EMINIUM

Freeing Programmers from
the Shackles of Sequentiality

Thesis Proposal Talk
Sven Stork

Committee

Jonathan Aldrich (CMU) Paulo Marques (UC)
Todd Mowry (CMU) Ernesto Costa (UC)
William Scherlis (CMU) Marco Viera (UC)







({oooooooc

{0ooooooc




({oooooooc

{0ooooooc




s

LIBRARIE

C »

+» boost

COMPILER INFRASTRUCTURE

({oooooooc

{0ooooooc




jooooooaqy
10000000)

[

COMPILER INFRASTRUCTURE




How to write and use
frameworks and libraries
correctly?

How to write correct
parallel/concurrent code!




WWhy correctness
matters!

® T[herac-25

® race condition T } !I T E
Electron Mode X-Ray Mode THE PROBLEM

® 3 deaths

® 3 heavy injuries




WWhy correctness
matters!

Blackout (2003)
race condition

55,000,000 people
affected




- — '-'y.'l?‘{_—‘. -7
- - J - -

How to solve these
problems?

6




Step by step

® Kevin Bierhoff check correct object usage:
o type state to check object protocols
® access permissions to tackle aliasing

® Plural [sequential protocols]




Step by step

® Nels Beckman extend Bierhoff’s work to verify
object protocols in concurrent settings

® access permission to check correct
synchronization

® access permissions to optimize STM

® NIMBY/Sync’ or Swim [concurrent protocols]




Step by step

® So far we can check that programs
® obey object protocols
® are properly synchronized

® How to write concurrent programs in first
place?




How to write
concurrent programs!

® Experiment

® |mplemented a few programs in various
parallel programming abstractions

® Observation
® no silver bullet
® implicit parallelism appeared better

® no solutions for future




Pushing the Envelope

® How should we write parallel code in
20-30 years!




Pushing the Envelope

® How should we write parallel code in
20-30 years!

¢

Don’t do it!

-- Doug Lea i

e




Pushing the Envelope

® make experiment

® /EMINIUM «—parallelism
garbage collector «= memory management

® automatically parallelization of code
® composable

® modular




Thesis Statement

y \
The flow of access- and group-permissions

provides a powerful abstraction to capture
common programming idioms while
simultaneous enabling the safe extraction of
efficient concurrency.




In other words ...

® propose abstract concept (A£MINIUM)

® use permission information for automatic
parallelization of programs

® permissions are suitable abstraction

® can express common concurrent
programming patters

® allow us to achieve better performance




Hypotheses

® The AMINIUM approach is
® save (i.e., no data races)
o efficient (i.e., achieve speedup)

e practical (i.e, express common
programming paradigms)




Approach

¢ formalizing and implementation
of the A£MINIUM approach

Plaid Compiler

Plaid Runtime




Approach

® formalizing and implementation of the
/EMINIUM approach

/EMINIUM +
Plaid Compiler

Plaid Runtime




Approach

® formalizing and implementation of the
/EMINIUM approach

/EMINIUM +
Plaid Compiler

Plaid Runtime /ZEMINIUM Runtime




Contributions

® formal system of A£MINIUM
® proof of concept implementation

® evaluation of feasibility




roach Explained

20




Access Permissions

® abstract capabilities associated with object
references that encode

® access rights (e.g., read/write)
e aliasing information

® extensively used for verification
(e.g. concurrency, protocols)




Access Permissions

Aliasing

1 N

unique shared

immutable immutable




Access Permissions

® linear logic (resource logic)

e split and join




Access Permissions

® linear logic (resource logic)

e split and join




Access Permissions

® linear logic (resource logic)




Access Permissions

® linear logic (resource logic)

e split and join




Access Permissions

® linear logic (resource logic)




Access Permissions

® linear logic (resource logic)




Access Permissions

® linear logic (resource logic)




Access Permissions

Unique Permission

® aliases = |

® access= RW
® “thread local”

® no
synchronization




Access Permissions

Immutable Permission

® aliases = N
® access= R
® ‘“‘constant’

® NO

W W synchronization




Access Permissions

Immutable Permission

aliases = N
access= R
“constant’

no

synchronization




Access Permissions

Immutable Permission

® aliases = N
® access= R
® ‘“‘constant’

® NO

W W synchronization




Access Permissions

Unique Permission

® aliases = |

® access= RW
® “thread local”

® no
synchronization




Access Permissions

Shared Permission

aliases = N
access= RW
“shared data’”

requires

synchronization




Access Permissions

Unique Permission

® aliases = |

® access= RW
® “thread local”

® no
synchronization




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unique Account from,
unioye Account to,
iImmutRle Amount amount) {

withdraw(from, amount);

I }
-1
VA A ay @l § -y N C =\, - y
yntax: permission [== permission| type var

HelNe\AAunique
deposit(to, amount); unique  unique

CHANCGIE unique  immutable

\_




Permission Example

public void deposit(unique Account account, immutable Amount amount) {...}
public void withdraw(unique Account account, immutable Amount amount){...}

fpublic void transfer(unique Account from,
unique Account to,
immutable Amount amount) { )

withdraw(from, amount);

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

(public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

y,
/] to: @ from: @ amount: M

withdraw(from, amount);

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

/] to: @ from: @ amount: M

C withdraw(from, amount); )

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

/] to: from: amount;:

C withdraw(from, amount); )

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

C withdraw(from, amount); )

/] to: from: amount;:

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

C withdraw(from, amount); )

/] to: @ from: @ amount:w

deposit(to, amount);




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

/] to: @ from: @ amount:w

(" deposit(to, amount); )




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

/] to: from: amount;:

(" deposit(to, amount); )




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

(" deposit(to, amount); )

/] to: from: amount;:




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

(" deposit(to, amount); )

/] to: @ from: @ amountzw




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

deposit(to, amount);

/] to: @ from: @ amountzw
)




Permission Example

public void deposit(unique Account account, immutable Amount amount) {..}
public void withdraw(unique Account account, immutable Amount amount){...}

public void transfer(unigue Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount);

deposit(to, amount);




Using Permissions for
Parallelization

® infer permissions flow based on
lexical order

® define operations can run in parallel iff
iIntersection of their required
permissions does hot contain unique
permissions




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

from: - to: - amount: M




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

from: - to: - amount: M

withdraw(from, amount)
deposit(to, amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

from: - to: - amount:. W

l

withdraw(from, amount)

v
e

v
deposit(to, amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

from: () o ()

y amount: M mutable

withdraw(from, amount)

v

amount: M i +

deposit(to, amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

from: v amount: W

withdraw(from, amount)

v

amount: WV to: .W

deposit(to, amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

v

W|thdraw(from amount) o deposﬂ(to amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

v

withdraw(from, amount)

from:

amount: M mUtable

v

v
deposit(to, amount)

amount: M to:




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

\4

withdraw(from, amount)

from:

amount: M mUtable

v

\4
deposit(to, amount)

amount: (il to: (ki




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

v

v \4
withdraw(from, amount) deposit(to, amount)

from:




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

\ 4
withdraw(from, amount)

v

v
deposit(to, amount)




Dataflow Example

transfer(unique Account from, unique Account to, immutable Amount amount)

\ 4
withdraw(from, amount)

v

v
deposit(to, amount)




Shared Data Issues

causes hon=determinism but sometimes order
matters

® e.g,object that needs to follow protocol

all accesses to shared objects require
synchronization

® sometimes shared permissions are
unavoidable

® e.g,doubly linked list




Data Groups

® bundle shared objects into data groups
® abstract collection of objects

® disjoint partitions of heap




Data Groups

® bundle shared objects into data groups
® abstract collection of objects

® disjoint partitions of heap

O
o O




Data Groups

® bundle shared objects into data groups
® abstract collection of objects

® disjoint partitions of heap




Data Groups

® bundle shared objects into data groups
® abstract collection of objects

® disjoint partitions of heap




Data Groups
Permissions

® similar to access permissions for data groups

® manual split/joining by user

® user controlled mechanism for granularity




Data Groups
Permissions

® similar to access permissions for data groups

® manual split/joining by user

® user controlled mechanism for granularity

O




Data Groups
Permissions

® data groups are embedded in objects
® strong encapsulation, ownership

® group permissions are derived from receiver
permissions

O




Group Permissions

Exclusive Permission

® gjliases = 1

® access= RW
® ‘“‘thread local”

® no
synchronization




Group Permissions

Shared Permission

® aliases = N
split
® access= none

® ‘‘shared data”

® requires
synchronization




Group Permissions

atomic Permission

® jliases = 1

® access= RW

> ® “protected”

atomic ® s synchronized




Group Permissions

Shared Permission

® aliases = N
split
® access= none

® ‘‘shared data”

® requires
synchronization




Group Permissions

Exclusive Permission

® gjliases = 1

® access= RW
® ‘“‘thread local”

® no
synchronization




Data Group Example

class DLLItem { @ @ @
public Object data; T‘ T‘ T
public DLLItem prev;

¥

public class DLL {
private DLLItem head;

public void add(Object data) {
DLLItem 11 = new DLLItem();
this.head.prev = 11;
1li.next = this.head;

li.data = data;
this.head = 11;




Data Group Example

class DLLItem { @ @ @
public Object data; T‘ T‘ T
public DLLItem prev;

public class DLL {
private DLLItem head;

}

public void add( Object data)
DLLItem 11 = new DLLItem();
this.head.prev = 11;
1li.next = this.head;

li.data = data;
this.head = 11;




Data Group Example

class DLLItem { @ @ @
public Object data; T‘ T‘ T
public (shared |DLLItem prev;

public DLLItem next; g—)m

public class DLL {
private (shared)DLLItem head;

}

public void add( Object data)
(shared)DLLItem 1i = new DLLItem();
this.head.prev = 11;
1li.next = this.head;

li.data = data;
this.head = 11;




Data Group Example

class DLLItem { @ @ @
public (Unique)Object data; 3 3 x
public shared DLLItem prev;
public shared DLLItem next; —)m
ks

public class DLL {
private shared DLLItem head;

public void add@nique >> none)Object data)
shared DLLItem 11 = new DLLItem();
this.head.prev = 11;
1li.next = this.head;

li.data = data;
this.head = 11;




Data Group Example

class DLLItem { @ @ @
public unique Object data; T‘ T‘ T
public shared DLLItem prev;
public shared DLLItem next; m—)m
ks

public class DLL {
private shared DLLItem head;

public void add(unique >> none Object data) ¢ unique) {
shared DLLItem 11 = new DLLItem();
this.head.prev = 11;
1li.next = this.head;

li.data = data;
this.head = 11;




Data Group Example

class DLLItem { @ @ @
public unique Object data; T‘ T‘ T
public shared DLLItem prev;
public shared DLLItem next; m—)m
ks

public class DLL {
private shared DLLItem head;

public void add(unique >> none Object data) : unique {
shared DLLItem 11 = new DLLItem();
this.head.prev = 11;
1li.next = this.head;

li.data = data;
this.head = 11;




class DLLItem { ‘ ‘ ‘
public unique Object data;
public shared DLLItem prev;
public shared DLLItem next; —)m
¥

public class DLL {
private shared DLLItem head;

public void add(Cunique >> none Object data) : unique {
shared DLLItem 11 = new DLLItem();
this.head.prev '

1l1.next = this.h ERROR

li.data = data;
this.head = 1i; Access shared

data




Data Group Example

class DLLItem {
public unique Object data; @ @ @
public shared DLLItem prev; T‘ T‘ T
public shared DLLItem next; n:E:E
} m

public class DLL {
private shared DLLItem head;

public void add(unique >> none Object data) : unique {




Data Group Example

class DLLItem {
public unique Object data; @ @
public shared DLLItem prev; T‘ T‘ T
public shared DLLItem next; m

} —il @

public class DLL {
private shared DLLItem head;

public void add(unique >> none Object data) : unique {
“atomic { h
shared DLLItem 11 = new DLLItem();
this.head.prev = 11;

li.next = this.head;

li.data = data;

this.head = 1i; Unique receiver
means no aliases




Data Group Example

class DLLItem
public unique Object data; <!g> <!g>
public shared DLLItem prev;

public shared DLLItem next;
} B

public class DLL {
(group nodes;)
private shared DLLItem head;

public void add(unique >> none Object data) : unique {

shared DLLItem 11 = new DLLItem O;
this.head.prev = 11;

11.next = this.head;

li.data = data;

this.head = 11;




Data Group Example

class DLLIten@{
public unique Object data;

public shared DLLIte prev
public shared DLLItem6::>next

¥

public class DLL {

group nodes;
private shared DLLItem head;

public void add(unique >> none Object data) : unique {

shared DLLItem 11 = new DLLItem O;
this.head.prev = 11;

11.next = this.head;

li.data = data;

this.head = 11;




Data Group Example

class DLLItem<G> {

public unique Object data; <!g> <!g> <!E>

public shared DLLItem<G> prev;

public shared DLLItem<G> next; T‘ T‘ T
} I

public class DLL {

group nodes;
private shared DLLItem head;

public void add(unique >> none Object data) : unique {

shared DLLItenxnodes> 1i = new DLLItem<nodes>();
this.head.prev = 11;

11.next = this.head;

li.data = data;

this.head = 11;




Data Group Example

class DLLItem<G> {

public unique Object data; <!g> <!g> <!E>

public shared DLLItem<G> prev;

public shared DLLItem<G> next; T‘ T‘ T
} —OLE T

public class DLL {

group nodes;
private shared DLLItem head;

public void add(unique >> none Object data) : unique {

shared DLLItenxnodes> 1i = new DLLItem<nodes>();
this.head.prev = 11;

11.next = this.head;

li.data = data;

this.head = 11;




Data Group Example

class DLLItem<G> {
public unique Object data; @ @ @
public shared DLLItem<G> prev;
public shared DLLItem<G> next; T‘ T‘ T
} o 2

public class DLL {
group nodes;
private shared DLLItem head;

public void add(Cunique >> none Object data) : unique {




Data Group Example

public void add(unique >> none Object data) : unique {

unpack {

l1.data = data;




Data Group Example

public void add(unique >> none Object data) : unique {

/[ this: data:

unpack {

l1.data = data;




Data Group Example

public void add(unique >> none Object data) : unique {

unpack {
/[ this: this.nodes: .| data: .ﬂﬂ@

l1.data = data;




Data Group Example

public void add(unique >> none Object data) : unique {

unpack {

/./ .tf;is: this.nodes: data:

l1.data = data;




Data Group Example

public void add(unique >> none Object data) : unique {

unpack {

l1.data = data;

/] this: this.nodes:
}




Data Group Example

public void add(unique >> none Object data) : unique {

unpack {

l1.data = data;

Iy
/I this:




Data Group Example

public void add(unique >> none Object data) : unique {

unpack {

l1.data = data;




/ / /
j / ’ 

Progress so far




UAEMINIUM

® core-calculus based on group permissions
e concurrent-by-default type system

® soundness proof for absence of race
conditions (cf.‘safety’ hypothesis)




Dataflow Runtime

® data flow runtime system for A£MINIUM

® task based runtime system for dataflow
and fork/join parallelisms

® support for locks and STM

¢ dynamic detection of deadlocks
(for the lock based approach)




Dataflow Runtime

support for 3 kinds of tasks
Non-Blocking -- computation intensive
Blocking -- |/O tasks

Atomic -- task that require protection




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

- ==9% fork/join dependency

88



Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

/F




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

- ==9% fork/join dependency

89



Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

.-
o
@




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

5 30




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

-




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms

_'Vn
n‘“




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms




Dataflow Runtime

® data flow runtime system for ££MINIUM

® task based support for dataflow and
fork/join parallelisms




Dataflow Runtime
Performance Evaluation

® compare performance to Java’s fork/join
framework

® run micro benchmarks used by the
fork/join paper

® AMINIUM runtime about 35% slower




Dataflow Runtime
“Atomic’ Evaluation

® compare worst, best and intermediate case
® one global lock vs one lock per object
® access single object vs multiple objects

® read vs write

® the locking based implementation
outperformed STM based implementation
in almost all cases




Proof of Concept

Master thesis of Manuel Mohr
® hand generated AST with type information
® cach method call becomes a task

showed principle feasibility




Proof of Concept

® performance
Improvements

® more optimize systems ¢

® dynamic/static load
balancing




Road ahead ...




Language
Implementation

® implementing /EMINIUM in Plaid
® Plaid has built-in support for permissions

® |imited type checker for Plaid
(lambda support is still missing)




Language
Implementation

. add AMINIUM to Plaid language/parser
. extend Plaid typechecker with data groups

. extend Plaid infrastructure to compute
dataflow graph based on permission flow

. extend Plaid code generator to produce
parallel code




Approach

® |st milestone

® extend Plaid to compute permission flow
and parallelize code (no data groups)

® 72nd milestone
® extend Plaid with data groups

® Evaluate system




Evaluation

® conducting multiple case studies

® evaluating performance
(cf. efficiency hypothesis )

® evaluating practicality
(cf. practical hypothesis)




Evaluation

® selection of case studies

® use applications with known parallel/
concurrency characteristics

® use representative applications
® existing real-world applications

® existing benchmarks
(SPLASH, SPEC, DaCapo, etc)

® rewrite applications in A£AMINIUM/Plaid




Time Line

Nov 201 | Jan 2012 March 2012 May 2012 Jul 2012

| st Milestone
permission only implementation




Time Line

Nov 201 | Jan 2012 March 2012 May 2012 Jul 2012

2nd Milestone
data group implementation




Time Line

Nov 201 | Jan 2012 March 2012 May 2012 Jul 2012

Evaluation




Time Line

Nov 201 | Jan 2012 March 2012 May 2012 Jul 2012

writing thesis




Risks

® Slow progress in Plaid
® omit unnecessary features
® parallelize/overlap work

® ) stage approach



Risks

® Granularity issues

® implement optimization techniques
(e.g., task merging, flattening, etc)

® use dynamic load-balancing to avoid
generation of “useless” tasks




Risks

® |ack of parallelism
® no silver bullet

® ensure that we do not pay extra in the
case there is no parallelism




Thanks for the Attention!

Questions!




