
A Concurrent-By-Default Programming Language

Sven Stork∗† Paulo Marques∗ Jonathan Aldrich†

†Carnegie Mellon University ∗University of Coimbra

(EC)2, July 15th , 2011



Motivation

The hardware changed

e.g., 2× Intel Xeon Processor X5660 =⇒ 24 cores

4004 4-Core CPU

The way we write software changed



Motivation

The hardware changed
e.g., 2× Intel Xeon Processor X5660 =⇒ 24 cores

4004 4-Core CPU
The way we write software changed



Motivation

The hardware changed
e.g., 2× Intel Xeon Processor X5660 =⇒ 24 cores

4004 4-Core CPU
The way we write software changed

programs



Motivation

The hardware changed
e.g., 2× Intel Xeon Processor X5660 =⇒ 24 cores

4004 4-Core CPU
The way we write software changed

programs libraries & frameworks



Motivation

The hardware changed
e.g., 2× Intel Xeon Processor X5660 =⇒ 24 cores

4004 4-Core CPU
The way we write software changed

programs libraries & frameworks glue-code programs



Wishlist for a possible solution

Needs to be composable

Needs to be efficient [1,2]

composition needs to be correct
(e.g., absence of race conditions [1,2])

composition must scale well

Handle concurrency/parallelism automatically
(analogous garbage collection, JIT)

[1] Threads Cannot be Implemented as a Library (Boehm)
[2] Memory models: a case for rethinking parallel languages and hardware
(Adve & Boehm)



Our take on that solution

Use aliasing information (access
permissions) and abstract data col-
lections (data groups) to infer valid
and conflicting concurrent execution
combinations.

Object

x
access permission

Use permission flow to automatically parallelize execution in a
dataflow fashion



What are access permissions?

abstract capabilities associated with object references that encode

access rights (e.g., read/write)

aliasing information

access permissions can be converted via split and join operations

use linear logic and fractions to manage permissions

extensively used for verification (e.g., concurrency, protocols, etc)



What permissions to we have?

Unique Permissions q
aliases = 1

access = read/write

only one reference to object

exclusive access

“thread local”

no synchronization



What permissions to we have?

Immutable Permissions q
aliases = N

access = read

all aliases are immutable

“constant”

no synchronization



What permissions to we have?

Unique Permissions q
aliases = 1

access = read/write

only one reference to object

exclusive access

“thread local”

no synchronization



What permissions to we have?

Shared Permissionsq
aliases = N

access = read/write

all aliases are shared

synchronization



What permissions to we have?

Unique Permissions q
aliases = 1

access = read/write

only one reference to object

exclusive access

“thread local”

no synchronization



How to use permissions to automatically
parallelize?

infer permission flow based on lexical order

define operations can run in parallel iff the intersection of their
required permissions does not contain unique permissions.

deterministic execution iff intersection contains only immutable
permissions

non-deterministic execution iff intersection contains only shared
permissions



Example: Bank Transfer

Bank Transfer

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount)
deposit(to, amount);

}



Example: Bank Transfer

Bank Transfer

public void withdraw(unique Account account,
immutable Amount amount) {...}

public void deposit(unique Account account,
immutable Amount amount) {...}

public void transfer(unique Account from,
unique Account to,
immutable Amount amount) {

withdraw(from, amount)
deposit(to, amount);

}



Example: Bank Transfer

transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique ,
from : unique ,
amount : immutable

amount : immutable ,
to : unique

amount : immutable ,
from : unique

to : unique ,
amount : immutable

from : unique ,
amount : immutable

to : unique ,
from : unique ,
amount : immutable



Example: Bank Transfer

transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique ,
from : unique ,
amount : immutable

amount : immutable ,
to : unique

amount : immutable ,
from : unique

to : unique ,
amount : immutable

from : unique ,
amount : immutable

to : unique ,
from : unique ,
amount : immutable



Example: Bank Transfer

transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique ,
from : unique ,
amount : immutable

amount : immutable ,
to : unique

amount : immutable ,
from : unique

to : unique ,
amount : immutable

from : unique ,
amount : immutable

to : unique ,
from : unique ,
amount : immutable



Example: Bank Transfer

transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique ,
from : unique ,
amount : immutable

amount : immutable ,
to : unique

amount : immutable ,
from : unique

to : unique ,
amount : immutable

from : unique ,
amount : immutable

to : unique ,
from : unique ,
amount : immutable



Example: Bank Transfer

transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique ,
from : unique ,
amount : immutable

amount : immutable ,
to : unique

amount : immutable ,
from : unique

to : unique ,
amount : immutable

from : unique ,
amount : immutable

to : unique ,
from : unique ,
amount : immutable



Example: Bank Transfer

transfer(to, from, amount) {

split

deposit(to, amount) withdraw(from, amount)

join

}

to : unique ,
from : unique ,
amount : immutable

amount : immutable ,
to : unique

amount : immutable ,
from : unique

to : unique ,
amount : immutable

from : unique ,
amount : immutable

to : unique ,
from : unique ,
amount : immutable



Shared data issues

causes non-determinism but sometimes order matters

e.g., shared object that still needs to obey protocol

every access to a shared object requires synchronization

sometimes shared is impossible to avoid

e.g., doubly linked list



Data Groups and Data Group Permissions

bundle shared objects into data groups

abstract collection of objects

disjoint partitions of shared data

introduce data group permissions for data groups

similar to access permissions for objects

manually split/joined by user via split block

allow the user to specify granularity



What permissions to we have?

Exclusive Permissions q
aliases = 1

access = read/write

only one reference to the data
group

exclusive access to data group

“thread local”

no synchronization



What permissions to we have?

Shared Permissions q
aliases = N

access = none

concurrent accesses to the
same data group

manually split by user

no access to associated object

requires synchronization



What permissions to we have?

Atomic Permissionsq
aliases = 1 atomic

+ (N-1) shared

access = read/write

protected access to shared
data group objects

“convert” shared permission to
atomic permission via atomic

block

already synchronized



Example: Data Groups

void exchange〈exclusive S,
exclusive I,
exclusive O〉(shared〈S〉 Socket s,

shared〈I〉 Packet inp,
shared〈O〉 Packet outp) {

receivePacket〈S, I〉(s, inp);
checkPacket〈I〉(inp);
updatePacket〈O〉(outp);
sendPacket〈S, O〉(s, outp);

}



Example: Permission Flow of Data Groups

receivePacket updatePacket

checkPacket sendPacket

S : exclusive
I : exclusive

O : exclusive

I : exclusive

S : exclusive
O : exclusive

S : exclusive
O : exclusive

I : exclusive



Conclusion

experiment to see how far we can push the envelop

try address the concurrency and software engineering issues

concurrent-by-default approach based on access permissions and
data groups



Thanks for the Attention!

Questions?



Possible problems

granularity and overhead

use mixture between static and dynamic approach

annotation overhead

implementing Æminium in Plaid which has permissions build-in

how to deal with legacy code

provide external descriptions / wrapper libraries

how to provide useful feedback to the user (e.g., visualization,
debugging, etc)



(Some) Related Work

DPJ fork/join approach, but lacks data flow and object
granularity

Clairk et al. parallel for-loops and dataflow approach for loop
bodies, but only deterministic parallelism

NESL, ZPL data parallelism only, only deterministic

Fortress parallel for-loops and tuple-evaluation, but no
checks

Cilk explicit fork/join without checking



What does the name Æminium come from?

Æminium was the ancient roman city on which Coimbra was
established.


	0.0: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	anm2: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	3.5: 
	3.6: 
	3.7: 
	3.8: 
	3.9: 
	3.10: 
	3.11: 
	3.12: 
	3.13: 
	3.14: 
	3.15: 
	3.16: 
	3.17: 
	3.18: 
	3.19: 
	3.20: 
	3.21: 
	3.22: 
	3.23: 
	3.24: 
	3.25: 
	anm3: 
	4.0: 
	4.1: 
	4.2: 
	4.3: 
	4.4: 
	4.5: 
	4.6: 
	4.7: 
	4.8: 
	4.9: 
	4.10: 
	4.11: 
	4.12: 
	4.13: 
	4.14: 
	4.15: 
	4.16: 
	4.17: 
	4.18: 
	4.19: 
	4.20: 
	4.21: 
	4.22: 
	4.23: 
	4.24: 
	4.25: 
	anm4: 
	5.0: 
	anm5: 
	6.0: 
	6.1: 
	6.2: 
	6.3: 
	6.4: 
	6.5: 
	6.6: 
	6.7: 
	6.8: 
	6.9: 
	6.10: 
	6.11: 
	6.12: 
	6.13: 
	6.14: 
	6.15: 
	6.16: 
	6.17: 
	6.18: 
	6.19: 
	6.20: 
	6.21: 
	6.22: 
	6.23: 
	6.24: 
	6.25: 
	anm6: 
	7.0: 
	7.1: 
	7.2: 
	7.3: 
	7.4: 
	7.5: 
	7.6: 
	7.7: 
	7.8: 
	7.9: 
	7.10: 
	7.11: 
	7.12: 
	7.13: 
	7.14: 
	7.15: 
	7.16: 
	7.17: 
	7.18: 
	7.19: 
	7.20: 
	7.21: 
	7.22: 
	7.23: 
	7.24: 
	7.25: 
	anm7: 


