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Online Bayesian Tree-Structured Transformation
of HMMs With Optimal Model Selection

for Speaker Adaptation
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Abstract—This paper presents a new recursive Bayesian
learning approach for transformation parameter estimation in
speaker adaptation. Our goal is to incrementally transform or
adapt a set of hidden Markov model (HMM) parameters for a new
speaker and gain large performance improvement from a small
amount of adaptation data. By constructing a clustering tree of
HMM Gaussian mixture components, the linear regression (LR)
or affine transformation parameters for HMM Gaussian mix-
ture components are dynamically searched. An online Bayesian
learning technique is proposed for recursive maximuma posteriori
(MAP) estimation of LR and affine transformation parameters.
This technique has the advantages of being able to accommodate
flexible forms of transformation functions as well as a priori
probability density functions (pdfs). To balance between model
complexity and goodness of fit to adaptation data, a dynamic
programming algorithm is developed for selecting models using
a Bayesian variant of the “minimum description length” (MDL)
principle. Speaker adaptation experiments with a 26-letter English
alphabet vocabulary were conducted, and the results confirmed
effectiveness of the online learning framework.

Index Terms—Affine transformation, Bayesian model selection,
hidden Markov models (HMMs), linear regression (LR), model
complexity, recursive Bayesian learning, robust priors, speaker
adaptation, tree-structure.

I. INTRODUCTION

I N THE last two decades, significant advances have been
made in statistical-modeling-based automatic speech

recognition (ASR). However, due to complex interspeaker
variabilities, the performance of speaker-independent (SI)
large vocabulary continuous speech recognition (LVCSR)
systems still lags behind that of speaker-dependent systems.
The interspeaker variabilities may be attributed to speaker
voice characteristics, dialect accents, education or social
backgrounds, etc. A widely adopted approach to improve the
performance of SI-LVCSR systems for new users is speaker
adaptation, where the parameters of SI acoustic models are
adjusted to better fit a user by using a certain amount of
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enrollment speech from the user. In practical applications, it is
desirable that speaker adaptation be able to adjust a large set of
model parameters by using a very small amount of enrollment
speech, which in general requires exploiting relationship
among acoustic-phonetic units.

Speaker adaptation techniques can be categorized into the ap-
proaches of Bayesian estimation [22], [32] and parameter trans-
formation [16], [34]. Bayesian estimation has the asymptotic
property that by using a sufficiently large amount of adapta-
tion data from a speaker, SI acoustic models will be converged
to speaker-dependent acoustic models. On the other hand, the
adaptation effect of Bayesian estimation is limited when only a
small amount of enrollment speech is available. By exploiting
transformation tying, parameter transformation can achieve a
large adaptation effect even when the amount of enrollment
speech is small. However, parameter transformation may not
lead to convergence to speaker-dependent models. Adaptation
algorithms have been proposed to exploit the advantages of both
approaches [6], [8], [17], [44]. These algorithms can achieve a
large adaptation effect when using a small amount of data and
maintain the asymptotic property when using a large amount of
data. Furthermore, speaker adaptation may operate in batch or
online modes [32], [33]. In batch mode, adaptation is performed
over a set of enrollment speech data. In online mode, adaptation
is performed incrementally and data are discarded after usage.
As a consequence, online speaker adaptation in general requires
less computation and memory as compared with batch adapta-
tion.

Several approaches appeared in the literature for online adap-
tation [7], [18], [23], [26], [27], [48], [50]. One approach [48],
[50] applied expectation-maximization (EM) algorithm or seg-
mental -means algorithm sequentially to online test speech to
accomplish unsupervised learning of model parameters. Since
the accumulated sufficient statistics are computed from each ut-
terance using the model parameters updated at that time, the pa-
rameter estimates are not as accurate as batch training. Another
approach [20], [21], [23] used anincrementalversion of the
EM algorithm proposed in [39]. In incremental EM approach,
the conditional sufficient statistics of theth observation are
computed using the th model estimates, and the suffi-
cient statistics of the previous observations are unchanged, as
opposed to the batch version: after each-step, the condi-
tional sufficient statistics of all the training data are recalcu-
lated using the latest parameter estimates. Even though likeli-
hood may not be monotonically increased as in the batch EM al-
gorithm [4], convergence of this incremental EM algorithm has
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Fig. 1. Block-diagram of online Bayesian tree-structured transformation of HMM parameters.

been proved recently [24] by Csiszar’s alternating minimization
procedure. However, as pointed out by Digalakis [18], this incre-
mental EM algorithm is not an online algorithm since multiple
passes through the data are performed and storage of current
estimate of the conditional sufficient statistics from each past
observation is required. To make the algorithm an online one,
Digalakis [18] suggested choosing the initial values of the con-
ditional sufficient statistics to be zero and using a single pass
through the data. The convergence property of this modified in-
cremental EM is still open. Online quasi-Bayes learning [26],
[27] first approximates the successivea posterioridistributions
by the “closest” tractable distribution within a given class,
under the criterion that both distributions have the same mode.
The EM algorithm is next applied and the hyperparameters of
the approximatea posterioridistribution and model parameters
are incrementally updated. Empirical evidence showed that the
quasi-Bayes algorithm does converge to a good solution that im-
proves recognition rate and it has a similar behavior with the
batch maximuma posteriori(MAP) algorithm [26], [27].

In recent years, modeling correlations among speech sounds
for speaker adaptation has been widely studied. Since given a
small adaptation data set, it is unlikely to have sufficient speech
data for all hidden Markov model (HMM) units, certain pa-
rametercorrelation [1], [13] and tying [2], [25] are introduced
so that the model parameters can be consistently and fully ad-
justed.Correlationsamong Gaussian mean parameter vectors
have been used in HMM parameter adaptation [31] andtyinghas
been widely used in transformation-based adaptation [34]. Cer-
tain techniques also relate model parameters across all classes
by making Markovian assumptions on the dependency struc-
ture, where joint correlation is represented by a low-order con-
ditional distribution and hence a relatively small number of pa-
rameters are used to characterize the dependency. Examples in-
clude Markov random fields [41], multi-scale tree processes
[28], tree-structural MAP adaptation [43], buried HMMs [3],
and dynamic Bayesian networks [51]. Among these methods,
Digalakiset al.[19] compared the first three and concluded that
significant gain in accuracy can be obtained by exploiting de-
pendency among acoustic model parameters.

Chien [7] recently developed an online Bayesian transfor-
mation adaptation scheme that uses the online quasi-Bayes
algorithm [26] to estimate the model transformation param-
eters. The HMM Gaussian parameters were incrementally
adapted through a set of transformation functions. A hierar-
chical tree of HMM parameters was built, with each HMM
Gaussian component related to a set of nodes, one at each
layer of the tree. For each Gaussian component, the node at the
lowest layer of the tree that contains adaptation data tokens was
determined and its transformation parameters were used for
adaptation of the Gaussian component. With a small amount
of adaptation data, this approach is capable of transforming all
HMM Gaussian components and is proven superior to direct
online quasi-Bayes adaptation of HMM parameters for various
update interval lengths and data amounts. Nevertheless, due to
the use of quasi-Bayes estimation, the forms of transformation
functions were limited to those having reproduciblea priori/a
posterioriprobability density function (pdf) pairs, which were
either conjugate [22] or elliptically symmetric [5], [7], and
were unfortunately few. Recognition performance was shown
sensitive to the parameter update interval lengths, the longer
the better.

In this paper, we propose applying a recursive Bayesian
learning technique that we developed recently for online
Bayesian transformation of HMM parameters and use the hier-
archical tree-structure to control the degree of transformation
tying. In recursive learning, parameter estimation is based on
gradient ascent rather than closed-form solution, and therefore
the constraint of reproduciblea priori/a posterioripdfs can be
relaxed. This flexibility allows us to use affine transformations
and linear regressions (LRs) in recursive online Bayesian
learning, and it also allows us to choose robusta priori pdfs for
the transformation parameters. In addition, parameter updates
can be made on each utterance, overcoming the sensitivity to
updating interval lengths in quasi-Bayes methods.

A block-diagram of the proposed online Bayesian learning
tree-structured transformation of HMM parameters is shown
in Fig. 1, where a hierarchical tree is preconstructed from the
Gaussian densities of all HMMs of an SI continuous speech
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recognition system. Given a new utterance, feature extraction
is performed to derive a feature vector sequence that character-
izes the speech input. The feature vectors are assigned to the
cluster nodes in the hierarchical tree according to the state and
mixture occupancy probabilities. If the adaptation is supervised,
the node assignment is made by using the transcription informa-
tion. Otherwise, the feature vector sequence is first recognized
using the current set of HMM parameters, and the feature vec-
tors are then assigned to the cluster nodes by referencing the
decoded transcription. For each node, the transformation pa-
rameters are adaptively learnt by the proposed online Bayesian
learning algorithm. An initial tree cut that determines the tree
size is heuristicly searched and initial transformation parame-
ters are obtained and applied to the Gaussian density parameters.
Using the transformed models, Viterbi decoding is performed to
obtain the optimal state and mixture sequence, and the feature
vectors are again assigned into the tree nodes for estimation of
transformation parameters. A Bayesian variant of the “mininum
description length” (MDL) principle [30] is then used to deter-
mine optimal tree size and transformation matrix forms and the
HMM parameters are adapted by the transformation functions.
The steps from Viterbi decoding through model parameter trans-
formation are iterated until convergence.

This paper is organized as follows. In Section II, a theoretical
formulation for online Bayesian learning of transformation
parameters is presented. Section III describes the use of
tree-structured LR and affine transformations in the proposed
online adaptation. Abottom-up top-downprocedure is pro-
posed in Section IV for online Bayesian learning and for
initialization of tree-structured transformation parameters. In
Section V, a Bayesian variant of the MDL principle is used
as an information-theoretic criterion to balance the model
complexity with the goodness of fit to the adaptation data,
and an efficient dynamic programming algorithm is developed
for selecting models. Experimental results from the proposed
recursive Bayesian learning are provided and compared with
those of quasi-Bayes methods in Section VI. Finally, our
findings, together with future research directions and open
problems, are summarized in Section VII.

II. RECURSIVEBAYESIAN LEARNING

Let s represent independent blocks of speech feature vec-
tors with probability density function . Assume that the

s are received sequentially. Applying Bayes theorem, we ob-
tain a recursive expression for thea posterioripdf of , given

, as

(1)

Successive computation of (1) for introduces an
ever-expanding combination of the previously obtaineda pos-
teriori pdfs and thus quickly leads to a combinatorial explosion
of product terms.

In this paper, we propose a new approach for recursive
Bayesian learning. Define the auxiliary function of loga
posteriori likelihood as

, where denotes the auxiliary
function of log likelihood as defined in EM algorithm [15],
[37] and is the a priori pdf of with a hyperparam-
eter . It follows that maximizing leads to
improvements in [15], [37]. Inspired by Titterington’s
work on recursive estimation using incomplete data [46], a
recursive estimation formula can be derived forby taking
the normalized auxiliary function
as the objective function. Maximizing the second-order Taylor
series expansion of with respect to

and denoting the maximizing point by , we have

(2)

and

(3)

where is the conditional expectation of the
complete-data information matrix given [37, p. 101] and
due to the independency amongs,

, is the a priori information matrix, i.e.,
negative Hessian matrix of log , and
can be calledcomplete-data Bayesian information matrix.
In certain cases, can be replaced by its ex-
pectation, i.e., the complete-data Fisher information matrix

. In this paper, however, we
consider only the case of using , and more details
on can be found in [47]. From (2) and (3), we can see that
the effect ofa priori information decreases as the number of
observations becomes large.

The batch algorithm of (2) and (3) is next converted into a
recursive estimation algorithm. Define

Then,

Assuming that maximizes such that

we have
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and

(4)

where recursive computation of is approximated
as

In order to satisfy

we iterate (4) several times for each and denote the re-
sulting estimate as .

In most cases, the matrix will be positive def-
inite. This implies strict concavity of and hence
the unique maximizing point for . It also implies
that

is an ascent direction, and therefore taking a frac-
tional step in the direction will lead to an increase in

, that is,

Thus, we can modify (4) to be

(5)

and the modified algorithm has the desirable property of being
locally monotonic when [37]. The optimal choice of

at each step is determined by a line search [36] to maximize
, where

is approximated by

In the choice ofa priori pdf , we adopt the generalized
Gaussian density (GGD), which has the form

(6)

where
;

;
shape parameter;
Gamma function.

The pdf is also known as the power exponential distribution, or
-Gaussian. The GGD model contains the Gaussian and Lapla-

cian density functions as special cases when setting and
, respectively. For decreasing values of, the tails of the

distribution become increasingly flat. For , the pdf
exhibits an algebraic singularity at , and as goes to
zero, goes to infinity. For the GGD prior, thea priori in-
formation matrix is given as

(7)

The empirical Bayes approach is adopted to estimate the
parameters of [22]. A speaker independent training
data set is divided into subsets that
correspond to different speakers. The feature vectors
assigned to the cluster nodeare assumed to have the trans-
formation parameter . The parameter is accounted as
random observations generated by a prior distribution
that is common to all speakers. The marginal distribution of the
training data can then be written as

(8)

To alleviate the difficulty in integration, an approxi-
mation of the integral in (8) is maximized instead. We
assume that for any , is sharply peaked
at , and we try to find

to maximize . This leads to an alternating
maximization procedure over and , as suggested in [22],
i.e.,

(9)

(10)

In (9), thea posterioriestimate of can be solved by the
batch EM gradient method of (2). In (10), there is no closed form
solution except for the case of (Gaussian). In the case of
GGD, for each given , can be iteratively solved, as
shown in

(11)
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and (12), shown at the bottom of the page, where the
index denotes iteration number. Note that when ,

and the above two equations provide the
explicit solution of maximum likelihood estimation (MLE)

III. RECURSIVE BAYESIAN LEARNING FOR

TRANSFORMATION PARAMETERS

We consider modeling isolated words by-state continuous
density HMMs, where each data blockcorresponds to a word,
with the understanding that the proposed adaptation method ap-
plies to continuous speech recognition as well. The pdf of an
observation at time given state is assumed to be a
mixture of multivariate Gaussian distributions

where denotes a Gaussian density with mean
vector and covariance matrix , denotes mixture
weight, and the parameters of the mixture densities are denoted
by ,

.
In recursive Bayesian learning of transformation parameters,

either the HMM parameters are transformed by a function
in the model space, or the observations are transformed by

a function in the feature space, where represents
thenuisanceparameters to be estimated. Several transformation
functions have been introduced in literature for compensating
mismatch between test speech and trained speech models. Al-
though in many cases the mismatch is nonlinear and the func-
tional form is unknown, extensive studies show that LR and
affine transformation give rather large improvement to speech
recognition performance [33], [45], and LR and affine transfor-
mation can be viewed as first-order approximations to nonlinear
mismatch functions in both model and feature spaces. How-
ever, previous efforts in online Bayesian estimation [7], [28]
could only consider bias transformation in mean parameters and
scaling transformation in variance parameters due to their lim-
itation in reproduciblea priori/a posterioripairs. In this paper,
we are able to consider online Bayesian learning for parameters
of both LR and affine transformations, since in the framework
of recursive learning the form ofpriors are relaxed and hence
the transformation functions are not as restricted.

A. Linear Regression Transformation

In this subsection, LR transformation [34] is applied to
the mean vectors of Gaussian densities in the model space.

The transformation function has a total of clusters

with . Assume that each
Gaussian density belongs to a
cluster . Then , the transformed , has the form of

(13)

The recursive Bayesian learning algorithm as discussed in
Section II is used for estimation of the transformation parame-
ters. Assume that the length of the th data block is ,
i.e., . Then

(14)

where

for , and is a constant that absorbs the terms
independent of . For notational simplicity, the word indexes are
droped, with the understanding that under each node, the state
and mixture indexes correspond to the appropriate word
HMMs with their Gaussian components tied into the cluster. The
score statistic can be derived as

Define the precision matrix with the th ele-
ment of denoted by . Also define to be the

(12)
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th element of and the th element of . The en-
tries of the information matrix which is the neg-
ative of the second derivative of (14) are given as

for

for

for

The score statistic and the information matrices are used in (5)
for estimation of , ,
and the HMM parameters are transformed according to (13).
This estimation and transformation procedure repeats for

.

B. Affine Transformation

In this subsection, LR is applied to the observations in the fea-
ture space, i.e., , which is often termed as affine
transformation [16]. It is equivalent to a constrained model
space transformation on both the mean vectors and covariance
matrices. The transformation on
has the form of

(15)

As in the case of LR, .
Recursive Bayesian learning of (5) is used for estimation of

the transformation parameters by making the same assumption
on data blocks. Denoting , then

(16)

where

for and is a term independent of.
The score statistic can be derived as

Define and to be the th element of and
, and define to be the th element of , respectively.

The entries of the matrix , which is the negative
of the second derivative of (16), is given as

for

for
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where .
As noted by Gales [21], the affine transform can be imple-

mented as a transformation of the speech features and a simple
addition of the term in the likelihood score. Thus,
during recognition the log-likelihood scores are calculated as

IV. TREE-STRUCTUREDTRANSFORMATION

When LR or affine transformation functions are tied across
Gaussian mixture components, each transformation function
is associated with a number of mixture components. This is
achieved by defining a set of transformation clusters where
each cluster covers the mixture components associated with
the same transformation function. An assumption is made that
mixture components with similar parameter values will change
in a similar manner in each variation condition and these
mixture components should therefore be assigned to the same
transformation cluster. The tree-structured clustering technique
provides a hierarchical way of defining transformation clusters.

To construct a hierarchical tree, we follow the procedure
of Chien [7], [42] where the Gaussian mixture components
of HMMs are clustered by using the binary split-means
algorithm with a divergence measure, i.e.,

tr

tr

where was obtained by merging the
Gaussian pdfs grouped in the cluster[49, p. 360]. The
clustering yields a hierarchical binary tree withlayers and

nodes where each node corresponds to a cluster and
therefore there are a total of clusters. Each Gaussian
mixture component corresponds tonodes in the tree, one at
each layer. The root node covers Gaussian mixture components
of all HMMs and each of the leaf node covers one distinct
Gaussian mixture component.

In the hierarchical tree, the model state and mixture in-
dexes of each Gaussian mixture component are stored in the
corresponding tree node. The transformation parameters of
each tree node are estimated by using the proposed online
Bayesian learning. In general, the parameters in higher layers
serve ascoarse transformationand those in lower layers serve
as fine transformation. To retain details of acoustic models,

the transformation functions should be as fine as possible. In
[7], a bottom-upstrategy is proposed to automatically search
for the transformation parameters of each Gaussian mixture
component with the computational cost of for the
search of the closest transformation node. We propose a more
efficient strategy, referred to as the white-black tree-based
bottom-up top-downstrategy which has the computational cost
of . A bottom-upprocedure is first used to perform online
Bayesian learning of the transformation parametersfor the
nodes containing adaptation data, and atop-downprocedure
is next used to perform transformations on all the Gaussian
mixture components.

In the bottom-upprocedure, we first mark all the nodes by
white. We then find the leaf nodes of Gaussian mixture compo-
nents with adaptation data and mark themselves and their par-
ents by black. We then move up one layer and for each black
node in this layer, we collect adaptation data and perform on-
line Bayesian learning of transformation parameters, and
mark the parent of the node by black. When reaching the end of
the current layer, we go up one layer. This procedure is repeated
until reaching the root node.

In the top-downprocedure, we start from the layer immedi-
ately below the root node, visit each node in the layer from left to
right, perform transformations on Gaussian densities according
to the coloring of each node, and iterate over layers until com-
pletion of the bottom layer of the tree:

If the current node is white and its parent is black
then transform the parameters of the Gaussian densities
that are covered under this node by using the transfor-
mation parameters estimated at its parent node;

else if the current node is black and the node is a leaf
then transform the parameters of the Gaussian density
of the node by using the transformation parameters esti-
mated at this node;

else move to next node.

Fig. 2 gives an illustration for thisbottom-upestimation and
top-downtransformation procedure.

After this bottom-up top-downprocedure, all the Gaussian
mixture components are updated by thefinest transformation
parameters available.

V. BAYESIAN MODEL SELECTION

A transformation matrix can be chosen as full, diagonal, or
block diagonal. The use of block diagonal matrix is based on
the assumption that a separate transformation can be used for
each type of speech features, including cepstral coefficients,
energy, first-order time derivatives, resulting in a block diag-
onal structure with parameter correlation considered only within
each type of features. The choice of the transformation matrix
structure is in general a tradeoff between the number of pa-
rameters to be estimated and the amount of adaptation data re-
quired. The problem is referred to asmodel parameterization
complexity. When building a hierarchical transformation tree,
we can tie all Gaussian components together and apply a global
transformation, which corresponds to a tree with a root node
only, or we can grow a full tree until each leaf node contains
one Gaussian component and apply specific transformation to
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Fig. 2. White�black tree for bottom-up estimation and top-down
transformation.

each Gaussian. In general, a shallow tree is simpler, but it pro-
duces a poor fit to the data; in contrast, a deep tree is more
complex, but it provides a good fit to the data. Therefore, the
choice of tree-structure is a tradeoff between model simplicity
and goodness of fit to data. The problem is termed asmodel
structure complexity. In order to balance the complexity of the
tree-structured model with the goodness of fit to adaptation data,
model-selection information criterion needs to be used. In this
section, we show how to accommodate a Bayesian variant of
Rissanen’s MDL [30] into online Bayesian adaptation to control
both model structural complexity and parameterization com-
plexity to best fit the adaptation data, the goal being minimiza-
tion of recognition error.

The model selection problem is coarsely prefigured by
Occam’s Razor [29]: given two hypotheses that fit the data
equally well, prefer the simpler one. Rissanen distills such
thinking in hisPrinciple of MDL: choose the model that gives
the shortest description of data. Originally Rissanen derived the
description length by MLE. Here we apply Rissanen’s method
of parameter truncation to a Bayesian framework as proposed
in [30]. Consider the multi-class hypothesis testing problem of
determining which model generated a given data.
For each model , the likelihood of observation anda prior
density are denoted by and . The Bayesian
approach of Rissanen’s MDL is to describe the observed data

with a two-stage code in which we first encode the MAP
estimate and then encode under the model determined by
. When both and are discrete, the encoding length can be

obtained according to Shannon’s theory as

When and are both continuous variables, we need to trun-
cate them each to a desired precision and measure the code
length on the truncated values and . In practice, the ef-
fect of truncation on the code length is insignificant whereas
that of truncation on the code length is significant. There-
fore we would like to focus on and find the op-
timal precision for . Due to difficulties in a direct analysis

on , a second order Taylor series approximation is
made on around the MAP estimate, which yields

(17)

Adopting the worst-case minimax approach [30] which picks
the truncated parameter to minimize the maximum of (17)
yields the total description lengthsas

(18)

where

is referred to as the observed incomplete-data information ma-
trix, and is the number of unknown parameters or the di-
mension of the statistical model. It can be shown that when the
number of observation datais large, the log determinant term
can be approximated by , and it will dominate the
last term. As a model becomes more complex, the sum of the
first two terms decreases and that of the last two terms increases.
The description length has its minimum at a model
with an appropriate complexity.

Define a cut in a tree be a set of nodes dividing the tree into
an upper part and a lower part. One example of a cut is shown as
the set of nodes on the dashed line in Fig. 2. Each node in a cut
has a transformation matrix with one of three forms, namely di-
agonal, block diagonal, and full. A “model” corresponds to a cut
where each node in the cut has a fixed form of transformation
matrix, but the form may vary from node to node. The coarsest
model consists of only the root node with a diagonal transforma-
tion matrix. As the cut goes downward in the tree, the number
of nodes increases, and thus the model becomes finer. The finest
model consists of all the leaf nodes with full transformation ma-
trices.

Now we show how to calculate the description length
defined in (18) for a tree cut. Denote a cut in a tree by, and
the th node of this cut by . Assuming that there are
nodes in cut , then there are a total of models in this cut.
Let be a subtree whose root node is , and be the
set of Gaussian components that lie in the leaf nodes of.
For sequences of feature observations ,
with each generated by a HMM, the likelihood of ob-
servation sequences is approximated by the joint likelihood
of the dominant state and mixture index sequences and
the observation sequences [38], that is

, where
, and are the optimal state and mixture

index sequences determined by the Viterbi algorithm. Each
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feature vector , , is assigned
to its corresponding Gaussian component indexed by .
Let be the set of feature vectors in assigned to the
Gaussian components in . Denote as the set of
transformation parameters corresponding to the cut, and
define the indicator function if is true and
is true; and , otherwise. For LR, the description
length for the cut is approximated as
follows.

(19)

with

(20)

where the approximation is replacing the log determinant of the
sum of information matrices as defined by (18) by the sum (over
) of the log determinants of the information matrices.
If the transformation matrix of is full, then

; if the transformation matrix is block
diagonal, then ; if the transformation
matrix is diagonal, then . The entries of information

matrix are given as

where .
For affine transformations, the description length

for a cut can be similarly approxi-
mated as

with

(21)

and the entries of are given as

for

for

where .
Note that (20) and (21) can be calculated in the online

mode, since we can accumulate sufficient statistics recursively
and plug-in the parameter estimates to obtain the description
length values. The difference between the batch and the online
schemes is that in batch algorithms, the current parameter
estimates are used to decode all adaptation utterances, while
in online algorithm, the current parameter estimates are used
to decode the current adaptation utterance only, leaving the
previous decoding results unchanged.

In general, learning a graphical model is NP-hard [11]. For
a tree-structured model, we could in principle calculate model
description length for every possible tree cut and take the model
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Fig. 3. Dynamic programming for optimal tree cut and model. The dashed
curve means tying all Gaussian components together. The solid curve means
taking subproblem solution.

with the MDL. However, since the number of cuts in a binary
tree is exponential in the size of the tree, i.e., , with

the number of layers, it is impractical to do so. An efficient
dynamic programming algorithm is therefore proposed for de-
termining the optimal size of hierarchical tree and the form of
transformation matrices. Denote an internal node in the tree
as and its left child node and right child node . De-
note the subtrees rooted at these nodes as, , and ,
respectively, and denote the set of feature vectors clustered in
the Gaussians of these nodes as, , and , respec-
tively. Finally, denote the optimal transformation matrices and
biases for the subtrees rooted at these nodes as, ,

and , , respectively, with the corresponding
MDLs as , ,
and . The recursive formula for the
MDL is given as

(22)

where each transformation matrix can be full, block diagonal,
or diagonal. See Fig. 3 for an illustration of (22).

Either a bottom-updynamic programming algorithm or a
top-downrecursive algorithm can be performed to obtain the
MDL. In general, thebottom-upapproach is more efficient than
the top-downapproach [12]. However, for this problem, the
two approaches have the same computational complexity. Liet
al. [35] used thetop-downrecursive algorithm to calculate the
MDL in the MLE sense for generalizing case frames in natural
language processing. Shinodaet al. [42] used thetop-down
recursive algorithm to calculate the MDL in the MLE sense for
bias removal in batch-mode model selection. In this work we
use thebottom-upapproach for online mode model selection.
The procedure is summarized as follows:

• Obtain diagonal, block diagonal, and full transforma-
tion matrix parameters and initialize the tree cut using
block diagonal transformation matrices by thebottom-up
top-downprocedure described in Section IV.

• Iterate through the following steps until convergence.

Step 1) Transform HMM parameters.
Step 2) Decode current adaptation utterance by using

the transformed HMM parameters. Assign
each feature vector into a Gaussian compo-
nent in a leaf node in the tree.

Step 3) Determine the optimal tree cut and transfor-
mation matrix form of each node in the cut
by the followingbottom-updynamic program-
ming algorithm:

i) Initialization: for each leaf node, if
the node contains feature vector, then
calculate its description lengths with
full, block diagonal, and diagonal ma-
trices by (20) or (21), and choose the
minimum; otherwise, set its description
length to be infinity.

ii) Recursion: in the bottom-up order,
recursively compute the description
length using (22). For each nonleaf
node , if the MDL of the first line
of (22) is smaller than or equal to the
MDL of the second line, drop all the
children of the node and assign node

to the cut; else assign the children of
the node to the cut.

iii) Go up one level and repeat ii) until the
root is reached.

Step 4) If the tree cut and the transformation matrix
form of each node in the cut remain the same as
in the previous iteration, then output the trans-
formed HMM parameters and stop. Otherwise,
return to Step 1.

VI. EXPERIMENTAL RESULTS

The online Bayesian learning approach is applied to online
speaker adaptation using a vocabulary of 26-letter English al-
phabet. Two severely mismatched speech databases, the OGI
ISOLET and the TI46, were used for evaluating the adaptation
algorithm. A full description of these two corpora can be found
in [26]. For speaker independent training, the OGI ISOLET
database was used. It consists of 150 speakers, each speaking
a letter twice. For online Bayesian adaptation and testing, the
English alphabet subset of the TI46 isolated word corpus was
used. Among the 16 talkers, data from four males were incom-
plete. Therefore, only 12 speakers (four males and eight fe-
males) were used in this study. Each person uttered each of
the letters 26 times, where ten were collected in the same ses-
sion and the remaining 16 were collected in eight different ses-
sions with two in each session. For each person and each letter,
we divided equally those 16 tokens collected in eight different
sessions into two parts, one for adaptive training, another for
testing. Each letter was modeled by a single left-to-right five-
state CDHMM. Each state had a Gaussian mixture density of
four components with each component density having a diag-
onal covariance matrix. Speech features were extracted based
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Fig. 4. Recognition performance by supervised online Bayesian learning.

on a tenth-order LPC analysis, where the feature components
were 12 cepstral coefficients, a normalized log energy and their
first time derivatives.

A number of comparative experiments were conducted, in-
cluding

1) the proposed online recursive Bayesian approach versus
other online Bayesian approaches;

2) supervised versus unsupervised adaptation;
3) generalized Gaussian prior with different shape parame-

ters ;
4) diagonal, block diagonal (two blocks, one for instanta-

neous features and one for dynamic features), and full
transformation matrices;

5) different depths of hierarchical tree;
6) LR versus affine transformation;
7) models selected by the Bayesian variant of MDL principle

versus two models with fixed model complexity.

Recognition performances were evaluated by using parameter
estimates of four iterations of (5) for each. Hyperparameters
were estimated by four iterations of the modified equation (2),
where the step size was obtained by line search. By default, a
six-layered hierarchical tree and a Gaussian prior were used in
the experiments.

1) Comparison of Online Bayesian Adaptation Ap-
proaches: Starting with the SI models, we selected adaptation
tokens for each letter randomly from the adaptation set and
performed utterance-based supervised online adaptation. After
each adaptation, we tested the recognizer on the test set to
measure the performance. In Fig. 4, recognition results were
averaged over 12 speakers as a function of total number of adap-
tation tokens per speaker. For recursive Bayesian estimation,
we used affine transformation with block diagonal transfor-
mation matrices. We also included the results of quasi-Bayes
online estimation for tree-structured transformation [7] and
quasi-Bayes online estimation for HMMs [26], where in
the latter case, full sets of HMM parameters were adapted
and the hyperparameters were estimated by the method of
moments. Our result is shown better than those of quasi-Bayes
approaches, the main reason being that the recursive Bayesian
learning technique accommodates easily affine transformations
which when combined with the hierarchical tree is effective for
both limited adaptation data and abundant adaptation data.

Fig. 5. Recognition performance by supervised and unsupervised online
Bayesian learning.

2) Comparison of Supervised and Unsupervised Adapta-
tions: We evaluated the recognition performances when using
supervised and unsupervised adaptation, respectively. Fig. 5
shows the results when block diagonal matrix of affine trans-
formation and hierarchical tree with a depth of six were used.
Supervised adaptation performed slightly better. As abundant
adaptation data became available, the two results became very
close.

3) Robustness of Priors:We investigated the robustness of
generalized Gaussian prior models. The transformation matrices
were block diagonal matrix and the depth of hierarchical tree
was six. The recognition performances by using three values of
the shape parameter are shown in Fig. 6. As the
results indicate, recognition performance was improved when
usingpriorswith heavy tails than using standard Gaussian, since
heavy-tailedpriors are more robust to data and function mis-
match. There was little difference between the results for
and .

4) Full, Block Diagonal, and Diagonal Transformation
Matrices: Previously, Leggetter and Woodland [34] investi-
gated the effect of full or diagonal transformation matrices
on recognition performance in ML-based LR using a batch
adaptation approach. Here, we investigate the effectiveness of
online Bayesian learning of tree-structured affine and LR trans-
formations. We evaluated the effect of model parameterization
complexity on recognition performance by using full, block
diagonal, as well as diagonal transformation matrices while
model structural complexity was varied by using different
depths of hierarchical tree. The amount of adaptation data was
ten utterances per speaker in one case and 100 in another.

Fig. 7 illustrates the recognition performance when using the
small amount of adaptation data. All transformations provided
improvements over the initial model, but the effect of diagonal
matrices was limited. The full matrices gave a substantial im-
provement when using one- or three-layered trees. However, as
the depth of the tree was increased, the amount of data allocated
to each leaf node became small and the matrices were poorly
estimated, and thus the performance of full matrices dropped
rapidly. With diagonal matrices, as deeper trees were used the
performance gradually increased; however, this effect was very
small and using 500 diagonal matrices was only 5.0% better than
using one diagonal matrix. It is clear that the off-diagonal terms
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Fig. 6. Recognition performance by GGDpriors: (a) affine transformation and (b) LR transformation.

Fig. 7. Full, block-diagonal, and diagonal matrix using ten adaptation utterances per speaker: (a) affine transformation and (b) LR transformation.

Fig. 8. Full, block-diagonal, and diagonal matrix using 100 adaptation utterances per speaker: (a) affine transformation and (b) LR transformation.

that account for the interdependencies between feature compo-
nents were important.

Fig. 8 gives the recognition performance when using the large
amount of adaptation data. In this case, the amounts of data
allocated to leaf nodes were abundant and the transformation
matrices were well estimated. As expected, full transformation

matrices gave substantially better performance than that of di-
agonal transformation matrices.

5) Depth of Hierarchical Tree:We investigated the effects
of using hierarchical trees with different depths, i.e., the
problem of model structure complexity. Previously, Shinoda
and Watanabe [42] investigated this problem for bias trans-
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Fig. 9. Recognition performance by various depths: (a) affine transformation and (b) LR transformation.

formation by using batch approach. Here we investigate this
problem for online Bayesian learning of tree-structured affine
transformation parameters. Fig. 9 gives the recognition results
of online learning of block-diagonal transformation matrices
with various tree depths while varying the number of adaptation
utterances. We observe that when the amount of adaptation data
was small, better recognition performances were achieved by
trees with shallower depths than trees with deeper depths, since
a deeper tree-structure overfitted the limited training data. As
more adaptation data was presented, the performance gradually
improved for both shallow and deep trees, but the trees with
shallow depths improved less, which indicates underfitting the
adaptation data. As a sufficient amount of data was used, good
recognition performance was achieved by trees with deeper
depths. From the results, we see that a critical issue in the
hierarchical tree-structured speaker adaptation is choosing a
tree which neither underfits nor overfits the adaptation data.

6) Linear Regression and Affine Transformation:From the
above results, it can be seen that both LR and affine trans-
formation significantly improved recognition performance.
On average, LR transformation gave a 80% recognition rate,
and affine transformation gave a further 2–8% increase in
recognition rate over LR. It is worth noting that the results by
affine transformation were consistently better than LR at little
additional cost in computation.

7) Bayesian Model Selection:We first examined the op-
timal model complexities for each given amount of adaptation
data by using the MDL principle. Fig. 10 shows the number of
tree nodes of the optimal cut for one speaker when the amount
of adaptation data was 10, 60, and 180 utterances, respectively.
As the amount of adaptation data increased, the optimal cut
approached the leaf nodes and the number of nodes increased.

We then compared the recognition results obtained using the
proposed MDL method with those obtained by fixed model
complexity. The results are summarized in Fig. 11. Of the two
fixed models, one is a ten-layer tree with block diagonal trans-
formation matrices and the other is a three-layer tree with full
transformation matrices. As shown in the figure, the proposed
MDL method possesses the advantage of the small-sized tree
when the amount of adaptation data is small, and it possesses
the advantage of the large-sized tree when the amount of
adaptation data is large. In addition, it outperforms both fixed

Fig. 10. Model complexity of the optimal model: (a) ten utterances, (b) 60
utterances, and (c) 100 utterances per speaker.

models in the intermediate range of adaptation data size, which
is intuitively appealing since this is the condition that MDL
provides solution to the uncertainty of model complexity.
Therefore, MDL provides an optimal tradeoff between accu-
racy and complexity of model structure and parameterization
over a full range of adaptation data size.

VII. D ISCUSSION ANDCONCLUSION

In this paper, we developed an online Bayesian learning tech-
nique for transformation of parameters of Gaussian densities of
HMMs. A hierarchical tree of HMM Gaussian parameters is em-
ployed to dynamically control the transformation tying and the
a priori knowledge of HMM Gaussian parameters is incorpo-
rated to estimate the transformation parameters at tree nodes.
This technique allows updating parameter estimates per utter-
ance and it can accommodate flexible forms of transformation
functions anda priori probability densities of the transforma-
tion parameters. Speaker adaptation experiments showed con-
sistently improved recognition accuracy for increasing amounts
of adaptation data, and the performance was superior to ex-
isting online adaptation methods. We investigated the choice on
a priori density functions and suggested using GGD as priors
for online Bayesian learning of tree-structured transformation
of Gaussian densities of HMMs. It was found that heavy tailed
a priori density functions gave better recognition performance
and thus are more robust to mismatch in prior estimation. Fi-
nally, the Bayesian variant of the MDL principle was incorpo-
rated into online Bayesian tree-structured transformation to ob-
tain an optimal tradeoff between model structural and parame-
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Fig. 11. Recognition performance by MDL principle: (a) affine transformation and (b) LR transformation.

terization complexities and goodness of fit to adaptation data.
Experimental results show that the MDL method in general is
capable of automatically selecting a set of model parameters that
leads to best recognition performance for each given amount of
adaptation data.

A disadvantage of the proposed method is its high computa-
tional complexity due to the computation of inverse matrixin
(5). For an -dimensional mean vector, the full transformation
A is an matrix, and the shift vector b is an vector.
Thus there are parameters, and the information matrix
will be . A fast algorithm for matrix inver-
sion is for matrix, so the proposed method needs

operations for each, while an incremental EM algo-
rithm for MAPLR [5], [10] needs operations for each.

One direction to further improve the performance of our adap-
tation technique is to incorporatetree-structural learningduring
the online learning process, that is, to update the clustering of
Gaussian components in the hierarchical tree after each or sev-
eral updates of parameter estimates. This problem has been in-
vestigated by Chien [6] in a batch algorithm. Another direction
is using thesequential hypothesis testingtechnique [40] as a
verification scheme for evaluating the transformation reliability,
which was shown very useful for unsupervised speaker adapta-
tion [9].

In designing a learning algorithm, it is often important to
know the amount of samples needed for training a model,
such that for new testing data, one has certain confidence that
the probability of making an error is under certain level. This
problem is known assample complexity[14] and it is often
formulated in a probably approximately correct (PAC) sense of
learning [29]. Upper and lower bounds on sample complexity
can be derived in the PAC framework for a learning algorithm,
and they are often distribution free, i.e., valid regardless of the
distribution from which the training data is drawn. Given in-
dependently observed feature sequences generated by HMMs,
how to derive upper and lower bounds of sample complexity for
the proposed online Bayesian learning for speaker adaptation
is a challenging problem.

Batch algorithm which follows the same idea used in online
algorithm can be similarly derived. An interesting and impor-

tant problem is the comparison of online and batch Bayesian
learning algorithms. For a fixed parameter model, the recog-
nition result obtained by the batch learning algorithm is often
better than that by the online algorithm, since the online al-
gorithm sees one example at a time and incurs a loss on each
sample at its current model. If the loss is defined to be the recog-
nition error or the normalized negativea posteriori likelihood
function, it is then interesting to derive the upper and lower
bounds for the relative loss, which relate the online loss to the
best off-line loss.
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