussian components together and apply a global
Bayesian learning. In general, the parameters in higher lay&ansformation, which corresponds to a tree with a root node
serve agoarse transformatiomand those in lower layers serveonly, or we can grow a full tree until each leaf node contains
as fine transformation To retain details of acoustic models,one Gaussian component and apply specific transformation to
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on L(o, m.., m), a second order Taylor series approximation is
made orL(o, 7., m) around the MAP estimatg which yields

['(07 ﬁtrv m)
~ —[logp(o|n, m) + log p(7|p, m)]

+ 5 (71— ) o (olit, m) + L, m)) (7] — ).
17)

A P : Adopting the worst-case minimax approach [30] which picks
000000000 66008800 00000000 e 80 cooooo  the truncated parametéy, to minimize the maximum of (17)

Qe yields the total description lengthsas
Fig. 2. White-black tree for bottom-up estimation and top-down ﬁ(o’ m) = —[10gp(o|77, m) + 1ng(ﬁ|¢’ m)]
transformation. . .
+ 3 logdet[Io(oli, m) + L(7l$, m)]
. . . D
each Gaussian. In general, a shallow tree is simpler, but it pro- + 5(1 —log4) (18)

duces a poor fit to the data; in contrast, a deep tree is more

complex, but it provides a good fit to the data. Therefore, thghere

choice of tree-structure is a tradeoff between model simplicity 92 1og p(o|n)
and goodness of fit to data. The problem is termednaslel Io(oln) = _LT”
structure complexityln order to balance the complexity of the Indn

tree-structured model with the goodness of fit to adaptation daigreferred to as the observed incomplete-data information ma-
model-selection information criterion needs to be used. In thigx, and D is the number of unknown parameters or the di-
section, we show how to accommodate a Bayesian variantraénsion of the statistical model. It can be shown that when the
Rissanen’s MDL [30] into online Bayesian adaptation to contrelumber of observation datais large, the log determinant term
both model structural complexity and parameterization corgan be approximated biD/2) log k, and it will dominate the
plexity to best fit the adaptation data, the goal being minimizgast term. As a model becomes more complex, the sum of the
tion of recognition error. first two terms decreases and that of the last two terms increases.
The model selection problem is coarsely prefigured bihe description lengtlf(o, m) has its minimum at a modek

Occam’s Razor [29]: given two hypotheses that fit the dawiith an appropriate complexity.
equally well, prefer the simpler one. Rissanen distills such Define a cut in a tree be a set of nodes dividing the tree into
thinking in hisPrinciple of MDL: choose the model that givesan upper part and a lower part. One example of a cutis shown as
the shortest description of dat@riginally Rissanen derived the the set of nodes on the dashed line in Fig. 2. Each node in a cut
description length by MLE. Here we apply Rissanen’s methdths a transformation matrix with one of three forms, namely di-
of parameter truncation to a Bayesian framework as proposggbnal, block diagonal, and full. A“*model” corresponds to a cut
in [30]. Consider the multi-class hypothesis testing problem wfhere each node in the cut has a fixed form of transformation
determining which modetn € M generated a given data matrix, but the form may vary from node to node. The coarsest
For each modeh, the likelihood of observation anal prior model consists of only the root node with a diagonal transforma-
density are denoted Ipfo|n, m) andp(n|¢, m). The Bayesian tion matrix. As the cut goes downward in the tree, the number
approach of Rissanen’s MDL is to describe the observed dafanodes increases, and thus the model becomes finer. The finest
o with a two-stage code in which we first encode the MAPodel consists of all the leaf nodes with full transformation ma-
estimater) and then encode under the model determined bytrices.
7. When botho and# are discrete, the encoding length can be Now we show how to calculate the description length
obtained according to Shannon'’s theory as defined in (18) for a tree cut. Denote a cut in a treecbgnd

the rth node of this cut byV”. Assuming that there ar&,

nodes in cut, then there are a total 8f*= models in this cut.

L(o, 7, m) = —[log p(o|n, m) + log p(7j|¢, m)]. Let 7" be a subtree whose root nodeA§’, and 2. be the
set of Gaussian components that lie in the leaf node® of
For k sequences of feature observatiafis= {o;, ..., o},

Wheno and7 are both continuous variables, we need to truiwith each o, generated by a HMM, the likelihood of ob-
cate them each to a desired precision and measure the ce@lgvation sequences is approximated by the joint likelihood
length on the truncated values. and,,.. In practice, the ef- of the dominant state and mixture index sequences and
fect of truncatiors on the code length is insignificant whereaghe observation sequences [38], that ligz p(o*|7™), ¢)

that of truncationi; on the code length is significant. Therea logp(o®, 3*|7i%, ¢)= log max . p(d*, s*|7*), ¢), where
fore we would like to focus orC(o, 7., m) and find the op- 3* = (&, z¥), andi*, z* are the optimal state and mixture
timal precision for#,,.. Due to difficulties in a direct analysis index sequences determined by the Viterbi algorithm. Each
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feature vectop; ,, j =1, ..., k,t =1, ..., T, is assigned with

to its corresponding Gaussian component indexeg,by z; ;. .

Let O be the set of feature vectors it assigned to the £ (N, OF, Aﬁf}‘z, bﬁf}l)
Gaussian components 7. Denote A%, b(*) as the set of o

transformation parameters corresponding to the uand = - Z Z I =%, m=7%4)
define the indicator functio@(A, B) = 1if A is true andB 05 1€OT (i, m)eQr

is true; andZ(A, B) = 0, otherwise. For LR, the description

length £°(o*, A®), b¥) for the cutc is approximated as : |:10g (N (flﬁf}}(oj,t — b )| 4, ms Ei,m))
follows.

.- ~ 31 ~<\A<’“Z 2)+1 2 (A0 0] }
£ (o AP 9) = S £ (a7 0 A ) a9 los ([ ) riosr ((4462.02)|9)
r=1
with +3logdet | D > I(i=dj.m=155)

05, +€07 (2, m)EQT

£ (wzon a8 b))

1o (Oj:t AX;Z, bf\lﬁz, )\i7,,l) +1, (( Aﬁ\’% b(kz)‘ ¢)
=— T(i=dj, m=2¢) 2, b )b
oj,tz:etwg (177%295 PE TG T =
+1(1-log4)Dy- o

1 (k) O
' -3 O",t_A rﬂi,nl_b r 1 .
[( 2 ( ’ N e ) and the entries do(oj7t|A§\§Z, bﬁf}l, Ai,m) @re given as

-1 oA (k) N N
Eizm (OLt A :Nz,m bj\f:)) Ioj-,t(a/\/[,e,fa aNT . p, a» )‘i,m)

‘ . = TOANT, fpONT g e
— 1 logdet(;, m) +logp ((AE\]}Z, b(k})‘ d))} : !
+ (04,4, 5 = b, £)7i,m, e, p(04,1,0 = D, q)

L, (Gnr e 5y DAy Aiim
fllogder| Y Tlmdpnm=20 500012 B Yirm)
0;,+€0T (i, m)EQn
=> (0,5 = bz, )
v=1
k k k k ~
. IO (Oj,t (Aj\/}a bﬁ\/}) 3 )\i,rn,) +Ip ((Aj\/}, bﬁ\/})‘ ¢) Ti,m,, 'Ua./\/[,'v,p for f 7& D
= - Ti,m,e,v & T, W
+1(1—log4) Dy (20) 2::1 e, (wz::l Nz
where the approximation is replacing the log determinant of the ((0),t,0 = bz, w)
sum of information matrices as defined by (18) by the sum (over — Wi, m,w T ANT 0, f
) of the log determinants of the information matrices. _
0jt. F— barr for f =
If the transformation matrix of N7 is full, then ¥ (©05,0,4 = bz, 1)) f=r
Dy = n? + n; if the transformation matrix isB block L, (bar,ps bAT g5 Aiym)
diagonal, thenDx~ = (n?/B) + n; if the transformation n on
matrix is diagonal, the® - = 2n. The entries of information = Z Z GNTT, v, pTi, m, v, wlNT, W,
matrion(oj7t|A§\’§2, bﬁ\’ﬁl, Ai,m) @re given as w=1 v=1
wheree, f,p,q=1, ..., n.
Io- Toe, - a)\irn:irn i, m, e i, m Tl ’ ) X .
5 AN e 1o QN 0 i) = B, £, e pli s Note that (20) and (21) can be calculated in the online
Lo, (anr e, £, DA ps Niym) = iy m, fT,m, e, p mode, since we can accumulate sufficient statistics recursively
and plug-in the parameter estimates to obtain the description
Lo (Onz ps bz 00 M) =i, g length values. The difference between the batch and the online

schemes is that in batch algorithms, the current parameter
estimates are used to decode all adaptation utterances, while
Iengtlﬂq online algorithm, the current parameter estimates are used
for a cut ¢ can be similarly approxi- to decode the current adaptation utterance only, leaving the
previous decoding results unchanged.

: In general, learning a graphical model is NP-hard [11]. For

re (Qk7 Ai’“% Q((:k)) ~ Ve (Ng‘, or, 1215\’;27 b(kZ) a tree_-st_ructured model, we cou_ld in principle calculate model
ot ° ° description length for every possible tree cut and take the model

wheree, f,p,q=1, ..., n.
For affine transformations, the description
~(k s
£e(ok, AL 1)
mated as



672 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 9, NO. 6, SEPTEMBER 2001

L0, 0,0 Ay by)

. LT Oy AT bTo) LT, 0% Ay b7y )

(@) (b)

Fig. 3. Dynamic programming for optimal tree cut and model. The dashed
curve means tying all Gaussian components together. The solid curve means
taking subproblem solution.

with the MDL. However, since the number of cuts in a binary
tree is exponential in the size of the tree, i@(22"™"), with

d the number of layers, it is impractical to do so. An efficient
dynamic programming algorithm is therefore proposed for de-
termining the optimal size of hierarchical tree and the form of
transformation matrices. Denote an internal node in theZree
asN and its left child nodeV; and right child nodeV... De-
note the subtrees rooted at these node$,as7y,, and 7y,
respectively, and denote the set of feature vectors clustered in
the Gaussians of these nodes@g, Ou;, andO,,,, respec-
tively. Finally, denote the optimal transformation matrices and
biases for the subtrees rooted at these nodedas AT«W
AT,W andbyz,, , QT,\Q , QT,W , respectively, with the corresponding
MDLs asL(Zy, On; Ar,s b ) L(In;, Ons AT«W’ QTNZ)’
andL(Zy., O, AT,W QT,\;)- The recursive formula for the
MDL is given as

['(T./\/a ONa AT{»\:’ Q’T(\:)
’C'(Nv ON7 AN? bN)’

—mind £ (TNH Onis AI\Q’ QT,\"Z) (22)

+L (TM, On,s Az, QT,w)

« Iterate through the following steps until convergence.

Step 1) Transform HMM parameters.

Step 2) Decode current adaptation utterance by using
the transformed HMM parameters. Assign
each feature vector into a Gaussian compo-
nent in a leaf node in the tree.

Step 3) Determine the optimal tree cut and transfor-
mation matrix form of each node in the cut
by the followingbottom-updynamic program-
ming algorithm:

i) Initialization: for each leaf node, if
the node contains feature vector, then
calculate its description lengths with
full, block diagonal, and diagonal ma-
trices by (20) or (21), and choose the
minimum; otherwise, set its description
length to be infinity.

i) Recursion: in the bottom-up order,
recursively compute the description
length using (22). For each nonleaf
node NV, if the MDL of the first line
of (22) is smaller than or equal to the
MDL of the second line, drop all the
children of the nodéV” and assign node
N to the cut; else assign the children of
the node\ to the cut.

iii) Go up one level and repeat ii) until the
root is reached.

Step 4) If the tree cut and the transformation matrix
form of each node in the cut remain the same as
in the previous iteration, then output the trans-
formed HMM parameters and stop. Otherwise,
return to Step 1.

VI. EXPERIMENTAL RESULTS

The online Bayesian learning approach is applied to online

speaker adaptation using a vocabulary of 26-letter English al-
where each transformation matrix can be full, block diagonglhabet. Two severely mismatched speech databases, the OGI
or diagonal. See Fig. 3 for an illustration of (22). ISOLET and the TI46, were used for evaluating the adaptation
Either abottom-updynamic programming algorithm or aalgorithm. A full description of these two corpora can be found
top-downrecursive algorithm can be performed to obtain thi@ [26]. For speaker independent training, the OGI ISOLET
MDL. In general, thébottom-upapproach is more efficient thandatabase was used. It consists of 150 speakers, each speaking
the top-downapproach [12]. However, for this problem, thea letter twice. For online Bayesian adaptation and testing, the
two approaches have the same computational complexist LiEnglish alphabet subset of the TI46 isolated word corpus was
al. [35] used theop-downrecursive algorithm to calculate theused. Among the 16 talkers, data from four males were incom-
MDL in the MLE sense for generalizing case frames in naturBlete. Therefore, only 12 speakers (four males and eight fe-
language processing. Shinoda al. [42] used thetop-down Males) were used in this study. Each person uttered each of
recursive algorithm to calculate the MDL in the MLE sense fdf€ letters 26 times, where ten were collected in the same ses-
bias removal in batch-mode model selection. In this work wion and the remaining 16 were collected in eight different ses-

use thebottom-upapproach for online mode model selectiorSions with two in each session. For each person and each letter,
The procedure is summarized as follows: we divided equally those 16 tokens collected in eight different

sessions into two parts, one for adaptive training, another for

* Obtain diagonal, block diagonal, and full transformatesting. Each letter was modeled by a single left-to-right five-

tion matrix parameters and initialize the tree cut usingtate CDHMM. Each state had a Gaussian mixture density of

block diagonal transformation matrices by thattom-up four components with each component density having a diag-
top-downprocedure described in Section IV. onal covariance matrix. Speech features were extracted based
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Fig. 4. Recognition performance by supervised online Bayesian learningFig. 5. Recognition performance by supervised and unsupervised online
Bayesian learning.

on a tenth-order LPC analysis, where the feature components _ . .
were 12 cepstral coefficients, a normalized log energy and their2) Comparison of Supervised and Unsupervised Adapta-

first time derivatives. tions: We evaluated the recognition performances when using
A number of comparative experiments were conducted, ifupervised and unsupervised adaptation, respectively. Fig. 5
cluding shows the results when block diagonal matrix of affine trans-

. ) ) formation and hierarchical tree with a depth of six were used.
1) the proposed online recursive Bayesian approach ver&iserised adaptation performed slightly better. As abundant
other online Bayesian approaches; _ adaptation data became available, the two results became very
2) supervised versus unsupervised adaptation; close.
3) generalized Gaussian prior with different shape parame-3) ropustness of PriorsWe investigated the robustness of
tersy; _ _ generalized Gaussian prior models. The transformation matrices
4) diagonal, block diagonal (two blocks, one for instantgjere plock diagonal matrix and the depth of hierarchical tree
neous features and one for dynamic features), and fylbs six. The recognition performances by using three values of
transformation matrices; the shape parameter= 2, 1, 0.7 are shown in Fig. 6. As the
5) different depths of hierarchical tree; results indicate, recognition performance was improved when
6) LR versus affine transformation; . usingpriorswith heavy tails than using standard Gaussian, since
7) models selected by the Bayesian variant of MDL prinCiplgeayy-tailedpriors are more robust to data and function mis-
versus two models with fixed model complexity. match. There was little difference between the results/fer 1
Recognition performances were evaluated by using parametgfly = 0.7.
estimates of four iterations of (5) for eakhHyperparameters  4) Full, Block Diagonal, and Diagonal Transformation
were estimated by four iterations of the modified equation (2ylatrices: Previously, Leggetter and Woodland [34] investi-
where the step size was obtained by line search. By defaulgaied the effect of full or diagonal transformation matrices
six-layered hierarchical tree and a Gaussian prior were usedfh recognition performance in ML-based LR using a batch
the experiments. adaptation approach. Here, we investigate the effectiveness of
1) Comparison of Online Bayesian Adaptation Aponline Bayesian learning of tree-structured affine and LR trans-
proaches: Starting with the SI models, we selected adaptatidarmations. We evaluated the effect of model parameterization
tokens for each letter randomly from the adaptation set aggmplexity on recognition performance by using full, block
performed utterance-based supervised online adaptation. A&gonal, as well as diagonal transformation matrices while
each adaptation, we tested the recognizer on the test sefM@qel structural complexity was varied by using different
measure the performance. In Fig. 4, recognition results wetepths of hierarchical tree. The amount of adaptation data was
averaged over 12 speakers as a function of total number of adi@# utterances per speaker in one case and 100 in another.
tation tokens per speaker. For recursive Bayesian estimationkig. 7 illustrates the recognition performance when using the
we used affine transformation with block diagonal transfosmall amount of adaptation data. All transformations provided
mation matrices. We also included the results of quasi-Bayiegprovements over the initial model, but the effect of diagonal
online estimation for tree-structured transformation [7] anmhatrices was limited. The full matrices gave a substantial im-
quasi-Bayes online estimation for HMMs [26], where improvement when using one- or three-layered trees. However, as
the latter case, full sets of HMM parameters were adaptéte depth of the tree was increased, the amount of data allocated
and the hyperparameters were estimated by the methodtmkach leaf node became small and the matrices were poorly
moments. Our result is shown better than those of quasi-Bayssimated, and thus the performance of full matrices dropped
approaches, the main reason being that the recursive Bayesapidly. With diagonal matrices, as deeper trees were used the
learning technique accommodates easily affine transformatigresformance gradually increased; however, this effect was very
which when combined with the hierarchical tree is effective famall and using 500 diagonal matrices was only 5.0% better than
both limited adaptation data and abundant adaptation data. using one diagonal matrix. Itis clear that the off-diagonal terms
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Fig. 7. Full, block-diagonal, and diagonal matrix using ten adaptation utterances per speaker: (a) affine transformation and (b) LR transformation
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Fig. 8. Full, block-diagonal, and diagonal matrix using 100 adaptation utterances per speaker: (a) affine transformation and (b) LR transformation

that account for the interdependencies between feature compatrices gave substantially better performance than that of di-
nents were important. agonal transformation matrices.

Fig. 8 gives the recognition performance when using the large5) Depth of Hierarchical Tree:We investigated the effects
amount of adaptation data. In this case, the amounts of dafausing hierarchical trees with different depths, i.e., the
allocated to leaf nodes were abundant and the transformatmmoblem of model structure complexityPreviously, Shinoda
matrices were well estimated. As expected, full transformati@amd Watanabe [42] investigated this problem for bias trans-
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Fig. 9. Recognition performance by various depths: (a) affine transformation and (b) LR transformation.

namher of nodes in optimal cut sumber of nodes in optimal eut wumber of nodes in optimal cut

formation by using batch approach. Here we investigate th

problem for online Bayesian learning of tree-structured affine
transformation parameters. Fig. 9 gives the recognition resul:
of online learning of block-diagonal transformation matrices
with various tree depths while varying the number of adaptatio”
utterances. We observe that when the amount of adaptationd,_
was small, better recognition performances were achieved |

trees with shallower depths than trees with deeper depths, sin @ ) ©

a deeper tree-structure overfitted the limited training data. As _ _
E_ﬁq 0. Model complexity of the optimal model: (a) ten utterances, (b) 60

5 10 15 20 25 30 35 0 5 0 15 20 25 30 35 0 5 10 15 20 25 30 35

more adaptation data was presented, the performance gradlf
. Uftetances, and (c) 100 utterances per speaker.
improved for both shallow and deep trees, but the trees wit

shallow depths improved less, which indicates underfitting the

adaptation data. As a sufficient amount of data was used, ggBgdels in the intermediate range of adaptation data size, which
recognition performance was achieved by trees with deeperntuitively appealing since this is the condition that MDL
depths. From the results, we see that a critical issue in fAg@vides solution to the uncertainty of model complexity.
hierarchical tree-structured speaker adaptation is choosind grefore, MDL provides an optimal tradeoff between accu-
tree which neither underfits nor overfits the adaptation data. acy and complexity of model structure and parameterization
6) Linear Regression and Affine Transformatiofirom the ©Ver & full range of adaptation data size.
above results, it can be seen that both LR and affine trans-
formation significantly improved recognition performance. VII. D1sCUSSION ANDCONCLUSION
On average, LR transformation gave a 80% recognition rate,, this paper, we developed an online Bayesian learning tech-
and affine transformation gave a further 2-8% increase |, e for transformation of parameters of Gaussian densities of
recognition rate over LR. It is worth noting that the results bMMMs.AhierarchicaI tree of HMM Gaussian parameters is em-
affin_e_ transformation were _consistently better than LR at Iittl|8oned to dynamically control the transformation tying and the
ad;ﬂtuénal C(.)St |RAC(()jmlpgta}t|or). Ave fi ined th a priori knowledge of HMM Gaussian parameters is incorpo-
o o, Mol Skt 1t exarine e 7, L i e varlomaton pasamors . s s
data by using the MDL principle. Fig. 10 shows the number of IS techmque allows updating pa_rameter estimates per ut_ter—
tree nodes of the optimal cut for one speaker when the amo {;e_and It can a_ccpmmoda_t_e ﬂemblg_forms of fransformation
éw_cuons andh priori probability densities of the transforma-

of adaptation data was 10, 60, and 180 utterances, respecti ker ad . . h d
As the amount of adaptation data increased, the optimal é'l?tn parameters. Speaker adaptation experiments showed con-

approached the leaf nodes and the number of nodes increasdgtently improved recognition accuracy for increasing amounts
We then compared the recognition results obtained using ffle@daptation data, and the performance was superior to ex-
proposed MDL method with those obtained by fixed modé$ting online adaptation methods. We investigated the choice on
complexity. The results are summarized in Fig. 11. Of the twPriori density functions and suggested using GGD as priors
fixed models, one is a ten-layer tree with block diagonal tranfr online Bayesian learning of tree-structured transformation
formation matrices and the other is a three-layer tree with flif Gaussian densities of HMMs. It was found that heavy tailed
transformation matrices. As shown in the figure, the proposédoriori density functions gave better recognition performance
MDL method possesses the advantage of the small-sized t#@&¢ thus are more robust to mismatch in prior estimation. Fi-
when the amount of adaptation data is small, and it possesseaby, the Bayesian variant of the MDL principle was incorpo-
the advantage of the large-sized tree when the amountrafed into online Bayesian tree-structured transformation to ob-
adaptation data is large. In addition, it outperforms both fixadin an optimal tradeoff between model structural and parame-
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Fig. 11. Recognition performance by MDL principle: (a) affine transformation and (b) LR transformation.

terization complexities and goodness of fit to adaptation datant problem is the comparison of online and batch Bayesian

Experimental results show that the MDL method in general isarning algorithms. For a fixed parameter model, the recog-

capable of automatically selecting a set of model parameters thiion result obtained by the batch learning algorithm is often

leads to best recognition performance for each given amountogftter than that by the online algorithm, since the online al-

adaptation data. gorithm sees one example at a time and incurs a loss on each
A disadvantage of the proposed method is its high compuggmple at its current model. If the loss is defined to be the recog-

tional complexity due to the computation of inverse mafiin  hition error or the normalized negatieeposteriorilikelihood

(5). For ann-dimensional mean vector, the full transformatiofunction, it is then interesting to derive the upper and lower

Ais ann x n matrix, and the shift vector b is anx 1 vector. bounds for the relative loss, which relate the online loss to the

Thus there are? + n parameters, and the information matrixpest off-line loss.

will be (n? +n) x (n? +n). A fast algorithm for matrix inver-

sion isQ(D?) for D x D matrix, so the proposed method needs ACKNOWLEDGMENT
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