
Freeing Programmers from
the Shackles of Sequentiality

Thesis Proposal Talk
Sven Stork

Committee

Jonathan Aldrich (CMU)
Todd Mowry (CMU)
William Scherlis (CMU)

Paulo Marques (UC)
Ernesto Costa (UC)
Marco Viera (UC)

1

2

2

2

2

2

3

How to write and use
frameworks and libraries

correctly?

How to write correct
parallel/concurrent code?

Why correctness
matters?

• Therac-25

• race condition

• 3 deaths

• 3 heavy injuries

4

Why correctness
matters?

• Blackout (2003)

• race condition

• 55,000,000 people
affected

5

How to solve these
problems?

6

Step by step

• Kevin Bierhoff check correct object usage:

• type state to check object protocols

• access permissions to tackle aliasing

• Plural [sequential protocols]

7

Step by step

• Nels Beckman extend Bierhoff ’s work to verify
object protocols in concurrent settings

• access permission to check correct
synchronization

• access permissions to optimize STM

• NIMBY/Sync’ or Swim [concurrent protocols]

8

Step by step

• So far we can check that programs

• obey object protocols

• are properly synchronized

• How to write concurrent programs in first
place?

9

How to write
concurrent programs?
• Experiment

• Implemented a few programs in various
parallel programming abstractions

• Observation

• no silver bullet

• implicit parallelism appeared better

• no solutions for future

10

Pushing the Envelope

• How should we write parallel code in
20-30 years?

11

Pushing the Envelope

• How should we write parallel code in
20-30 years?

Don’t do it!
-- Doug Lea

11

Pushing the Envelope

• make experiment

• ÆMINIUM parallelism
garbage collector memory management

• automatically parallelization of code

• composable

• modular

12

The flow of access- and group-permissions
provides a powerful abstraction to capture

common programming idioms while
simultaneous enabling the safe extraction of

efficient concurrency.

13

Thesis Statement

In other words ...

14

• propose abstract concept (ÆMINIUM)

• use permission information for automatic
parallelization of programs

• permissions are suitable abstraction

• can express common concurrent
programming patters

• allow us to achieve better performance

Hypotheses

• The ÆMINIUM approach is

• save (i.e., no data races)

• efficient (i.e., achieve speedup)

• practical (i.e., express common
programming paradigms)

15

Approach

• formalizing and implementation
of the ÆMINIUM approach

16

Plaid Runtime

JVM

AEminium +
Plaid Compiler

Approach

• formalizing and implementation of the
ÆMINIUM approach

17

Plaid Runtime

JVM

ÆMINIUM +
Plaid Compiler

ÆMINIUM +

Approach

• formalizing and implementation of the
ÆMINIUM approach

18

Plaid Runtime

JVM

Plaid Compiler

ÆMINIUM Runtime

Contributions

• formal system of ÆMINIUM

• proof of concept implementation

• evaluation of feasibility

19

The Approach Explained
20

Access Permissions

• abstract capabilities associated with object
references that encode

• access rights (e.g., read/write)

• aliasing information

• extensively used for verification
(e.g. concurrency, protocols)

21

Access Permissions

22

1 N

RW unique shared

R immutable immutable

Aliasing

A
cc

es
s

Access Permissions

• linear logic (resource logic)

• split and join

23

Access Permissions

• linear logic (resource logic)

• split and join

23

Access Permissions

• linear logic (resource logic)

• split and join

23

Access Permissions

• linear logic (resource logic)

• split and join

23

Access Permissions

• linear logic (resource logic)

• split and join

23

Access Permissions

• linear logic (resource logic)

• split and join

23

Access Permissions

• linear logic (resource logic)

• split and join

23

uniqueimmutableimmutable

Access Permissions

• aliases = 1

• access= RW

• “thread local”

• no
synchronization

Unique PermissionObject

sharedshared

24

sharedsharedunique

immutableimmutable

Access Permissions

• aliases = N

• access= R

• “constant”

• no
synchronization

Immutable PermissionObject

25

immutableimmutable

sharedsharedunique

immutableimmutable

Access Permissions

• aliases = N

• access= R

• “constant”

• no
synchronization

Immutable PermissionObject

26

immutableimmutable

sharedsharedunique

immutableimmutable

Access Permissions

• aliases = N

• access= R

• “constant”

• no
synchronization

Immutable PermissionObject

27

immutableimmutable

uniqueimmutableimmutable

Access Permissions

• aliases = 1

• access= RW

• “thread local”

• no
synchronization

Unique PermissionObject

sharedshared

28

immutableimmutableunique

shared

Access Permissions

• aliases = N

• access= RW

• “shared data”

• requires
synchronization

Shared PermissionObject

shared

29

uniqueimmutableimmutable

Access Permissions

• aliases = 1

• access= RW

• “thread local”

• no
synchronization

Unique PermissionObject

sharedshared

30

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

amount:

Permission Example
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique

// to:

unique

from:

immutable

amount:

immutable

31

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

amount:

Permission Example
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique

// to:

unique

from:

immutable

amount:

immutable

31

Syntax: permission [>> permission] type var

BORROW: unique Account from
 unique >> unique Account from
CHANGE: unique >> immutable Account account

amount:

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique

// to:

unique

from:

immutable

amount:

immutable

32

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to: uniquefrom: immutableamount:

33

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to: uniquefrom: immutableamount:

34

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to:

unique

from:

immutable

amount:

immutable

35

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to:

unique

from: amount:

immutable

36

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to: uniquefrom: immutableamount:

37

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to: uniquefrom: immutableamount:

38

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique

// to: uniquefrom: amount:

immutable

39

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique

// to: uniquefrom: amount:

immutable

40

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to: uniquefrom: immutableamount:

41

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique// to: uniquefrom: immutableamount:

42

// to: from: amount:

Permission Example

public void transfer(unique Account from,
 unique Account to,
 immutable Amount amount) {

 withdraw(from, amount);

 deposit(to, amount);

}

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

unique

unique

immutable

amount:

immutable

43

Using Permissions for
Parallelization

• infer permissions flow based on
lexical order

• define operations can run in parallel iff
intersection of their required
permissions does not contain unique
permissions

44

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)unique unique immutableimmutablefrom: to: amount:

45

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique unique immutablefrom: to: amount:

46

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique unique immutablefrom: to: amount:

deposit(to, amount)

47

withdraw(from, amount)

immutableimmutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique uniquefrom: to: amount:

split

withdraw(from, amount)
deposit(to, amount)

amount:

48

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique unique

immutable

from: to:

amount:

split

withdraw(from, amount) deposit(to, amount)
amount:

49

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique uniqueimmutablefrom: to:amount:

split

withdraw(from, amount) deposit(to, amount)
amount:

50

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique uniqueimmutablefrom: to:amount:

split

withdraw(from, amount) deposit(to, amount)
amount:

51

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique uniqueimmutablefrom: to:amount:

split

withdraw(from, amount) deposit(to, amount)
amount:

52

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique uniqueimmutablefrom: to:amount:

split

withdraw(from, amount) deposit(to, amount)
amount:

53

join

}

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique unique

immutable

from: to:

amount:

split

withdraw(from, amount) deposit(to, amount)

amount:

54

join

}

immutable

Dataflow Example
transfer(unique Account from, unique Account to, immutable Amount amount)

unique unique immutablefrom: to: amount:

split

withdraw(from, amount) deposit(to, amount)

amount:

55

join

}

amount:

Dataflow Example
immutabletransfer(unique Account from, unique Account to, immutable Amount amount)immutableunique unique

from: to: amount:

split

withdraw(from, amount) deposit(to, amount)

56

join

}

Shared Data Issues

57

• causes non-determinism but sometimes order
matters

• e.g., object that needs to follow protocol

• all accesses to shared objects require
synchronization

• sometimes shared permissions are
unavoidable

• e.g., doubly linked list

Data Groups

• bundle shared objects into data groups

• abstract collection of objects

• disjoint partitions of heap

58

Data Groups

• bundle shared objects into data groups

• abstract collection of objects

• disjoint partitions of heap

58

Data Groups

• bundle shared objects into data groups

• abstract collection of objects

• disjoint partitions of heap

58

Data Groups

• bundle shared objects into data groups

• abstract collection of objects

• disjoint partitions of heap

58

Data Groups
Permissions

• similar to access permissions for data groups

• manual split/joining by user

• user controlled mechanism for granularity

59

Data Groups
Permissions

• similar to access permissions for data groups

• manual split/joining by user

• user controlled mechanism for granularity

59

Data Groups
Permissions

• data groups are embedded in objects

• strong encapsulation, ownership

• group permissions are derived from receiver
permissions

60

sharedsharedexclusive

Group Permissions

• aliases = 1

• access= RW

• “thread local”

• no
synchronization

Exclusive Permission

61

protected

exclusive

sharedshared

Group Permissions

• aliases = N

• access= none

• “shared data”

• requires
synchronization

Shared Permission

62

split

shared

protected

exclusive

shared

Group Permissions

• aliases = 1

• access= RW

• “protected ”

• is synchronized

atomic Permission

63

atomic

protected

exclusive

sharedshared

Group Permissions

• aliases = N

• access= none

• “shared data”

• requires
synchronization

Shared Permission

64

split

sharedsharedexclusive

Group Permissions

• aliases = 1

• access= RW

• “thread local”

• no
synchronization

Exclusive Permission

65

Data Group Example

66

class DLLItem {
 public Object data;
 public DLLItem prev;
 public DLLItem next;
}

public class DLL {
 private DLLItem head;

 public void add(Object data) {
 	 DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL I2 I3

O1 O2 O3

Data Group Example

67

class DLLItem {
 public Object data;
 public DLLItem prev;
 public DLLItem next;
}

public class DLL {
 private DLLItem head;

 public void add(Object data) {
 	 DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL I2 l3

O1 O2 O3

Data Group Example

68

class DLLItem {
 public Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(Object data) {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

69

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(unique >> none Object data) {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

70

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

71

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

71

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
}

I1DLL l2 l3

O1 O2 O3

ERROR:
Access shared

data

Data Group Example

72

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {
 atomic {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

72

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {
 atomic {
 	 shared DLLItem li = new DLLItem();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
 }
}

I1DLL l2 l3

O1 O2 O3

Unique receiver
means no aliases

Data Group Example

73

class DLLItem {
 public unique Object data;
 public shared DLLItem prev;
 public shared DLLItem next;
}

public class DLL {
 group nodes;
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {

 	 shared DLLItem li = new DLLItem ();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;

 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

74

class DLLItem<G> {
 public unique Object data;
 public shared DLLItem<G> prev;
 public shared DLLItem<G> next;
}

public class DLL {
 group nodes;
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {

 	 shared DLLItem li = new DLLItem ();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;

 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

75

class DLLItem<G> {
 public unique Object data;
 public shared DLLItem<G> prev;
 public shared DLLItem<G> next;
}

public class DLL {
 group nodes;
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {

 	 shared DLLItem<nodes> li = new DLLItem<nodes>();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;

 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

75

class DLLItem<G> {
 public unique Object data;
 public shared DLLItem<G> prev;
 public shared DLLItem<G> next;
}

public class DLL {
 group nodes;
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {

 	 shared DLLItem<nodes> li = new DLLItem<nodes>();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;

 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

76

class DLLItem<G> {
 public unique Object data;
 public shared DLLItem<G> prev;
 public shared DLLItem<G> next;
}

public class DLL {
 group nodes;
 private shared DLLItem head;

 public void add(unique >> none Object data) : unique {
 unpack {
 	 shared DLLItem<nodes> li = new DLLItem<nodes>();
 this.head.prev = li;
 li.next = this.head;
 li.data = data;
 this.head = li;
 }
 }
}

I1DLL l2 l3

O1 O2 O3

Data Group Example

77

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

unique

// this:

unique

data:

Data Group Example

78

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

unique// this: uniquedata:

Data Group Example

79

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

unique uniquedata:exclusive// this: this.nodes:

Data Group Example

80

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

unique uniquedata:exclusive// this: this.nodes:

Data Group Example

81

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

data:

unique exclusive// this: this.nodes:

unique

Data Group Example

82

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

unique// this:

unique

data:

exclusive// this.nodes:

Data Group Example

83

public void add(unique >> none Object data) : unique {

 unpack {

 ...

 li.data = data;

 }

}

unique

// this:

unique

data:

exclusive// this.nodes:

Progress so far
84

μÆMINIUM

• core-calculus based on group permissions

• concurrent-by-default type system

• soundness proof for absence of race
conditions (cf. ‘safety’ hypothesis)

85

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based runtime system for dataflow
and fork/join parallelisms

• support for locks and STM

• dynamic detection of deadlocks
(for the lock based approach)

86

1

3

2

4

5

4’

4’’

4’’’

4’’’

task dependency fork/join dependency

Dataflow Runtime

• support for 3 kinds of tasks

• Non-Blocking -- computation intensive

• Blocking -- I/O tasks

• Atomic -- task that require protection

87

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

88

1

3

2

4

5

4’

4’’

4’’’

4’’’

task dependency fork/join dependency

Tasks

Dependencies

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

88

1

3

2

4

5

4’

4’’

4’’’

4’’’

task dependency fork/join dependency

Tasks

Dependencies

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

89

1

3

2

4

5

4’4’’

4’’’

4’’’

task dependency fork/join dependency

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

90

1

3

2

4

5

4’

4’’4’’’4’’’

task dependency fork/join dependency

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

91

1

3

2

4

5

4’

4’’

4’’’

4’’’

task dependency fork/join dependency

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

92

1

3

2

4

5

4’

4’’

4’’’

4’’’

task dependency fork/join dependency

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

93

1

3

2

4

5

4’

4’’4’’’4’’’

task dependency fork/join dependency

4’4’’4’’’4’’’

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

94

1

3

2

4

5

task dependency fork/join dependency

4’4’’4’’’4’’’

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

95

1

3

2

4

5

task dependency fork/join dependency

4’4’’4’’’4’’’

Dataflow Runtime

• data flow runtime system for ÆMINIUM

• task based support for dataflow and
fork/join parallelisms

96

1

3

2

4

5

task dependency fork/join dependency

Dataflow Runtime
Performance Evaluation

• compare performance to Java’s fork/join
framework

• run micro benchmarks used by the
fork/join paper

• ÆMINIUM runtime about 35% slower

97

Dataflow Runtime
“Atomic” Evaluation

• compare worst, best and intermediate case

• one global lock vs one lock per object

• access single object vs multiple objects

• read vs write

• the locking based implementation
outperformed STM based implementation
in almost all cases

98

Proof of Concept

• Master thesis of Manuel Mohr

• hand generated AST with type information

• each method call becomes a task

• showed principle feasibility

99

Proof of Concept

• performance
improvements

• more optimize systems

• dynamic/static load
balancing

100

86 5. Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of cores

n = 23
n = 25
n = 27

Figure 5.5: Speedup of Æminium code relative to sequential Plaid code.

input size. For n = 23 it is 2.18, for n = 25 it is 2.79 and for n = 27 it is 3.08.
For more than six cores, the speedup decreases.

It is surprising that the parallel version is faster than the sequential version,
at least when the programs are run on more than one core, even without any
form of granularity management. As described in the previous section, the
Æminium compiler does not try to determine a cuto↵ threshold to limit the
number of tasks that are generated. Therefore, the costs of task creation and
scheduling quickly outweigh the benefits of parallelization in the lower levels
of the tree from figure 5.1. However, one has to take into account that the
Plaid compiler itself is in an early stage and the usage of the Plaid runtime
poses a substantial overhead. This overhead hides the additional costs that
come with creating and scheduling the task objects. Thus, this result must
not be over-interpreted. As soon as the Plaid compiler starts generating more
optimized code, the lack of granularity control will lead to parallel code that
runs at least one order of magnitude slower than the sequential version.

The fact that the speedup is higher for bigger input parameter n is peculiar. As
more tasks are generated for larger values of n, this means more management
overhead for the Æminium runtime, so a lower speedup is to be expected.
However, in this case the opposite e↵ect can be observed. Additionally, it is
concerning that the speedup decreases if more than six cores are used which
indicates scalability problems.

To investigate the reason for these behavior, it has been tried to eliminate the
influence of the Plaid runtime. In order to do that, programs were written
that use the Æminium runtime and create the same task graph structure but
put plain Java code into the body of the task objects. However, as it turned
out, there exists a fundamental problem with this approach. As can be seen in
figure 5.5 when looking at the speedup for one core, the Plaid runtime hides
the overhead induced by the Æminium runtime. This means that most of the
time is spent executing the code inside the tasks. In the case plain Java code is

Road ahead ...
101

Language
Implementation

• implementing ÆMINIUM in Plaid

• Plaid has built-in support for permissions

• limited type checker for Plaid
(lambda support is still missing)

102

Language
Implementation

1. add ÆMINIUM to Plaid language/parser

2. extend Plaid typechecker with data groups

3. extend Plaid infrastructure to compute
dataflow graph based on permission flow

4. extend Plaid code generator to produce
parallel code

103

Approach

• 1st milestone

• extend Plaid to compute permission flow
and parallelize code (no data groups)

• 2nd milestone

• extend Plaid with data groups

• Evaluate system

104

Evaluation

• conducting multiple case studies

• evaluating performance
(cf. efficiency hypothesis)

• evaluating practicality
(cf. practical hypothesis)

105

Evaluation
• selection of case studies

• use applications with known parallel/
concurrency characteristics

• use representative applications

• existing real-world applications

• existing benchmarks
(SPLASH, SPEC, DaCapo, etc)

• rewrite applications in ÆMINIUM/Plaid

106

Time Line

107

Nov 2011 Sep 2012

1st Milestone
permission only implementation

Jan 2012 March 2012 May 2012 Jul 2012

Time Line

108

2nd Milestone
data group implementation

Nov 2011 Sep 2012Jan 2012 March 2012 May 2012 Jul 2012

Time Line

109

Evaluation

Nov 2011 Sep 2012Jan 2012 March 2012 May 2012 Jul 2012

Time Line

110

writing thesis

Nov 2011 Sep 2012Jan 2012 March 2012 May 2012 Jul 2012

Risks

• Slow progress in Plaid

• omit unnecessary features

• parallelize/overlap work

• 2 stage approach

111

Risks

• Granularity issues

• implement optimization techniques
(e.g., task merging, flattening, etc)

• use dynamic load-balancing to avoid
generation of “useless” tasks

112

Risks

• Lack of parallelism

• no silver bullet

• ensure that we do not pay extra in the
case there is no parallelism

113

Thanks for the Attention!

Questions?

114

