

Freeing Programmers from the Shackles of Sequentiality

Thesis Proposal Talk Sven Stork

Committee

Jonathan Aldrich (CMU) Todd Mowry (CMU) William Scherlis (CMU) Paulo Marques (UC) Ernesto Costa (UC) Marco Viera (UC)

How to write and use frameworks and libraries correctly?

How to write correct parallel/concurrent code?

Why correctness matters?

- Therac-25
- race condition
- 3 deaths
- 3 heavy injuries

Why correctness matters?

- Blackout (2003)
- race condition
- 55,000,000 people affected

How to solve these problems?

Step by step

- Kevin Bierhoff check correct object usage:
 - type state to check object protocols
 - access permissions to tackle aliasing
- Plural [sequential protocols]

Step by step

- Nels Beckman extend Bierhoff's work to verify object protocols in concurrent settings
 - access permission to check correct synchronization
 - access permissions to optimize STM
- NIMBY/Sync' or Swim [concurrent protocols]

Step by step

- So far we can check that programs
 - obey object protocols
 - are properly synchronized
- How to write concurrent programs in first place?

How to write concurrent programs?

- Experiment
 - Implemented a few programs in various parallel programming abstractions
- Observation
 - no silver bullet
 - implicit parallelism appeared better
 - no solutions for future

Pushing the Envelope

 How should we write parallel code in 20-30 years?

Pushing the Envelope

 How should we write parallel code in 20-30 years?

Pushing the Envelope

- make experiment
- ◆ ÆMINIUM ←→ parallelism
 garbage collector ←→ memory management
- automatically parallelization of code
 - composable
 - modular

Thesis Statement

The flow of access- and group-permissions provides a powerful abstraction to capture common programming idioms while simultaneous enabling the safe extraction of efficient concurrency.

In other words ...

- propose abstract concept (ÆMINIUM)
- use permission information for automatic parallelization of programs
- permissions are suitable abstraction
 - can express common concurrent programming patters
 - allow us to achieve better performance

Hypotheses

- The ÆMINIUM approach is
 - save (i.e., no data races)
 - efficient (i.e., achieve speedup)
 - practical (i.e., express common programming paradigms)

Approach

 formalizing and implementation of the ÆMINIUM approach

Approach

 formalizing and implementation of the ÆMINIUM approach

Approach

 formalizing and implementation of the ÆMINIUM approach

Contributions

- formal system of ÆMINIUM
- proof of concept implementation
- evaluation of feasibility

The Approach Explained

- abstract capabilities associated with object references that encode
 - access rights (e.g., read/write)
 - aliasing information
- extensively used for verification (e.g. concurrency, protocols)

Aliasing

	1	N
RW	unique	shared
R	immutable	immutable

• linear logic (resource logic)

• linear logic (resource logic)

• linear logic (resource logic)

• linear logic (resource logic)

• linear logic (resource logic)

• linear logic (resource logic)

• linear logic (resource logic)

Unique Permission

- aliases = I
- access= RW
- "thread local"
- no synchronization

Immutable Permission

- aliases = N
- access= R
- "constant"
- no synchronization

Immutable Permission

- aliases = N
- access= R
- "constant"
- no synchronization

Unique Permission

- aliases = I
- access= RW
- "thread local"
- no synchronization

Shared Permission

- aliases = N
- access= RW
- "shared data"
- requires synchronization

Unique Permission

- aliases = I
- access= RW
- "thread local"
- no synchronization

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                   unique Account to,
                   immutable Amount amount) {
  withdraw(from, amount);
  deposit(to, amount);
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                   unique Account to,
                   immutable Amount amount) {
  withdraw(from, amount);
                               Syntax: permission [>> permission] type var
                               BORROW: unique Account from
  deposit(to, amount);
                                         unique >> unique Account from
                               CHANGE: unique >> immutable Account account
```

public void deposit(unique Account account, immutable Amount amount) {...} public void withdraw(unique Account account, immutable Amount amount){...}

```
public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {
```

```
withdraw(from, amount);
deposit(to, amount);
```

public void deposit(unique Account account, immutable Amount amount) {...} public void withdraw(unique Account account, immutable Amount amount){...}

```
public void transfer(unique Account from, unique Account to, immutable Amount amount) {

// to: unique from: unique amount: immutable

withdraw(from, amount);

deposit(to, amount);
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                    unique Account to,
                    immutable Amount amount) {
      // to: ( unique
                        from: ( unique
                                          amount: (immutable
  withdraw(from, amount);
  deposit(to, amount);
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                    unique Account to,
                    immutable Amount amount) {
      // to: ( unique
                        from:
                                          amount:
  withdraw(from, amount);
  deposit(to, amount);
```

```
public void deposit(unique Account account, immutable Amount amount) {...} public void withdraw(unique Account account, immutable Amount amount){...}
```

```
public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {
```

```
withdraw(from, amount);

// to: unique from: amount:
deposit(to, amount);
}
```

```
withdraw(from, amount);

// to: unique from: unique amount: immutable
deposit(to, amount);
}
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                    unique Account to,
                    immutable Amount amount) {
  withdraw(from, amount);
                                          amount: (immutable
      // to: ( unique
                        from: (
                              unique
  deposit(to, amount);
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                   unique Account to,
                   immutable Amount amount) {
  withdraw(from, amount);
      // to:
                       from:
                              unique
                                         amount:
  deposit(to, amount);
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                    unique Account to,
                    immutable Amount amount) {
  withdraw(from, amount);
  deposit(to, amount);
      // to:
                        from: ( unique
                                          amount:
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                    unique Account to,
                    immutable Amount amount) {
  withdraw(from, amount);
  deposit(to, amount);
      // to: ( unique
                                          amount: (immutable
                        from: ( unique
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                    unique Account to,
                    immutable Amount amount) {
  withdraw(from, amount);
  deposit(to, amount);
      // to: ( unique
                                          amount: (immutable
                        from: (
                               unique
```

```
public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}
public void transfer(unique Account from,
                   unique Account to,
                   immutable Amount amount) {
  withdraw(from, amount);
  deposit(to, amount);
```

Using Permissions for Parallelization

- infer permissions flow based on lexical order
- define operations can run in parallel iff intersection of their required permissions does not contain unique permissions

transfer(unique Account from, unique Account to, immutable Amount amount)

from: unique to: unique amount: immutable

transfer(unique Account from, unique Account to, immutable Amount amount)

amount:

withdraw(from, amount)

deposit(to, amount)

Shared Data Issues

- causes non-determinism but sometimes order matters
 - e.g., object that needs to follow protocol
- all accesses to shared objects require synchronization
 - sometimes shared permissions are unavoidable
 - e.g., doubly linked list

Data Groups

- bundle shared objects into data groups
 - abstract collection of objects
 - disjoint partitions of heap

Data Groups

- bundle shared objects into data groups
 - abstract collection of objects
 - disjoint partitions of heap

Data Groups

- bundle shared objects into data groups
 - abstract collection of objects
 - disjoint partitions of heap

Data Groups

- bundle shared objects into data groups
 - abstract collection of objects
 - disjoint partitions of heap

Data Groups Permissions

- similar to access permissions for data groups
- manual split/joining by user
- user controlled mechanism for granularity

Data Groups Permissions

- similar to access permissions for data groups
- manual split/joining by user
- user controlled mechanism for granularity

Data Groups Permissions

- data groups are embedded in objects
 - strong encapsulation, ownership
- group permissions are derived from receiver permissions

Exclusive Permission

- aliases = 1
- access= RW
- "thread local"
- no synchronization

Shared Permission

- aliases = N
- access= none
- "shared data"
- requires synchronization

atomic Permission

- \bullet aliases = 1
- access= RW
- "protected"
- is synchronized

Shared Permission

- aliases = N
- access= none
- "shared data"
- requires synchronization

Exclusive Permission

- aliases = 1
- access= RW
- "thread local"
- no synchronization

```
class DLLItem {
    public Object data;
    public DLLItem prev;
    public DLLItem next;
public class DLL {
    private DLLItem head;
    public void add(Object data) {
         DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```



```
class DLLItem {
   public
                Object data;
   public
                 DLLItem prev;
   public
                 DLLItem next;
public class DLL {
   private
                  DLLItem head;
   public void add(
                                  Object data)
                DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem {
    public
               Object data;
    public shared DLLItem prev;
    public | shared | DLLItem next;
public class DLL {
    private (shared) DLLItem head;
    public void add(
                                    Object data)
        (shared)DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem {
    public (unique) Object data;
    public shared DLLItem prev;
    public shared DLLItem next;
public class DLL {
    private shared DLLItem head;
    public void add(unique >> none Object data)
         shared DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem {
    public unique Object data;
    public shared DLLItem prev;
    public shared DLLItem next;
public class DLL {
    private shared DLLItem head;
    public void add(unique >> none Object data) (: unique) {
         shared DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem {
    public unique Object data;
    public shared DLLItem prev;
    public shared DLLItem next;
public class DLL {
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
         shared DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem {
    public unique Object data;
    public shared DLLItem prev;
    public shared DLLItem next;
public class DLL {
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
         shared DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
                                            ERROR:
         li.data = data;
                                        Access shared
         this.head = li;
                                               data
```

```
class DLLItem {
    public unique Object data;
    public shared DLLItem prev;
    public shared DLLItem next;
public class DLL {
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
       atomic {
         shared DLLItem li = new DLLItem();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem {
    public unique Object data;
   public shared DLLItem prev;
   public shared DLLItem next;
public class DLL {
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
       atomic {
         shared DLLItem li = new DLLItem();
        this.head.prev = li;
        li.next = this.head;
        li.data = data;
        this.head = li;
                                                   Unique receiver
                                                  means no aliases
```

```
class DLLItem
    public unique Object data;
   public shared DLLItem prev;
   public shared DLLItem next;
public class DLL {
   group nodes;
    private shared DLLItem head;
   public void add(unique >> none Object data) : unique {
         shared DLLItem li = new DLLItem
                                                    ();
         this.head.prev = li;
         li.next = this.head;
        li.data = data;
         this.head = li;
```

```
class DLLItem<G> {
    public unique Object data;
    public shared DLLItem<G> prev;
    public shared DLLItem<G> next;
public class DLL {
    group nodes;
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
         shared DLLItem li = new DLLItem
                                                     ();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem<G> {
    public unique Object data;
    public shared DLLItem<G> prev;
    public shared DLLItem<G> next;
public class DLL {
    group nodes;
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
         shared DLLItem<nodes> li = new DLLItem<nodes>();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem<G> {
    public unique Object data;
    public shared DLLItem<G> prev;
    public shared DLLItem<G> next;
public class DLL {
    group nodes;
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
         shared DLLItem<nodes> li = new DLLItem<nodes>();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
class DLLItem<G> {
    public unique Object data;
    public shared DLLItem<G> prev;
    public shared DLLItem<G> next;
public class DLL {
    group nodes;
    private shared DLLItem head;
    public void add(unique >> none Object data) : unique {
       unpack {
         shared DLLItem<nodes> li = new DLLItem<nodes>();
         this.head.prev = li;
         li.next = this.head;
         li.data = data;
         this.head = li;
```

```
public void add(unique >> none Object data) : unique {
    unpack {
        ...
        li.data = data;
    }
```

```
public void add(unique >> none Object data) : unique {
    unpack {
        ...
        li.data = data;
        // this: unique this.nodes: exclusive
    }
```

```
public void add(unique >> none Object data) : unique {
   unpack {
      li.data = data;
   // this: ( unique
```

```
public void add(unique >> none Object data) : unique {
    unpack {
        ...
        li.data = data;
    }
```


Progress so far

μÆMINIUM.

- core-calculus based on group permissions
- concurrent-by-default type system
- soundness proof for absence of race
 conditions (cf. 'safety' hypothesis)

- data flow runtime system for ÆMINIUM
- task based runtime system for dataflow and fork/join parallelisms
- support for locks and STM
- dynamic detection of deadlocks (for the lock based approach)

- support for 3 kinds of tasks
- Non-Blocking -- computation intensive
- Blocking -- I/O tasks
- Atomic -- task that require protection

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--- → fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

5

task dependency

--→ fork/join dependency

- data flow runtime system for ÆMINIUM
- task based support for dataflow and fork/join parallelisms

Dataflow Runtime Performance Evaluation

- compare performance to Java's fork/join framework
 - run micro benchmarks used by the fork/join paper
 - ÆMINIUM runtime about 35% slower

Dataflow Runtime "Atomic" Evaluation

- compare worst, best and intermediate case
 - one global lock vs one lock per object
 - access single object vs multiple objects
 - read vs write
- the locking based implementation outperformed STM based implementation in almost all cases

Proof of Concept

- Master thesis of Manuel Mohr
- hand generated AST with type information
- each method call becomes a task
- showed principle feasibility

Proof of Concept

- performance improvements
- more optimize systems
- dynamic/static load balancing

Road ahead ...

Language Implementation

- implementing ÆMINIUM in Plaid
- Plaid has built-in support for permissions
- limited type checker for Plaid (lambda support is still missing)

Language Implementation

- I. add ÆMINIUM to Plaid language/parser
- 2. extend Plaid typechecker with data groups
- 3. extend Plaid infrastructure to compute dataflow graph based on permission flow
- 4. extend Plaid code generator to produce parallel code

Approach

- Ist milestone
 - extend Plaid to compute permission flow and parallelize code (no data groups)
- 2nd milestone
 - extend Plaid with data groups
- Evaluate system

Evaluation

- conducting multiple case studies
 - evaluating performance
 (cf. efficiency hypothesis)
 - evaluating practicality
 (cf. practical hypothesis)

Evaluation

- selection of case studies
 - use applications with known parallel/ concurrency characteristics
 - use representative applications
 - existing real-world applications
 - existing benchmarks
 (SPLASH, SPEC, DaCapo, etc)
- rewrite applications in ÆMINIUM/Plaid

Ist Milestone permission only implementation

2nd Milestone data group implementation

Evaluation

writing thesis

Risks

- Slow progress in Plaid
 - omit unnecessary features
 - parallelize/overlap work
 - 2 stage approach

Risks

- Granularity issues
 - implement optimization techniques (e.g., task merging, flattening, etc)
 - use dynamic load-balancing to avoid generation of "useless" tasks

Risks

- Lack of parallelism
 - no silver bullet
 - ensure that we do not pay extra in the case there is no parallelism

Thanks for the Attention!

Questions?