Design of an efficient
Software Environment for a RDMA
Network Interface Controller

Diploma Thesis

by
Sven Stork

presented to
Computer Architecture Group
Department of Computer Engineering
University of Mannheim

11 January 2006

Referee : Prof. Dr.-Ing. Ulrich Briining
Co - Referee : Prof. Dr. K.-H. Brenner
Supervisor : Dipl.-Inf. Mondrian Niissle

Abstract

The goal of this thesis is to evaluate the requirements, the design and the implementation of an
efficient software interface for the Extoll NIC. The resulting software is called Extoll Software
Stack (ESS).

The design of the ESS should be efficient and exploit the maximum performance that will be
offered by the Extoll NIC. The software interface should be clear and intuitive. An important
point is the optimization of the software interface for an easy and efficient collaboration with
already existing middle-wares, like MPI and DAPL.

The first part of the thesis gives an overview of the currently available communication interfac-
es. The next part evaluates the Extoll NIC hostport interface. Based on the determined hostport
interface the ESS design will be presented. The last part of the thesis gives an overview of the
current implementation and testing environment of the ESS.

I

v

Contents

AbStract. 11
Contents ... \%
Listof Figures.. XI
Listof Tables XIII
Listof Listings... XV
Introduction 1
L1 OUHNE . ..o 2
1.2 CONVENLIONS . . . oottt e e e e e e e e e e e 2
1.2.1 Definitions.ot 2
1.2.2DecCiSion TIrEE . . . oot e 3
L2 3 UML. .o 3
Communication Interfaces 5
2.1 BSD Socket AP 5
2.2 Atoll - PALMS . .. 7
23 Myrinet - MX ..o o 8
2.4 Quadrics-Elan Library............... 9
2.5 InfiniBand - Verbs. 11
2.6 DA P .. 14
2. T ML . 15
2.8 ConClUSIONS.ot 17
Extoll Hostport Interface 19
3.1 Atoll Basics. oo 19
3.1.1 Atoll Architecture. 19
312At0lSend . ..o 21
313 A0l RECEIVE .. oo 21
3.1.4 Summary 21
32 EXtOll OVErVIEW oo e 22
3.3 Global Information for VPs 25
3.3.1 Global Information for Event Queue............................. 26
3.4 Extoll Descriptorst 26
3.4.1 Virtual Port Descriptor i, 26
3.4.1.1 Virtual Port Status Word @ 29
3412 Virtual Port Map 29
3.4.2 Window Descriptorttt 29
3.4.3 Notification Descriptor 30
3.4.4 Virtual Communication Instruction. oo . 30
3.4.5 ConSIStENCY .« .o vttt et e 30
3.5 Notification SyStem.ttt 31
3.5.1 Notification Error Codes i 34

3.6 Event System 34

3.6.1 Event creationcontrol 35
3.6.1.1 Global Event Creation Controlling 35
3.6.1.2 Event Creation Control per Virtual Port......................... 35
3.6.1.3 Event creation controlper VCI 36
3.6.1.4 Conclusion : Event creation control 36

3.6.2Eventdelivery...... 36
3.6.2.1 Lazy Event Signalling 37
3.6.2.2 Global Event RegiStero 37
3.6.2.3 Hardware Event Queue e 38
3.6.2.4 Memory Event Queue. 40
3.6.2.5 Conclusion: Eventdelivery0 uuiiiiiniennon. 42

3.63 EventFormat. 42

3.7 Order of communicationt 42

3.7.1 General 0bservationsuuieiiineeii i, 42

3.7.2 Order of Communicationin MPIL................................ 43

3.7.3 Order of Communicationin DAPL 46

3.7.4 Order Classifications, 46
3.7.4.1 Complete in-order iuuiniiiiiiin 46
3.7.4.2 Complete in-order on a Virtual Connection 46
3.7.4.3 In-order on Virtual Connections and the same Communication Class. . 47
3.7 4.4 Out-of-order. 48

3.7.5 Conclusion : Order of Communication 48

3.8 Send and Receive System 49

3.8.1 Send/Receive with Ring Buffers 49

3.8.2 Posted Send/Receive Operationscovviuneinn ... 50
3.8.2.1 Posted Receive Descriptors stored in Queue. 51
3.8.2.2 Posted Receives Descriptors storedina Table 51
3.8.2.3 Posted Receives provided by Software 51
3.8.2.4 Posted Send/Receive without Matching. 51
3.8.2.5 Posted Send/Receive with Matching in Hardware 52
3.8.2.6 Posted Send/Receive with Matching in Software. 52
3.8.2.7 Posted Send/Receive with Virtual Addresses. 52
3.8.2.8 Posted Send/Receive with physical addresses 53

3.8.3 Send/Receive Emulationper RDMA. 53

3.8.4 Conclusion: Send/Receive Systems., 53
3.8.4.1 Posted Receive Descriptor Format 54

39Extoll Cacheso 54

3.9.1 Cache Managementiiiniiineirnennennnann. 55

392RC-RoutingCache. i 55

3.9.3 WDC - Window Descriptor Cache 56

394CC-ContextCache i 56

3.9.5 TLB - Translation Lookaside Buffer............................. 57

3.0 The Barrier 60

3.10.1 Design of the Barrier Software Interface 62
3.10.1.1 Single Barrier Allocation. iiiiiiiion.. 62
3.10.1.2 Collective Barrier Allocation. coo... 63
3.10.1.3 Central Barrier Managementc.uuiuuuennennnn. 63
3.10.1.4 Distributed Barrier Managementc..oouuio... 64
3.10.1.5 Barrier Enter via Memory mapped I/O Page 64

VI

3.10.1.6 Barrier Enter via VCI i 64

3.10.1.7 Barrier Leave via I/O mapped Memory. 64
3.10.1.8 Barrier Leave via Notification.c.ccouuuiiiuiennon. 65
3.10.1.9 Conclusion : Extoll Barrier............... ... uuiiiiiiiennon. 65
3.10.2 Extoll Barrier Usagecouiiiiiiniiineiineennnn. 65
3.10.2.1 Barrier Mapping 1:1 e 65
3.10.2.2 Barrier Mapping M:N 66

3.11 The ULTRA SyStem.ottt 66
3.11.1 ULTRA Managementcuuniiniininneannann... 67
312ULTRA Send Port e 67
3.11.3 ULTRA Receive Port 68
3.11.3.1 ULTRA Receive via PIO 68
3.11.3.2 ULTRA Receive via DMA Buffer. oo, 68
3.11.4 Conclusion : ULTRA Receive ..., 68
3.12 Proposal for anew RDMA Operation............................ 69
Designofthe ESS.......... 71
4.1 Extoll Software Stack............ 71
4.1.1 Requirements of the ESS. 71
412 Designofthe ESS. 72
4.1.2.1 Routing Management. uuuuuuununennennen.. 72
4.1.2.2 Memory Managemento uuumunnennennennans 73
4.1.2.3 Logging SUPPOFT 73
4.1.2.4 Application Programming Interface 74
4.1.2.5 Device DFIver. 74
4.1.2.6 Conclusion : Design of the ESS. 74

4.2 Extoll Logging System.ttt 76
421 ReqUITEMENLESottt et ettt e e e e e 76
422 DCSIGN . oottt 77
4.3 Extoll Memory Manager. ...t 77
4.3 .1 ReqUITEMENTSottt et 77
432 DCSIGN . oottt 78
4.4 Extoll Routing Managert 79
4.4.1 ReqUITEMENLSottt et ettt e e e e e 79
442 DCSIZN . oottt 80
4.5 Extoll Device Driver. i 80
4.5 .1 ReqUITEMENLSottt ettt e e e e et 80
A5 2 DCSIGN . oottt 82
4.6 Extoll User Interface. i 84
4.6.1 ReqUITEMENTSottt 84
4.6.2 DCSIGN . oottt 85
4.7 Extoll Management Interface..................................... 85
471 ReqUITEMENLS . ..\ttt ettt e e e e e e e 85
AT 2DCSIZN . oottt 86
4.8 Extoll Programming Interface 87
4.8.1 ReqUITEMENLSttt et e e 87
482 DCSIGN . oottt 88
49 Extoll Daemon 88

VII

Implementation of the ESS 91

S0 General. 91
5.1.1 Symbol Resolving 91
5.1.1.1 Automatic Symbol Resolving, 91
5.1.1.2 Manual Symbol Resolving i .. 92
5.1.1.3 Conclusion : Symbol Resolving, 92
5.1.2 Extoll Testing Framework. 92
5.1.2.1 Design Goals 92

S L228tructure. 93

5.1.3 Configuration 94
5.1.3.1 Compiletime Configurationc.c.uuuiuunennennen.. 94
5.1.3.2 Loadtime Configuration.uuuuuuuiunuanenen.. 94
5.1.3.3 Runtime CORfigurationc.ouuuuuenenuneanenenn. 94

S 2 B S 95
S 3 EMM . 95
SA ERM L 95
5.4.1 Routing Table Managementcciiirn.... 95
542Routing Failure......... 96
5.5 ED DD 96
5.5.1 Process Managementuiniinininnnann.., 96
S5 LT Threads e 96
5.5.2Device management.t e 97
5.53 VP Management.ttt e 97
5.5.4 Barrier Management 99
SS5S5UPManagement. 99
5.5.6 Connections Management.couiiiinnernnnnennn.. 99
5.5.7 VPG Managementt 99
S5 8 FOPS-Mapper. . ..o 99
5.5.9 Cache Management0u ittt 101
5.5.10 Poll/ePoll Support 103
5.6 EUIL .o 106
ST EMI . 106
S 8 EPL. . 106
S8 Structure. . ..o 106
5.8.2 EPI Events and Event Dispatcher. 107
5.83Pollingand Waiting i 108
5.8.4 VP window management.iiiiiiiiaii 108
S5.85Thread Safety i 109
58.6Context Value.co i 109
Conclusion & Outlook..................................... 111
6.1 Conclusion. i 111
6.20utlook. 112

VIII

References. 113

Glossary ... 117
Coding Style ... 123
C.1Coding Styles. ... 123
C.2 Naming conventionoeeeemiinnrineeeeanninnnnn... 123
C3Source Code. ...t 124
CdGeneral 126
Linux Select/Poll/Epoll 129
D.I Motivation 129
D.2 Classical Approaches.c.oiiiiiiiiiiii .. 130
D.2.1 Select. . ..o 130
D.2.2 Poll ... 131
D.2.3 Drawbacks 131
D.3New Approach 131
D3 L EPOIL 131
D.4 Driver SUpport. 132
Extoll Tools 133
E.lextoll-config........ 133
E. LT DesCriptiono 133
E.l.2 Parameters.ot 133
E.1.3Possible Error. 133
E2extoll mknod....... 133
E.2. 1 DesCriptionot e 133
E22Parameter 134
E.2.3Possible Errors 134
E3 extoll modules.......... 134
E3.1 Descriptiono e 134
E3.2Parameter o 134
E.3.3 Possible Errors 134
E34Example.o 135
Edextoll info..... 135
E.4. 1 DesCriptiont et e 135
E.4.2 Parameters. 135
E.43 Possibly Errors. 135
Ed4 4 Example. 136
ESextollctl 136
E.S. T DesCription 136
E.S2 Paramters.o 137
E.5.3 Possibly Errors. o 137
ESA4AExample. 137
Declaration of Honour.................................... . 139

IX

List of Figures

Decision Tree Syntaxo it e 3
Client/Server SOCKetSot e e e 5
BSD connection SetUP.o .v it 6
PALMS 1ayOuUL. . . . oottt e e 7
PALMS-1 and PALMS-2 Send/Receive Mechanisms 8
Elan Software Stack 10
Single Node Principle.. e 10
Quadrics Network Processor.ot 11
InfiniBand HCA 12
QP connection and datagram SETVICEvtit et 13
Memory Window and Registered Buffers 13
DAT SysStemot 14
Event Dispatcher. e 14
MPI OVeIVIEW . . . ot e e e e 15
MPT CommUNICATOTS . .« . o v vt ettt et e e et e e e e e e 16
Atoll architecture. 19
AtOll HOStPOTto 20
Process Scheduling 22
Trigger Page . ..o 23
Conditional Store Buffer. 24
CIQ FloW. . . oot e e 25
Virtual Port Descriptorot e 26
Window Descriptor.t 29
VO DeSCIIPLOr . . oottt e e e e 30
Notification Formats e 33
Decision tree for the Event System. i 34
Hardware Event Queue. 39
Memory Event QUeUE o 41
Event layout. 42
MPI_Win_fence Operation.ttt e, 44
Synchronisation between a small group of processes. 44
MPI Win fence emulation. i 45
MPI Window Locking. e 45
Orders of cOMMUNICALIONSottt e 46
Fix for RDMA writes in DAPL. 47
Send/Receive Decision Treeot 49
Send/Receive with Ring Buffers. 49
Posted Send/Receive.ot e 50
Posted Receive Descriptor Format 54
Cache Management.ttt e 55
Routing Cache Use Case Diagram i nnen... 55
Window Descriptor Cache Use Case Diagram.couuun... 56
Context Cache Use Case Diagramttt 57

XI

Memory Window Exploit 58

Cache miss with direct error delivery 59
Virtualisation SUpport.o e 59
TLB Use Case Diagramttt 60
Extoll Barrier Tree ot 61
Barrier node. 61
Barrier deciSion treeot 62
Barrier Allocation Cookie. 63
Barrier MiN Mappingottt e e 66
ULTRA Communication SYStemouutninitnin e, 67
Optimal RDMA Transfer e 69
Worst Case RDMA Transfer. e 70
ESS Use Case Diagram.t 72
EXtoll APL . . 74
ESS Design . ..o 75
ELS Use Case Diagram.t i 76
ELS Designottt 77
EMM Use Case Diagram ittt 78
EMM Design. . ..ot 78
ERM Use Case Diagram.ttt e 79
ERM Design . ..ot 80
EDD Use Case Diagramttt 81
EDD DeSIZN . ..ottt 82
EUI Use Case Diagramco ittt ettt e 84
Design EUILo 85
EMI Use Case Diagram.ttt et 86
Design EUIL o e 86
EPI Use Case Diagramttt 87
EPI Design. . ..o 88
Symbol Resolving Decision Tree 91
Test-Bench Structure. 93
ERM Routing Table Implementation it .. 96
VP Allocation Mapot e 97
VP Stateso 98
FOPS-Mapper Device Files i 100
Device file minor number partitioningttt 100
TLB Miss Handling. 102
Memory Remapping Handling 103
Definition extoll vp t.. e 104
extoll vp t Object with memory mappingcooiuininenenon.. 105
Class Diagram of EPI e 106
EV D 107
EPI polling and waiting partsttt 108
Window Management.ttt 109
blocking vs. non-blocking. 129
Epoll System 132

XII

List of Tables

Global information for VPs. 25
Global information forthe EventQueue 26
Virtual Port Descriptor Memberst 27
Pointer Metrics.ot e 28
PSW MembeTs. . . .ot 29
Virtual Portmapo 29
WD Members 30
Information for Notification Descriptors, 31
Notification Membersttt e 31
Notification Error Codes. 34
Posted receive descriptor members. 54
Comparison of FAST SENDand ULTRA. 67
Minor device number partitioning.ttt 100
MiINOr NUMDET TESOUITES . . . o vt ettt e ettt e et et et e e e e 101
Minor number privileges. 101
Quantitative Analyse of the ESS (linesofcode). 111
Parameters extoll-config 133
Parameter extoll modules. 134
Parameters of extollctl. 137

XIII

XIv

List of Listings

Output Test Benchof ERM. i 94
VP enable/disable Prototypes 99
Examples of functionnames. 123
Examples of objectnames. 124
Comment header template. 125
Examples of correct error checking i 125
Headertemplate. e 126
Examples of apacked objects 127
Prototype Select. 130
Prototype Poll 131
Prototypes of the epoll functions. 131
Prototype FOPS Poll function. 132
Example of extoll modules. 135
Output of extoll info. 136
Output of extollctl. 137

XV

XVI

Introduction S

1

In 1999, the Computer Architecture Group, University of Mannheim, started a research project
called Atoll (ATOLLY]). The goal of the Atoll project was to develop a complete SAN for high
performance computing (HPC). Besides the NIC a complete software stack, consisting of a
management software and an application programming interface (API) called PALMS and a
management Daemon, has been developed by Mondrian Nuessle ([NUS03]).

The Atoll SAN proved to be functional and efficient. Extended information about Atoll and
Palms can be found in “Atoll Basics” on page 19 and “Atoll - PALMS” on page 7. For addition-
al information about the Atoll design and the Atoll performance refer to [ATOLL99],
[ATOLLOO0], [ATOLLO02], [ATOLLO03] and [RZY97]. During the development and usage phase
of the Atoll SAN several drawbacks showed up caused by the design of the Atoll NIC (see “At-
oll Basics” on page 19). The first issue was the limited number of hostports and therefore the
limited number processes that were able to communicate via the Atoll simultaneously. The oth-
er problem of the Atoll design was the send/receive mechanism. In the case of the Atoll all data
that is sent/received needs to be copied twice, one copy into/from a special send-/receive-buffer
and another one between this buffer and the Atoll NIC. This approach has a fairly big impact on
the communication performance especially in the case of big messages.

These drawbacks lead to the start of a new research project called Extoll. Extoll stands for “Ex-
tended Atoll”. The goals of Extoll are to use the Atoll architectural ideas and build a new SAN
controller without the drawbacks of Atoll and additional features and improvements. The first
goal of the Extoll project is to get rid of the limited supported number of hostports. The Myrinet
SAN ([MYRICOMY]) has a similar architecture like the Atoll SAN and therefore the same prob-
lem. If more hostports are requested than available the software starts to virtualize the hostports.
This software virtualisation works in such a way that instead of triggering the hostport directly
from user space, the processes call the device driver. The device driver then coordinate access
of the different processes to the hostport. With this software virtualisation it is possible to sup-
port more hostports than physically available, but with the drawback of a big performance pen-
alty for the indirect communication via the device driver. Therefore the Extoll NIC employs a
new approach, which supports hardware virtualisation. With this hardware virtualisation it is
possible to support a huge amount of processes with a far less and fixed amount of hardware
resources but without any additional software penalty.

The other goal of the Extoll project is to improve the problem of the extra copies for the send
receive mechanism. This problem is solved by adding support for RDMA operation to the Extoll
NIC. This RDMA operations allow the direct transfer of the data into the device without the
overhead via a special send/receive buffer. All currently available SANs, with the exception of
the Quadrics QsNet ([QUADRICS]), support RDMA operation only between preregistered
buffers. This means, before a RDMA operations can be started the source and the destination
processes need to register the source/destination buffers on the NIC. Because the registration of
memory is an expensive operation this approach can have a big impact on the performance. Like
the Quadrics SAN the Extoll SAN will support RDMA operations without pre-registering of
buffers that works with the virtual addresses of the user space process.

Introduction

Besides the improvements of the Atoll SAN the Extoll SAN also introduces some new features.
One of the new features is the support of a hardware barrier. Similar to the crossbar the barrier
functionality is inside every NIC and works in a distributed fashion. The next new feature that
has been introduced is the Ultra port mechanism. The Ultra port is a special communication
mechanism that has been optimised for low latency.

This thesis is part of the Extoll project and has the goal to evaluate the software interface of the
Extoll NIC and the design and implementation of the complete software stack. The evaluation
includes the comparison of the currently existing software interfaces and their drawbacks.
Based on the gained information of the drawbacks of the Atoll and the competitors the whole
design of the hostport software interface is made.

The whole project follows the hardware-software co-design paradigm. That means that parallel
to the hardware design the software is designed and implemented. The hardware-software co-
design approach has the advantage that the overall development time is shorter than by a se-
quential design. Another advantage is that the software design process can have influences on
the hardware design and vice versa.

1.1 Outline

* Chapter 2 “Communication Interfaces” gives an overview of the currently available com-
munication interfaces and highlights the advantages and disadvantages of each presented
communication interface.

* Chapter 3 “Extoll Hostport Interface” introduce the Extoll features that will be offered by
the final NIC. The rest of this chapter will present the design space for possible software
interfaces including all design decisions made.

* Chapter 4 “Design of the ESS” present the Extoll Software Stack design based on the
design decisions of the hostport interface.

* Chapter 5 “Implementation of the ESS” will present detailed information about the current
implementation.

1.2 Conventions

1.2.1 Definitions

For this thesis the following conventions and definitions are made:

Definition 1-1 : A process is a running instance of a program including all varia-
bles and states.

Definition 1-2 : A thread consists of a instruction counter, a register set and
stack. A thread always runs inside a process and therefore has
access to the whole address space of the process.

Introduction

Definition 1-3 : A virtual connection is a logical connection between 2 proc-
esses that is described by the communication between these 2
processes.

Definition 1-4 : Polling means busy polling. When the user busy polls the CPU is
non-stop reading and comparing from a certain address to check
if a special condition has been reached.

Definition 1-5 : Waiting means that the process will not do a busy polling. If the
required condition is not reached the whole process will go to
sleep. When the required condition has been reached the process
will be waked up again.

1.2.2 Decision Tree

Decision trees are used to visualize different aspects and options of a topic . A decision tree con-
sists of the following objects (see Figure 1-1):

* Topic. A topic is the root of every decision tree. A topic describe the topic/problem that is
presented by the corresponding decision tree.

» Aspect. Aspects are connected with orthogonal lines. Aspects are either child of the topic or
of other aspects. All Aspects of the same parent describe a different aspect of the common
parent and are therefore independent from each other.

* Option. Option are always connected with the corresponding aspect by straight lines. All
options of an aspect represent alternative approaches for the same aspect. Therefore the
options of an aspect are mutual exclusive.

Topic

Aspect Aspect

| |
Option Option Aspect Aspect

Option Option Option Option

Figure 1-1 : Decision Tree Syntax

1.2.3 UML

This thesis uses UML diagrams for visualisation of different aspects. The UML diagrams that
are used in this thesis are valid for the UML version 2.0 standard ((FOWLER], [UML)]).

Introduction

Communication Interfaces Favia o

2

This chapter introduces the most commonly used communication interfaces nowadays. The ba-
sics of the corresponding interconnect network will be described as much as necessary to un-
derstand the corresponding API. The design of an API must fulfil different goals. The first is the
efficiency. To reach the best performance on a high performance hardware the software must
not introduce a high performance penalty by an inefficient usage of the available resources. On
the other side the software layer should abstract the current hardware and offer an easy to use
interface to the upper layer. These interfaces that are presented are the BSD Sockets, Atoll
PALMS, Myrinet MX, Quadrics, DAPL and MPI.

2.1 BSD Socket API

The BSD socket API ([STE98]) was introduced in 1983 with the release of the 4.2 BSD system.
The goal of the BSD socket API was to create a generic interface for accessing computer net-
works. Today the BSD socket API is the de-facto standard for network programming. The BSD
API was originally designed for IP networks. Today, the BSD socket API supports a broad
range of different computer networks and protocols.

Client-0

Client Socket

Client-1

Client Socket

Server Socket

connect

Client-0
Client Socket

Server Socket

lient-1
Client Client-1 Socket
Client Socket

Client-0 Server
Client Socket Server Socket
Client-0 Socket

Client-1
len Client-1 Socket
Client Socket

Figure 2-1 : Client/Server Sockets

Communication Interfaces

A socket is the central object of the BSD socket API. A socket is an abstract object that describes
a connection between two processes. A socket is a tuple of endpoint information. One endpoint
information describes the local endpoint of the communication and the other endpoint informa-
tion the remote endpoint of the connection. A socket communication is build upon the server/
client principle. The server side of the communication creates a new socket. The socket is trans-
formed in to a server socket by binding the socket to a certain address. The server process is now
able to wait on the server socket for incoming connections. The client side needs the address
information of the server socket to establish a connection. The client side first creates a new
socket and then connects to the server side. After the server side accepted the connection, a
socket for the corresponding client will be created that represents the server endpoint of the con-
nection. The server side is now able to accept more connections via the server-socket and/or
communicate with the client via the returned socket (see Figure 2-1). Figure 2-2 visualize the
the server/client principle in more details and shows the involved function calls.

Each socket connection is full duplex, this means that each side is able to read/write data at any
time. From the user point of view a socket behaves like an ordinary file descriptor. Therefore
the communication can be realised with the normal POSIX ([POSIX]) file operation functions.
It is furthermore possible to use a socket with the select, poll and or epoll call to realise a non-
busy wait. And as a kind of file descriptor a socket is shared amongst all threads of a process.

: server - BSD AP - BSD API . client

socket T
bind N
listen Ko
L | s socket
accept N I
connect

read/write I j read/write

A4

close I I close
T I

Figure 2-2 : BSD connection setup

A4

Communication Interfaces

2.2 Atoll - PALMS

The Atoll-PALMS is the standard API for the Atoll NIC, which offers a user-level communica-
tion mechanism. A description of the basic structure of the Atoll NIC can be found in “Atoll
Basics” on page 19. The first versions of the Atoll-PALMS were inspired by the BSD-Interface
to allow the users a smooth transition to this new API. During the implementation of a MPICH2
port which was based on the first version of the Atoll-PALMS several drawbacks of this inter-
face showed up. Therefore in the second version of the Atoll-PALMS a much lower-level inter-
face has been offered to the upper layer. This new interface is more complex than the interface
of the first version but offers more control to the upper layer which is necessary to realise the
maximum performance. For backwards portability the Atoll-PALMS interface of the first ver-
sion has been emulated on the functions of the second version (see Figure 2-3).

Upper Software Layer I

PALMS 1 Interface

PALMS 2 Interface

ATOLL Hardware I

Figure 2-3 : PALMS layout

The Atoll NIC uses a message based communication mechanism. The idea of this system is to
exchange messages between Atoll hostports. To identify a hostport in the network each hostport
must have an identifier that is unique across the whole network. After a hostport has been
opened by a process on the local Atoll NIC, the process is able to send messages to all other
opened hostports in the network. To send a message to a certain hostport, the origin hostport
process needs the unique hostport identifier of the target hostport. If the target hostport ID is
known, the process can create a connection between the local hostport and the target hostport.
The Atoll connections are light-weight connections that do not need to exchange information
for an establishment of a new connection. This is possible because the Atoll SAN use source-
path routing, and creation of a connection mainly consists of a routing table look up. Because
the Atoll connections are only unidirectional, both sides need to connect to the corresponding
other hostport. The first version of the PALMS-API offered only simple send and receive func-
tions which expect a pointer to a buffer that contains the whole data. These functions automat-
ically performed all necessary tasks to send data including fragmenting of the data. This simple
interface had the disadvantage that if several non continuous data buffers need to be send/re-
ceived, the small data pieces need to be packed into one continuous buffer for the PALMS (see
Figure 2-4 (a)). Because of this all data has to be copied twice, first into the temporary buffer
for the PALMS and then a second time from the temporary buffer into the send data buffer of
the hostport.

Communication Interfaces

To avoid a second copy operation the second version of PALMS introduces direct access to the
send/receive buffers. This principle is visualised in Figure 2-4 (b).

User User

PALMS-1 PALMS-2

(a) (®)

Figure 2-4 : PALMS-1 and PALMS-2 Send/Receive Mechanisms

As described in “Atoll Basics” on page 19 an active notification mechanism is not supported by
Atoll. Therefore polling is the only possibility to detect new data. PALMS offers a special func-
tion to poll until new data is available. Since this blocking behaviour is discouraged on many
situations the PALMS also offers a non-blocking function which checks if a new message is
available or not.

2.3 Myrinet - MX

Myrinet is a proprietary cluster interconnect build by Myricom ((MYRICOM]). After Ethernet
Myrinet is the most used interconnect for clusters (([TOP500]). Myrinet Express ([MX]) is the
most current API for the Myrinet SANs. MX consists of a new API and a firmware. MX allows
the user to bypass the operating system and use user-level communication for lower latency.

The central object of the MX API is the endpoint. An endpoint is a virtualization of an NIC. An
MX endpoint offers the user a way to use the hardware. An MX endpoint has a similar meaning
to MX as a hostport to PALMS. Unlike the Atoll SAN MX supports more than 4 endpoints and
an MX endpoint is tagged by an user defined integer value that is used for filtering tasks. The
current amount of endpoints that is directly supported by the hardware depends on the current
adapter version. If more endpoints are requested than available, then MX will transparently
switch from a user-level communication to traditional communication via kernel traps into the
device driver. In this traditional communication mode one endpoint in hardware will be shared
amongst several processes by multiplexing.

To send data from the local endpoint to a target endpoint the corresponding target address of the
remote endpoint must be created. The creation of the remote target address is based on the fol-
lowing information:

* The local endpoint that belongs to the process.
* The remote NIC ID.
* The remote endpoint ID.

* The remote endpoint filter value.

Communication Interfaces

The resulting endpoint address is only valid for this special connection from this local endpoint
to the remote endpoint and cannot be used with any other endpoint. The endpoint address rep-
resents a unidirectional connection and therefore it can be compared with the Atoll connection.
Because the endpoint address is only unidirectional both sides need to create an endpoint ad-
dress for the corresponding other side to exchange data in both directions.

The whole communication scheme of the MX API is designed to be fully asynchronous. Fully
asynchronous means that the initiation of a communication operations is strictly separated by
the completion of the operation. For each initiated communication operation an MX request is
created and returned to the user. The MX request enables the user to track the status of the ini-
tiated operation. MX supports some non-blocking functions to query the request status which
allows the user to poll on a request. Besides this non-blocking functions MX also supports func-
tions to wait on a request until a certain state is reached. This wait function will suspend the
process until this state is reached.

MX supports message passing communication. For each send operation the user must supply a
special matching value that is used to mach the send and receive operation. To receive the mes-
sage on the remote side a receive needs to be posted with the same matching value. MX guar-
antees that all send/receive operations will match in-order. It is required to post a receive before
the send operation is started. If there is no matching receive MX supports ways to handle this
unexpected messages by buffering them until the corresponding receive will be posted.

In the current version 1.0 of MX the support for one-sided communication and collective oper-
ations (barrier, broadcast, ...) is missing. The missing functionality will be added in a later ver-
sion. In addition to the communication via the Myrinet NIC the MX API realizes the
communication between processes on the same node via shared memory mechanism. The
switch between the NIC and the shared-memory communication is completely transparent from
the user point of view. The MX API is available in a thread-safe version and a not thread-safe
version. If thread-safety is not required by the upper layer the non-thread-safe library can be
used which offers a slightly better latency than the thread-safe version.

2.4 Quadrics - Elan Library

QsNet is a proprietary interconnect solution developed by Quadrics ((QUADRICS]). The core
of each QsNet adapter is the “Elan” network processor. To access the functionality offered by
a QsNet adapter Quadrics supports two libraries (([ELAN]). Figure 2-5 gives an overview of the
quadrics software stack. The Elan3 library offers a low-level interface to a QsNet adapter while
the Elan library uses the functionality offered by the Elan3 library to build a high-level interface
with the following communication modes:

» Direct memory access.
* Message passing.
* Queue based communication.

* Put/Get based communication.

Communication Interfaces

Parallel Application

Shmem MPI

Elan Library

Elan3 Library

PCI

Elan

Figure 2-5 : Elan Software Stack

The principle of the QsNet is to build a kind of “network computer” that is inspired by the ar-
chitecture of a single node computer. If an application is started on a single node this application
will be represented by a process that is executed on the CPU. When a process is running on a
CPU the whole address space of the process is mapped into the CPU. Data is copied inside the
virtual address space of a process, by copying the data from the source buffer into the CPU and
then from the CPU to the destination buffer. This principle of a single CPU system is shown in
Figure 2-6.

process address space

Figure 2-6 : Single Node Principle.

The QsNet approach is to map this concept to a parallel system that consists of several nodes.
On a parallel system parallel applications are executed. A parallel program consists of several
processes that can be run on any node in the parallel system. The amount of processes of a par-
allel application is determined at the start and is fixed during the whole execution time. All proc-
esses of a parallel application are numbered from 0 .. (N-1) with the so called virtual process
identifier (VPIDl). This VPID is used to identify a process inside a parallel application. A glo-
bal address space of the parallel application is formed by arranging the address spaces of the
processes in a sequential order of their VPIDs. The addresses of the global address space are
build by prefixing the virtual address of each virtual address space with the corresponding VPID
(#VPID#VADDR). The global address space is mapped into the quadrics network processor.

1. Note that the Quadrics VPID != Extoll VPID.

10

Communication Interfaces

With the Quadrics network processor it is now possible to copy data inside this global address
space from one location to another one, especially from the address space of one process to an-
other one. An example of a parallel application with two processes is shown in Figure 2-7.

process 0
address space

[0
[&]
S
w
7))
g Elan
3 Network
@ Processor
8 ©
7]
8 _ &
O o
£ g2

o 2

Q o

O <

5 ©

Q5

©

Figure 2-7 : Quadrics Network Processor

This is the basic concept of the QsNet. The Elan3 library offers an abstraction layer to this func-
tionality that hides the differences of the different QsNet adapters. The library mainly offers
functions to initiate the memory copy operation. The memory operations can be associated with
two events that will be set when the operation is completed and two cookie values. One event/
cookie is for the local side and the other one for the remote side. A process can either poll on an
event or wait on an event which will cause process to be suspended until the event is set.

The Elan library works on top of the Elan3 library and offers more communication modes. The
message passing interface of the Elan library allows a process to send a message to any other
process of the parallel program. Each message can be tagged with a user specified value. The
receiver can select by source VPID and/or specified tag which message will be received. Be-
sides the point-to-point operations the Elan library supports some collective operations. The
put/get communication mechanism consists of put and get functions that realise write and read
operations from the local memory to the remote memory.

All communication operations are able to use the virtual address of the process. Therefore buff-
ers do not need to be registered by the hardware before they can be used for communication.

2.5 InfiniBand - Verbs

The InfiniBand Architecture (IBA) is an industry-standard architecture for server I/O and inter-
server communication. The IBA was developed by the InfiniBand Trade Association ([IBTA])
as a replacement for the current I/O bus architectures. The InfiniBand architecture specifies the
whole system from the link up to the software interface to control an InfiniBand adapter

11

Communication Interfaces

([PFISTERY]). The software interface is called Verbs ([VERBS]) and consists of function proto-
types and the corresponding semantic. The exact implementation of the Verbs is not specified
and vendor specific. The InfiniBand architecture defines the following services:

» Reliable Connections (RC)

* Unreliable Datagram (UD)

* Unreliable Connection (UC) [optional]

* Reliable Datagram (RD) [optional]

* Raw IPv6 Datagram & Raw Ethertype Datagram [optional]

(Consumer ’ (Consumer ’

V Queue Pair /

| / Queue Pair V

Completion
Queue

Completion
Queue

Send Queue
Receive Queue

Send Queue
Receive Queue

Transport Engine

Transport Engine

Fabric

Figure 2-8 : InfiniBand HCA

The central part of each InfiniBand communication is the so called queue pair (QP). The queue
consist of two queues, one send and one receive queue (see Figure 2-8). If the user wants to start
an operation the user posts a descriptor that describes the operation in the corresponding send
or receive queue. If the operation is an operation that actively transmits data the descriptor will
be fetched by the transport engine and be processed. The data will be transported via the Infin-
iBand fabric to the destination host channel adapter (HCA). On the destination side the data will
be processed. If the data needs to be received the next descriptor from the receive queue will be
fetched to determine the destination of the data. On both sides a completion will be generated
after the operation is completed. The created notification will be stored in a completion queue.
If a connection service type is used then a connection is always exclusively established between
two QPs. A QP can only be member of one connection which leads to the problem that for sev-
eral connection several QPs per process needs to be allocated (see Figure 2-9 (a)). Only one QP
is necessary to communicate with several other processes when the datagram service is used
(see Figure 2-9 (b)).

12

Communication Interfaces

Connection Service Datagram Service

3 \ ¢
o o

(@) (b)

Figure 2-9 : QP connection and datagram service

With the Verbs specification InfiniBand defines a standard set of functions to implement the
previous explained operations. The Verbs offer functions to allocate and manger the introduced
queues. InfiniBand supports message passing communication, via posted sends and receive, and
remote memory operations. All communication operations are asynchronous. After the commu-
nication operation has been initiated the user will receive a completion when the operation has
completed. It is possible to either poll for new completions or use a non polling wait function
that suspends the process until a new completion is available. Additionally, the user can register
a callback function that is called when a new completion in the completion queue is created.
Every memory that is used by a communication operation must be registered with the HCA. A
registered buffer can be further sub-divided into memory windows that have different access
rights (see Figure 2-10). While the registration of a buffer can be a slow operation that involves
a kernel trap, the creation of a memory window is completely done in user space by posting a
corresponding operation to the QPs.

memory
window 0
registered
buffer
memory
window 1

Figure 2-10 : Memory Window and Registered Buffers

13

Communication Interfaces

2.6 DAPL

The Direct Access Application Library (DAPL) is an API that is suitable for all RDMA-capable
interconnect networks. DAPL is a generic API interface specification that abstracts from the dif-
ferent interconnect networks and operating systems. The DAPL specification consists of a user-
level (uDapl) and a kernel-level (kDapl) API specification. The whole specification of the
DAPL interface is maintained and coordinated by the DAT-Consortium ([DAT]). The concept
of DAPL is that all applications that have been written for DAPL are able to communicate via
different interconnected networks without re-building. This is realized by selecting the used
provider at the start of each DAPL program. A provider is a module that is dynamically loaded
and offers the functionality for a certain communication system to the DAPL interface (see Fig-
ure 2-11).

Application

DAT

InfiniBand
Provider

Quadrics
Provider

Myrinet
Provider

Figure 2-11 : DAT System

The connection setup in DAPL is similar to the BSD socket server/client approach. The server
side creates a service point. A service point is like an open port that allows clients to create a
connection. The DAPL endpoints are similar to BSD sockets and represent a connection to one
remote node. The connection setup works similar to the BSD socket approach. The active side
creates an EP and creates a connection to the remote service point. After the server side accepted
the connection a corresponding EP for the connection will be returned. DAPL offers all com-
mon types of data transfer operations (DTO). This DTOs are posted send, posted receive,
RDMA read and write. The DAPL communication is asynchronous. Like in InfiniBand the user
must post a receive operation to receive data transferred by a send operation. The user receives
all kinds of information (DTO completion, connection request, disconnection, ...) via events.
The central objects of the event system are the event dispatchers (ED). An event dispatcher
looks like an event queue that collects events from different event streams (see Figure 2-12).

DTO Completion
Connection Request Event Dispatcher
Software Events

Asynchronous Error U—U—I—u—u
RMR bind

- Delivered Events

Figure 2-12 : Event Dispatcher

14

Communication Interfaces

DAPL requires that all memory buffers have been registered before they are used with a DTO
operation. Like InfiniBand DAPL supports the creation of memory windows on a registered
buffer (see Figure 2-10).

2.7 MPI

At the beginning of parallel systems each system had his own API for using the parallel resourc-
es. This lead to the problem that a program that had been developed on a certain parallel system
was not likely to run on any other system. Therefore independent software providers had to
write a version of their product for each system they wanted to support. To solve this problem
several companies and research organisations formed the MPI-Forum ([MPIFORUM]). The
goal of this forum was to define an unique API for writing parallel programs. This API was
called MPI which stands for “Message Passing Interface”. The idea of this approach was to have
a single API and a program that has been written with this interface would be able to run on
different parallel systems without modification. The only thing that needs to be adapted to the
different systems is the MPI implementation. Today MPI is the de facto standard for writing
parallel programs with existing implementations for all major systems. For different reasons the
first version of the MPI standards covered only message passing. The second and most current
version the MPI standard extended the first version by adding support for parallel I/O, dynamic
process management and remote memory access (see Figure 2-13).

Remote
Memory
Access

Dynamic
Process
Management

Parallel
/10

Message
Passing

Figure 2-13 : MPI Overview

The basic object of MPI is a so called communicator. A communicator is an abstract object that
allows the user to exchange messages between the processes that are associated with this com-
municator. Every communicator contains between one and two progress groups. Communica-
tors with only one process group are so called Intra-Communicators. An Intra-Communicator
can only be used to exchange data between processes of a single process group. A communica-
tor with 2 process groups is called Inter-Communicator and can be used to exchange messages
between 2 different process groups. This 2 different kind of communicators are visualised in
Figure 2-14. Each process in a process group is identified by a unique number, the so called
“rank”. The first process of a group always gets the rank 0, the second rank 1, and so on. The
order of the processes is not defined by MPI and depends on the implementation. This means
that the same processes that is member of 2 different process groups can have a different rank
in each group and that the same rank on different groups can belong to 2 different processes.

15

Communication Interfaces

Intra-Communicator Inter-Communicator

B
e

local group

local group remote group

Figure 2-14 : MPI Communicators

The point-to-point communication between 2 processes is realised via a send on the sender side
and a matching receive on the receiver side. The matching of a send and a receive operation is
based on the used communicator, the source process rank and the specified tag. The MPI stand-
ard requires that send operations with the same matching information must be delivered in-or-
der. The MPI standard specifies blocking and non-blocking send/receive operations. The
semantic of MPI defines that when a blocking send returns the user is able to use the data buffer
again without any danger. This does not mean that the corresponding send already finished or
that the remote side already received the data. If non-blocking operations are used, the user gets
a request for the corresponding operations that allows the user to keep track of the status of the
operations and/or wait until the operations are finished. Additionally to the point-to-point oper-
ations the MPI standard specifies several collective operations. The collective operations can be
sub-divided in scatter-, gather- and reduce-operations. A special collective function is the bar-
rier because this function transfers no data and is only used for synchronisation.

When an MPI program is started all processes are grouped in one big process group that is as-
sociated with the global communicator MPI COMM_ WORLD. Because this static approach is
limiting the Dynamic Process Management (DPM) has been integrated. The DPM consists
mainly of one function to start a certain number of processes in a new process-group. This func-
tion returns an Inter-Communicator that allows communication between the process groups.

To avoid a bottleneck in the I/O performance and to increase portability the MPI standard de-
fines a set of file operations. The MPI file operations were inspired by the POSIX file opera-
tions. While the opening and closing of a MPI file is a collective operation among the processes
of to the used communicator, the file may be accessed by each process separately. Several file
pointers per MPI file are managed, one global (shared) file pointer that is valid for all processes
and one local file pointer per process.

The last part of the MPI standard covers Remote Memory Access (RMA). RMA allows a proc-
ess to directly access and modify the memory of another process. MPI defines 2 different modes
of RMA operations, the passive target and the active target mode. In the active target mode the
target process is actively participating in the execution/completion of an RMA operation. In
contrast to the active target mode the passive target mode no involvement of the target process
is required. The first thing that needs to be done to share data via RMA is to create a MPI mem-
ory window. A MPI memory window is a description of an area of memory that is accessible
by other processes. The creation of a MPI memory window is a collective operation that must
be done amongst all processes of the used communicator. When the MPI window has been suc-

16

Communication Interfaces

cessfully created each processes of the communicator is able to access the corresponding win-
dows of all other processes in the communicator. For the real modification of the remote
memory the MPI standard defines a get, put and accumulate function. The get function is used
to read data from a remote memory into a local buffer while the put operation writes data from
a local buffer to a remote memory window. The accumulate function applies local data with a
function to a remote memory window. The functions for accumulation are all logical and arith-
metical base functions (e.g. AND, ADD, OR).

2.8 Conclusions

As seen in the previous sections all communication systems (except the BSD sockets and the
PALMS) support the following features to achieve the maximum possible performance:

* Asynchronous Communication. Asynchronous communication means that the user trig-
gers the communication operations and will get notified when the triggered operation has
ben completed. This approach allows to overlap the communication and computation and
therefore leads to the maximum exploration of parallelism.

+ RDMA Capabilities. RDMA capabilities allow the user to directly transfer to/from remote
memory of another process. With this feature it is possible to realize true zero copy opera-
tions.

* Event Driven. As seen it is important to have an active notification system for the user
which allows a non polling waiting operation. With this event driven approach it is possible
to save CPU time and therefore increase the performance.

17

Communication Interfaces

18

Extoll Hostport Interface NaV/=

3

In this chapter a design space analysis of the hostport interface is presented. First a short over-
view of the Atoll design is given. After the historical overview of Atoll a short description of
the Extoll basic concepts is presented. Then each aspect of the Extoll hostport interface will be
analysed.

3.1 Atoll Basics

3.1.1 Atoll Architecture

&% Host-Port0 % &% Link-Port0
_ <> Host-Port1 |- <> Link-Port1 | || &
0 PCI-X 8x8 ©)
Q Interface Crossbar =
<3| Host-Port2 <> Link-Port2 | | &
&% Host-Port3 9 &% Link-Port3

Figure 3-1 : Atoll architecture

After the PCI-X interface that transforms the PCI(X) interface into an internal interface, the At-
oll has 4 hostports. Each hostport is represented by a hardware structure. Each hostport can be
seen as a communication unit. In the Atoll network messages can be send from one hostport to
another one (including to itself). To get the maximum performance, especially low latency, the
Atoll uses user-level communication. In the case of user-level communication the user process
is able to trigger operations directly from the user space without the need of trapping into the
operating system. Because multiple access from several different processes at the same time
would lead to problems a hostport is exclusively associated with one process. The Atoll offers
4 hostports which limits the maximum number of processes per node to 4*(number of Atoll
NICs).

19

Extoll Hostport Interface

During the design phase of Atoll the first dual processor systems were available and 4 processor
systems were expected in the near future. This was one of the reasons for the limitation to 4 host-
ports. Since the start of the Atoll project the technology made huge progress. Today it is possible
to build nodes with 8 CPUs and more. After the introduction of hyper-threading (HT) real multi-
core CPUs were introduced. If a user puts 8 dual-core CPUs into one node he gets a 16 CPU
node. The user could run 16 processes in parallel, but is limited to run a maximum of 4 processes
because of the limitations of the Atoll NIC, this is unacceptable.

Another problem of the Atoll NIC, and many other SANS, is that the data needs to be copied
into/from special send/receive buffers. These extra copies limit the performance dramatically.
For this reason many SAN controllers were extended to support Remote Direct Memory Access
operations (RDMA). RDMA operations enable a device to read/write data directly from the
process memory address space without the need to make a copy in the send/receive buffers.
With this feature it is possible to realize a zero copy protocol.

Atoll NIC Main Memory

HostPort

‘ send descr. table

‘ send buffer

‘ recv descr. table

‘ recv buffer

—]

‘ replicator page

Figure 3-2 : Atoll Hostport

As shown in Figure 3-1 the Atoll NIC supports up to 4 hostports. All hostport have their own
fixed hardware resources. Each hostport has a send/receive data buffer and a corresponding de-
scriptor table. The send/receive data buffers contain the data of the messages that should be send
or have been received. The send/receive descriptor tables contain the descriptors, one for each
message in the corresponding buffer. All data buffers and descriptor tables are managed as ring-
buffers with wrap-around semantic. To avoid the expensive hardware accesses each hostport
mirrors its status information into a page in the main memory, the so called ‘replicator page’. In
Figure 3-2 the relationships between the data buffers and descriptor tables are visualised. The
ring-buffers are managed via read- and write-pointers. The state of an empty and a full ring-
buffer is implicitly represented by the read-/write-pointer. This avoids an extra variable for an
empty and full state. That approach not only reduces the number of updates it also avoids race

20

Extoll Hostport Interface

conditions. Because Atoll does not support a notification mechanism for newly arrived messag-
es each process has to poll on the replicator page to check and wait for new messages. This be-
haviour leads to very small latency but also to a very high CPU utilisation.

3.1.2 Atoll Send

A message is sent by executing the following steps:

» Copy the whole data into send data buffer.

» Update the write pointer of the send data buffer.

* Create a new descriptor in the send descriptor table.

+ Update the write pointer of the send descriptor tables. This update operation triggers the
Atoll NIC to fetch the next descriptor from the main memory.

» Atoll fetches all the data from the memory and sends it to the destination.
» Atoll updates the read pointer of the send data buffer.
» Atoll updates the read pointer of the send descriptor table.

3.1.3 Atoll Receive

A message is received by the following steps:
» The Atoll NIC copies the message data into the receive data buffer.

* The Atoll NIC creates a message descriptor for the received message in the receive descrip-
tor table.

» The Atoll NIC updates the receive data write pointer.
» The Atoll NIC updates the receive descriptor write pointer.

» The process detects that there is a new receive descriptor in the receive descriptor table. The
process use the receive descriptor to consume the message from the receive data buffer.

» The process update the read pointer of the receive data buffer.

» The process update the read pointer of the receive descriptor table.
3.1.4 Summary

The Atoll SAN has been proven to work and to be efficient. During the whole development
process the following main disadvantages have been figured out:

» The Atoll only supports 4 hostports.
* The Atoll only supports polling.
» The Atoll only supports message based data transfers (extra copies).

For more information about the Atoll design refer to the dissertation of Larz Rzymianowicz
([RZY97)).

21

Extoll Hostport Interface

3.2 Extoll Overview

This section gives a short overview of the Extoll basics. For further details refer to the diploma
thesis of Dirk Franger ((FRANGERO04)).

: Process A : CPU : Process B

load context ki

.___store context
— load context

,,,,,,, store context
load context

oo store context
T load context

J ,,,,,, store context

Figure 3-3 : Process Scheduling

A first approach to overcome the limited number of hostports could be to increase the number
of hostports that are supported by the hardware. This approach has several disadvantages. The
first disadvantage is that this approach does not solve the problem that the hardware limits the
available number of hostports, it only increases the threshold when the problem occurs. Another
disadvantage is that if the number of directly in hardware supported hostports is increased, this
also increases the area of the die, the power consumption and so on. Because of these disadvan-
tages it is necessary to support a large number of hostports without a direct representation in
hardware.

This kind of problem also occurs on a computer system where an unlimited number of processes
runs simultaneously on a fixed amount of CPUs. On a computer system this problem has been
solved by virtualisation of the resource CPU. Instead of associating a process with a certain
CPU a process is running on a virtual CPU. A virtual CPU consists of a set of registers that rep-
resent the current context of a process. Several processes can now be executed by time multi-
plexing the CPU(s) between the processes. The switching between two processes is done by
storing the register set (context) of the actual running process into the main memory. Then the
register set (context) of the next process is loaded into the CPU and executed (see Figure 3-3).

This approach is adopted by the Extoll to form a communication processor. In this communica-
tion processor a hostport will not be associated with a specific hardware hostport. A hostport is
now virtualized and is therefore called virtual hostport (VP). The current state of a VP is de-
scribed by a VP descriptor (context). This VP context is loaded into the Extoll when the hostport
needs to perform an action. On a computer system the operating system is responsible for the
decision which process is running on the CPU. This behaviour is highly discouraged in the Ex-
toll design because the synchronisation via the operating system would increase the latency too
much. Because the Extoll is supposed to communicate via user-level communication each VP
that needs to perform an action must be able to cause a switch to his context from user space. A

22

Extoll Hostport Interface

general problem is that a switch to the current process can only be done when there is not already
another VP in execution. In the case that there is another VP running the request of the current
VP must be rejected and the VP must perform the request again. To perform a switch the Extoll
requires the VP identifier (VPID) of the VP that wants to perform an operation. A solution could
be to map /O space from the Extoll NIC into the address space of every process that opened a
VP. Each process that wants to trigger an operation via a VP write the corresponding VPID at
the beginning of the I/O space (see Figure 3-4 (a)). This approach has the disadvantage that the
VP that triggers the Extoll via this I/O space does notdoes not have the possibility to detect if
the Extoll accepted the request, because write operations have no feed back.

VP-65535
VP-65023
. .
VP-511
VP-0
VP-trigger VP-0

(@) (b) (©)

Figure 3-4 : Trigger Page

The problem with the missing feedback can be solved by replacing the write operation with a
read operation. The feedback information can be returned in the value that is read from the de-
vice. If all VPs would read from the same location in the I/O space the Extoll could not differ
between the different VPs. Therefore each VP reads from a different place in the I/O space. The
offset of the read operation determines the VPID (see Figure 3-4 (b)). This approach works but
has the disadvantage that there is a security issue. Because all processes have access to the same
I/O space it is possible that one process reads from the offset of another process. This issue is
solved by increasing the trigger area of each VP to the size of one memory page the so called
trigger page. Every process maps only the trigger pages of the VPs that have been opened (see
Figure 3-4 (c) and Figure 3-5).

The trigger page solution solves all of these problems. As mentioned before every process of a
VP that has to perform an operation triggers Extoll via the trigger page. This should cause the
Extoll to switch to the current VP. But if Extoll is already executing another VP this switch can-
not be performed. In this case the process has to poll on the trigger page until the Extoll NIC has
accepted the request to switch to the current VP. On a busy system with much communication
this case will be the standard. To overcome this situation the Extoll has a buffer for incoming
request of the trigger pages. If the request for a VP has been successfully inserted into the buffer
the Extoll guaranties that the corresponding VP will be executed in the future. This buffer is
called conditional store buffer ([CSB])(see Figure 3-5).

23

Extoll Hostport Interface

virt. address space I/0O memory of Extoll
2
Trigger Operation
CSB G
2l
ol o
> | >
virt. address space
VP-5
Extoll

(1) Insert VCl into CIQ
(2) Trigger VCI by reading from the trigger page
(3) Extoll insert VPID into the CSB

Figure 3-5 : Conditional Store Buffer

A missing feature of the Atoll design was the lack of zero-copy functionality. Therefore Extoll
supports RDMA operations. Extoll will support Get and Put operations for reading / writing of
the memory of a remote process. The Extoll NIC does not require to pre-register a buffer on the
hardware but requires that the buffers that are used for RDMA operations are located inside a
memory window. Like the QsNet adapters from Quadrics the Extoll NIC will be able to directly
handle virtual addresses. Unlike QsNet, Extoll has no table-walk engine to translate the virtual
addresses to physical addresses which are needed by the DMA engine. Therefore Extoll will
only have a translation-lookaside buffer and the real address translation is done in software.

Unlike the Atoll NIC, the Extoll NIC will support notifications for the users. Notifications are
supported for the completion of previously triggered operations and for the arrival of new mes-
sages. The operations that can be executed are called virtual communication instructions (VCI).
The VClIs are stored in a physically continuous buffer in memory that is managed as a ring buff-
er. This buffer is called communication instruction queue (CIQ).

To execute a new operation a VP must create a VCI that describes the operation. This VCI is
inserted into the virtual communication instruction queue (CIQ). The VP triggers the Extol NIC
via the mapped trigger page. After the VPID has been successfully inserted into the conditional
store buffer Extoll will load the corresponding context. After the context has been loaded the
next VCI of this VP will be fetched and executed. After the execution a corresponding notifica-
tion will be stored in the notification queue (NQ).

24

Extoll Hostport Interface

VCI Notification
>
@]
£
[0}
s
clQ VP-N NQ
\ A
\ /
o
®
5 VP-N
T Extoll

Figure 3-6 : CIQ Flow

To achieve the highest possible performance the Extoll SAN supports a special communication
scheme called ultra low latency transaction (ULTRA). The ULTRA mechanism is designed for
small messages (<= 64 Bytes) and use a P1O approach. More details of the ULTRA unit can be
found in the diploma thesis of Heiner Litz ([LITZ05]). For fast synchronisation between proc-
esses the Extoll SAN also supports a hardware barrier.

3.3 Global Information for VPs

Table 3-1 lists the global information for each VP.

Name Description

VPD table base address The start address of the VPD table in the memory. The address
must be a physical address.

VPD upper base Specifies the end address of the VPD table. Together with the
base address the length of the VPD table is specified. The
address must be a physical address.

CIQ length? Specify the length of the CIQ in bytes. The length value must
be a multiple of the VCI size.

WDT length? Specify the length of the WTD in bytes. The length value must
be a multiple of the window descriptor size

SDR length? Specifies the length of the SDR in bytes.

RDR length? Specifies the length of the RDR in bytes.

NQ length? Specify the length of the NQ in bytes. The length value must be

a multiple of the notification size

Table 3-1: Global information for VPs

a. This value is global and specifies the length of each VPD.

25

Extoll Hostport Interface

3.3.1 Global Information for Event Queue

Table 3-2 lists the global information that configure the event queue.

Name Description
EventQ base address This is the physical base address of the event queue.
EventQ length The length of the event queue in amount of events that can be
stored in the event queue.
EventQ ReadPtr The read pointer of the event queue. This pointer is managed by
software.
EventQ WritePtr The write pointer of the event queue. This pointer is managed

by hardware.

Table 3-2: Global information for the Event Queue

3.4 Extoll Descriptors

3.4.1 Virtual Port Descriptor

Physically contiguous and pinned, Physically contiguous and pinned address space Extoll global registers
address space mapped into virtual user address space

not visible to user process

Comm. Instruction Queue (CIQ)
Base Addr (PHYS)

Send Data Region (SDR)
Base Addr (PHYS)

Recv Data Region (RDR)
Base Addr (PHYS)

Win Descriptor Table (WDT)
Base Addr (PHYS)

Notification Queue (NQ)
Base Addr (PHYS)

SDR SDR clQ
ReadPtr WritePtr |ReadPtr

ClQ Length
SDR Length
RDR Length
WDT Length
NQ Length

RDR RDR NQ
ReadPtr (SW) | WritePtr (HW) |ReadPtr
Port Status Word (PSW)

NQ
WritePtr

Figure 3-7 : Virtual Port Descriptor

26

Extoll Hostport Interface

The virtual port descriptor (VPD) describes the current state of a virtual port. Table 3-3 lists the
members of the virtual port descriptor. The current layout of the virtual port descriptor is shown

in Figure 3-7.

Name

Description

CIQ base address

The physical address where the CIQ starts in main memory.
The length of this queue is equal for all virtual ports. See Table
3-1 for more information.

SDR base address

The physical address where the send data region starts in main
memory. The length for the buffer is the same for all virtual
ports. See Table 3-1 for more information.

WDT base address

The physical address where the window descriptor table starts
in main memory. The length of this descriptor table is the same
for all virtual ports. See Table 3-1 for more information.

RDR base address

The physical address where the receive data region starts in the
main memory. The length for the buffer is the same for all vir-
tual ports. See Table 3-1 for more information.

NQ base address

The physical address where of the notification queue starts in
the main memory. The length for the buffer is the same for all
virtual ports. See Table 3-1 for more information.

CIQ ReadPtr

The read pointer of the communication instruction queue. This
value is managed by hardware. This pointer counts in VCI and
not in bytes. See Table 3-4 for more information.

RDR ReadPtr

The read pointer of the receive data region. The meaning of this
value depends on which receive system is used. See Table 3-4
for more information.

RDR WritePtr

The write pointer of the receive data region. The meaning of
this value depends on which receive system is used. See Table
3-4 for more information.

SDR ReadPtr

The read pointer of the send data region. This value is managed
by hardware. See Table 3-4 for more information.

SDR WritePtr

The write pointer of the send data region. This value is managed
by the user. See Table 3-4 for more information.

NQ ReadPtr

The read pointer of the notification queue. The value is man-
aged by the user. See Table 3-4 for more information.

NQ WritePtr

The write pointer of the notification queue. This value is man-
aged by hardware. See Table 3-4 for more information.

PSW

This is the configuration status word of the VP. See Table 3-4
for further information.

Table 3-3: Virtual Port Descriptor Members

For performance reasons the virtual port descriptor has a limited, fixed size of 64 Bytes. Be-
cause of the limited space it is necessary to avoid the storage of useless data. In general the
pointers are incremented by the size of the corresponding queue descriptor (e.g. window de-

27

Extoll Hostport Interface

scriptor). Therefore the least significant bits of the pointers are always 0 and can be omitted in
the virtual port descriptor. Table 3-4 gives an overview of the different pointers and their unit
sizes.

Pointer Size® | Unit Size® Description

CIQ ReadPtr 16 512¢ | The current read pointer of the virtual port for
fetching new VClIs. This pointer is managed
by hardware and count in VCI units.

SDR ReadPtr 24 64 The SDR read pointer of the virtual port. This
pointer is managed by hardware. This pointer
always counts in § bytes words.

SDR WritePtr 24 64 The SDR write pointer of the virtual port.
This pointer is managed by the user. This
pointer always counts in 8 bytes words.

RDR ReadPtr 24 64 * In the case of DMA receive this pointer is
the read pointer of the DMA RDR. In this
case the pointer counts in 8 bytes words.

+ In the case of Posted Receives this is the
write pointer of the PRQ. In this case the
pointer counts in posted receive descriptor
units.

In both cases the value is managed by the user.

RDR WritePtr 24 64 * In the case of DMA receive this pointer is
the write pointer of the DMA RDR. In
this case the pointer counts in 8 bytes
words.

* In the case of Posted Receives this is the
read pointer of the PRQ. In this case the
pointer counts in posted receive descriptor
units.

In both cases the value is managed by hard-
ware.

NQ ReadPtr 16 512t |The NQ read pointer of the virtual port
descriptors. The pointer counts in NQE units
and is managed by the user.

NQ WritePtr 16 5120 | The NQ write pointer of the virtual port
descriptors. The pointer counts in notification
units and is managed by hardware.

Table 3-4: Pointer metrics

a. Size of the descriptor member in bits.
b. The size of the corresponding queue entries.
c. The size of a VCI respectively of NQE.

28

Extoll Hostport Interface

3.4.1.1 Virtual Port Status Word

The virtual port status (PSW) is a 48 bit vector that contains several management and configu-
ration bits. Table 3-5 lists the defined bits.

Name Description

enabled This bit indicates that the corresponding VP has been opened by an
user. If this bit is not set the Extoll must not allow the execution of
any operations.

pr_enabled This bit indicates that the process uses the posted receive mechanism
instead of DMA receive.

phys addr enabled |This bit indicates that in the case of activated posted receives the
posted receives may contain physical addresses instead of virtual
addresses. For security reasons only kernel space users are allowed to
use physical addresses.

rdma_enabled This bit indicates if the VP has a valid pointer to a window descriptor
table or not. This option is used to reduce resources if some VP do not
need RDMA functions.

events_enabled If this bit is set an event for the device driver will be generated for all

operations that are not represented by a VCI else not.

Table 3-5: PSW Members

3.4.1.2 Virtual Port Map

Table 3-6 shows all VPIDs that are reserved for a special purposes. All special VPIDs are lo-
cated at the beginning of the VPID range. If the special VPIDs were allocated at the end of the
VPID range then it would be impossible to reduce VPID range and therefore the required re-
sources.

Number | Purpose Description

0x0000 | Reserved |This VPID is used to specify an invalid VPID. This VPID must not
be used by an user.

0x0001 | Daemon |This VPID is reserved for the daemon process.

Table 3-6: Virtual Port map

3.4.2 Window Descriptor

Window Start Address

Window Length
Window Rights
Management Information

Figure 3-8 : Window Descriptor

29

Extoll Hostport Interface

The window descriptor (WD) describes a memory region that is allowed to be accessed by
RDMA operations. The layout of the WD is shown in Figure 3-8. The members of the window
descriptor are described in Table 3-7.

Name Size Description
Win Start Address 64 The virtual address where the window starts.
Win Length 64 The length of the window in bytes.
Right Flags 64 The rights of the window.
Management 64 Reserved for the software to manage the windows.

Table 3-7: WD Members
3.4.3 Notification Descriptor
The notification descriptors are described in “Notification system” on page 31.
3.4.4 Virtual Communication Instruction

The Virtual Communication Instruction descriptor consists of two parts. The first 3*64-bit data
words belong to the header which is equal for all VCIs. The last 5*64-bit data words are differ-
ent for each VCI type (e.g. SEND, FAST SEND, ...). For detailed description of the variable
part refer to the diploma thesis of Dirk Franger ((FRANGERO04]).

Virtual Communication Instruction (VCI)

0 | Routing ID {Offset, Length, VPID}
API-TAG CMD
TAG

variable use

variable use

variable use

variable use

7 variable use

Figure 3-9 : VCI Descriptor

3.4.5 Consistency

In the case of the VP descriptor and the window descriptor there is a possible race condition.
Both these descriptors are asynchronously fetched from the hardware every time it needs such
a descriptor. This leads to the possible problem that, while the software is writing a descriptor
the hardware is simultaneously fetching the descriptor. This means that the hardware will re-
ceive a descriptor that is a mixture of old and new data. Therefore the hardware must be pre-
pared to handle invalid descriptors. An alternative would be to modify the descriptors in an
order that avoids problematic descriptors. It is important to note that the Extoll NIC should not
need to fetch a descriptor before this descriptor has been modified. In general this behaviour is
caused by error in the application or system.

30

Extoll Hostport Interface

3.5 Notification system

Definition 3-1 : A neotification is a fixed size information unit that is generated
by the hardware. The notification is used to transfer information
(e.g. completion of operations) from the hardware to the user of a

specific VP.

In the design of Extoll each virtual port has a notification queue (NQ). The task of the NQ is to
inform the user about completed operations. The Extoll NIC will insert a notification descriptor
(see Table 3-10) into the NQ of the corresponding VP after the operation completed. The noti-
fication queue is implemented as a ring-buffer with wrap-around semantic. The following op-
erations cause generation of a notification entry:

» All posted VCI operations generate a notification.

» Posted receives generate a notification.

» All DMA receives generates a notification.

* A completed ULTRA send message can generate a notification.

* A completed RDMA operation generates a notification on the destination host.

Table 3-8 compares the information that needs to be stored in a notification descriptor depend-
ing on the kind of the operations. As shown in Table 3-8 the posted-receive and the RMA op-
eration limit the minimum size of the notification descriptor.

Entry VCI . RMA (DM1.4) Poste.d-

completion target Receive Receive
CMD + + + +
TAG - + + A
API-TAG + + + +
Counterpart-ID - + + +
ERR-CODE + + + +
OFFSET - + + +
SIZE - + - +
WIN-ID - + - A

Table 3-8: Information for Notification Descriptors

Table 3-9 offers a description of the notification descriptor members. The layouts of the differ-

ent notification descriptors are presented in Figure 3-10.

Name

Size

Description

CMD/ERROR

16

Identifies which kind of operation caused the creation of
the notification. The error part contains the status of the

completion.

Table 3-9: Notification Members

31

Extoll Hostport Interface

Name Size Description

TAG 64 The tag of the operations that has been posted to CIQ is
stored in this field. In the case of a receive or a RDMA
target operation the TAG of the remotely posted VCI
operation will be stored in this field.

API-TAG 48 The API-TAG is the API-TAG of the posted (either
locally or remotely) VCI.

COUNTERPART-ID 48 The ID that identifies the Extoll NIC that executed the
VCI. The COUNTERPART-ID consists of the ORIGIN-
EXTOLL-ID and the ORIGIN-VPID.

OFFSET 64 In the case of an RDMA operation this value specifies the
offset in the target memory window. In the case of a
DMA receive this value specifies the offset in the RDR.
In the case of a send this offset is the offset in the SDR.
For the case of the FAST SEND the OFFSET must be set
to OxfTftfttf, because the data is stored inside the VCI.

In the case of a RDMA operation this value is always the
local offset (e.g. PUT the origin process that started the
operation gets the src-offset while the remote process get
the target-offset).

SIZE 64/16 | The size of the transferred data in 64 bit words.

WIN-ID 16 The window is set to the target WINDOW-ID of the oper-
ation. If the operation does not have a target WINDOW-
ID then the WIN-ID must be set to Oxfftf.

RDR ReadPtr 32 The current read-pointer of the RDR.

RDR WritePtr 32 The current write-pointer of the RDR.

CIQ ReadPtr 16 The current read-pointer of the CIQ

VCI index 16 The index of the corresponding VCI inside the CIQ. If the
source for a notification has not a corresponding VCI the
value is Oxftftt.

PRQ index 24 The index of the posted

Table 3-9: Notification Members

The notification descriptors does not contain a write pointer for the NQ. The software detects
new entries by a special signature directly in the NQ instead of checking for a changed write
pointer.

32

Extoll Hostport Interface

Remote Access Notification

Completion Notification

0 Counterpart-ID Win-ID 0 Counterpart-ID SIZE

1 SIZE 1 FAST_DATA

2 OFFSET 2 FAST_DATA

3 3 FAST_DATA

4 ‘cm ReadPtr SDR ReadPtr 4 ClQ ReadPtr SDR ReadPtr

5 RDR WritePtr 5 VCI index RDR WritePtr

6 TAG 6 TAG

7 CMD/ERR| API-TAG 7|CMD/ERR API-TAG
| | | | | | | | : |
63 31 0 63 31 0

Fast Receive Notification
Counterpart-ID SIZE

DMA/Posted Receive Notification

0 0 Counterpart-ID |
| FAST_DATA 1 | SIZE
b FAST_DATA D)
3 FAST_DATA 3
4 FAST_DATA 4 [c1a ReadPtr SDR ReadPtr
5 FAST_DATA s| | PRQindex RDR ReadPtr
6 TAG 6 TAG
7|CMD/ERR API-TAG 7 CMD/ERR| API-TAG
e e M o
63 31 0 63 31 0
Status Notification

0 NQ ReadPtr

1 NQ WritePtr

2 SDR WritePtr

3 RDR ReadPtr

4 [c1Q ReadPir SDR ReadPtr

5 RDR WritePtr

6

7[CMD/ERR

| = | | |
63 31 0

Figure 3-10 : Notification Formats

To increase the performance a snapshot of the current pointer set is stored in each notification.
With this approach the user gets information about the current pointer state of the VP without
extra costs for accessing the Extoll. The notifications are stored in the notification queue in the
main memory. The whole queue is initialized with invalid notifications. An invalid notification
is identified by a special error code. The hardware will overwrite an invalid notification with a
valid notification. The software will detect the new valid notification and consume it from the
NQ. If the CMD would be stored at the beginning of the notification descriptor there could be
a race condition. The software could detect a notification descriptor with a valid error code that

33

Extoll Hostport Interface

is only partially written and consume the notification descriptor. To avoid this race condition
the cmd/error is stored at the end of the notification descriptor. In this case the software will de-

tect a valid notification descriptor only after the whole descriptor has already been written.

3.5.1 Notification Error Codes

Table 3-10 gives an overview of all error codes that have been identified.

Name

Description

ERR_NOERR

Obviously no error occurred

ERR CMD INV

Invalid command

ERR_OVPID INV

Invalid origin VPID

ERR_ROUTE_INV

Route exceeding upper bound / routing length=0

ERR_OWINID INV

Invalid origin WINID (disabled or exceeding upper bound)

ERR_OWINID

Segfault on origin WINID

ERR_OOFFSET

Misaligned origin offset

ERR_OLENGTH

Misaligned origin length

ERR_TVPID INV

Invalid target VPID

ERR_TWINID INV

Invalid target WINID (disabled or exceeding upper bound)

ERR_TWINID CAPA

Invalid target WINID capability

ERR_TWINID

Segfault on target WINID

ERR TOFFSET

Misaligned target offset

ERR TLENGTH

Misaligned target length

ERR_ROUTE BROKEN

Destination tag does not match, link down, ...

Table 3-10: Notification Error Codes

3.6 Event System

event ‘system

global per VPID

event creation control

event delivery

hardware-
queue

per VCI register memory-

queue

Figure 3-11 : Decision tree for the Event System

The Extoll event system is an abstract communication system between the Extoll NIC and the
driver. The event system is a uni-directional channel where information is transferred from the
Extoll NIC to the Extoll device driver. The design of the event system is based on the following
conditions:

» The event system should be as abstract as possible. This means that the general design of
the event system should not depend on any hardware specific feature.

34

Extoll Hostport Interface

» The event system should deliver the events fast and efficiently to the device driver.

* The device driver should be able to handle the event in an efficient way.

Definition 3-2 : An event is a fixed size information unit that is transferred from
the Extoll NIC to the device driver. The generation of events
does not include the signalling.

Definition 3-3 : The event signalling is a mechanism to inform the device driver
about the existence of new events. The event signalling mecha-
nism is hardware specific. In general it is not necessary to signal
each generated event to the device driver as long as there does
not appear a race-condition a or dead-lock. The most used
approach for event signalling is the hardware based interrupt.

Definition 3-4 : The event signal handler is the software mechanism that is acti-
vated when an event signal is emitted. This mechanism is respon-
sible for processing the events.

3.6.1 Event creation control

As mentioned above it is not necessary to signal the generation of every event, but in the worst
case every event needs to be signalled. In this worst case the flood of event signals could have
a negative impact to the whole system. Therefore it is necessary to reduce the amount of gener-
ated event signals to the minimum possible amount.

It is not possible to reduce the amount of events that are necessary for correct execution of the
hardware and driver (e.g. address translations, management information, errors, ...). But it is
possible to save events that are related to user communication. These kinds of events are neces-
sary for the device driver to wake up a sleeping process. As shown in Figure 3-11 there exists 3
different ways to control the event generation for the user communication events. These ap-
proaches will be discussed in the following sub-sections.

3.6.1.1 Global Event Creation Controlling

In this case the generation of communication events is controlled globally for all VPs. This
means that events for communication are generated either for all VPs or for none.
Advantages

» This approach needs only one global bit in an Extoll control register.

Disadvantages

» This approach is not per process. This means that if there is at least one process that needs
the generation of communication events then communication events must be created for all
processes. In this case unnecessary events would be generated.

3.6.1.2 Event Creation Control per Virtual Port

In this case the generation of communication events is controlled per VP. Each user can select
for his VP if communication events should be generated or not.

35

Extoll Hostport Interface

Advantages

 In this mode each user has the full control over his own VPs. This allows a finer granularity
than the global event control approach.

* The amount of generated events can be reduced for the case that a process does not need
any kind of events.

Disadvantages

» This approach is still globally for the whole VP. This leads to the fact that still unnecessary
events will be created.

* The change of the event control behaviour during runtime is an expensive operation.
Because the VPDs are only accessible for the device driver the process would need to jump
into the device driver. After the modification of the VPD in the main memory the cached
version in the Extoll NIC needs to be synchronised with the main memory.

3.6.1.3 Event creation control per VCI

In this approach the user can select for each VCI if the corresponding completion should gen-
erate an event or not.

Advantages

* Very fine granularity of event generation.

» The VPD does not need to be modified.

Disadvantages

» This approach has the disadvantage that not all operations that could cause the creation of
an event also have a corresponding VCI (e.g. receives)

* This system needs space for one additional bit in each VCI.
3.6.1.4 Conclusion : Event creation control

The best event creation control mechanism is offered by the event creation control per VCI ap-
proach. As mentioned has this approach the drawback that not all kind of operations (e.g. re-
ceives) have a corresponding VCI. The other approaches have the disadvantage that their
control capabilities for the event creation are to coarse.

The solution is the combination of the event creation control per VP approach and the event cre-
ation control per VCI approach. For all operations that have a representation via a VCI the event
creation is controlled via a bit in the VCI. For all other classes of operations there exists a cor-
responding bit in the VPD. For performance reasons and to avoid race conditions the decision
of the global bit in the VPD is fixed for the whole time a VP is opened.

3.6.2 Event delivery
After the hardware created a new event the device driver needs to be informed about this new
event. After the device driver has been activated the device driver needs to get access to the

event. As mentioned the event signalling between the hardware and the software layer is an ex-
pensive operation. Therefore the usage of this mechanism should be minimised as much as pos-

36

Extoll Hostport Interface

sible. The realisation of the device driver access to the generated events must be as fast and
efficient as possible. Figure 3-11 shows possible delivery mechanisms which are discussed in
the following sub-sections.

3.6.2.1 Lazy Event Signalling

To avoid the expensive event signalling the lazy event signalling principle could be introduced.
Like the normal event signalling system the lazy event signalling only emits an event signal
when the event system is enabled. The special feature of the lazy event signalling system is that
everytime when an event signal has been emitted the event signalling system will be automati-
cally disabled. Therefore only the first event that is created will be signalled. All events that will
be created later will not emit an event signal. The first emitted event signal allows the device
driver to be activated. After the device driver has been activated the first event will be proc-
essed. After the first event has been processed the device driver tries to process more events un-
til no further events are available. When there are no further events to process the device driver
needs to enable the event signalling system again to be informed for new events. After the de-
vice driver has enabled the event signalling system again, a further check for new events needs
to be done. This additional check is necessary to avoid a race condition.

Advantages

* Reduce the emitted event signals to the minimum necessary amount by processing several
events with only one emitted event signal.

Disadvantages
* Need an extra access to enable the event signalling system again.

» In the worst case this approach causes more overhead than the approach where every event
is signalled.

3.6.2.2 Global Event Register

A simple approach is to create a global event register. The Extoll NIC stores the events in this
event-register and emits an event signal. The event signalling system will then be disabled. The
event signal handler will read the event from the event register and process it. This reading of
the last data word will release the event register for the next event. Then the event signal handler
tries to get more events until an invalid event is returned. When an invalid event has been re-
ceived, the device driver enables the event signalling system again. To avoid race conditions the
event signal handler has to check for a new event after enabling the event signalling system.

Advantages

* Simple realisations.

Disadvantages

* The single event register is a bottleneck in the system. Only one event at a time can be
exchanged.

» The event-register solution requires 3 Extoll accesses in the worst case to transfer a single
event: read the first event, read the invalid event and enable the event signalling system.

* Read operations are more expensive that write operations.

37

Extoll Hostport Interface

3.6.2.3 Hardware Event Queue

As shown the approach with the event register in hardware is very limited. In general it is pos-
sible that in a very short period of time several events need to be created. In this scenario the
single register approach is not sufficient. The next step is to use several event registers instead
of using only one event register. Because an event signal has in general no ability to transfer
additional information, the event registers need to be arranged and managed as a queue. The cor-
responding management information is held in registers inside the hardware (see Figure 3-12).

Newly generated event are inserted into the event queue (see Figure 3-12 (1)). This insertion
causes the triggering of the events signal system. If the event signalling system is active a cor-
responding event signal is send to the event signal handler and the event signalling system is
automatically disabled (see Figure 3-12 (1)). The event signal activates the event signal handler
in the device driver. Because the event signal handler manages a private copy of the event queue
management information, the event can be directly fetched (see Figure 3-12 (3)). The reading
of an event from the event queue automatically releases the corresponding entry in the queue by
updating the read pointer. While the event handler is receiving the event signal and processing
the event, more events could be inserted into the event queue (see Figure 3-12 (2)). The insertion
of these events will also trigger the event signalling system, but no event signal will be emitted
because the event signalling system has been disabled before (see Figure 3-12 (2)). After the
first event is processed the event signal handler will try to read the next event from the queue.
The event signal handler will continue to read new events until an invalid event is returned. In
this case the event signal handler will enable the event signalling system again and do an extra
check for events to avoid a race condition.

In the worst case where always only one event is available the mechanism would need 2 read
operations, the first to read the event and a second to read the invalid event. At the end the event
signal handler needs to perform a write operation to enable the event signalling system again.
This means that in the worst case it is necessary to access the I/O bus 3 time. But the mechanism
of the queue approach can be further optimized.

The first optimization could be to return to each event additional information of how many fur-
ther events are stored in the event queue in the moment of the read operation. This would allow
the event signal handler to read outstanding events with a burst. In the worst case whenever only
one event is available, this would lead to one read operation for the event. Because the addition-
al information of the event tells the event signal handler that there are no further events and the
event signalling system could be enabled directly. This mechanism improves the worst case sce-
nario to 1 read operation for the event and one write operation to enable the event signalling
system again. The drawback of this mechanism is that there is a race condition. In the time be-
tween the reading of the event and the activation of the event signalling system there could ap-
pear new events in the queue. To overcome this drawback the event signalling system could be
modified to emit event signals also on an activation when there is a valid event in the event
queue. The preferred approach would be to use a read operation instead of a write operation to
enable the event signalling system. In the return value of the read operation an error could re-
turned to inform the event signal handler about additional existing events in the event queue.

Advantages

* More capacity than a single event register.

* The number of extoll access in the worst case is lower than for the single event register.
Disadvantages

* The capacity of the hardware queue is fixed and limited.

38

Extoll Hostport Interface

Requires more hardware resources.

(1)

event-signal-handler I

event-queue trigger .

- signal event-signal
write-offset 8 unhit
read-offset 0

signalling

)

event-signal

event-signal-handler

event-queue trigger)

- signal event-signal
write-offset 24 unhit
read-offset 0

signalling | 0]

@)

read event

event-queue .

- event-signal
write-offset 24 unhit
read-offset 8

|signalling | 0]

(4)

enable the signaling

event-signal-handler

read event

event-queue

- event-signal
write-offset 24 unit
read-offset

signalling | 1]

Figure 3-12 : Hardware Event Queue

39

Extoll Hostport Interface

3.6.2.4 Memory Event Queue

The main drawback of the hardware based event queue is the fixed and limited size of the queue.
This is a general problem of all hardware based storage mechanisms. A solution for this problem
is to move the event queue from the hardware to the main memory of the host system. In the
memory, the size can be bigger than in hardware and can be adapted to different systems. The
memory of the event queue must be physically continuous and the queue must be managed as a
ring buffer with wrap-around semantic. Therefore it is possible to describe the whole event
queue in hardware by the base address, the read and write offset (see Figure 3-13). The whole
event queue must be initialized with the signature of invalid events.

The principle of the memory based event queue is similar to the hardware based event queue.
New events are stored at the current write offset position in the queue. In the case of the memory
based event queue, the events are directly written into the main memory (see Figure 3-13 (1)).
After every event that has been written to the event queue the event signalling system 1is trig-
gered (see Figure 3-13 (2)). If the event signalling system is enabled an event signal is emitted
to the event signal handler and the event signal system will be disabled otherwise no signal will
be emitted (see Figure 3-13 (2)). The event signal handler will be activated by the event signal
and process the next event in the event queue. To avoid unnecessary accesses of the Extoll NIC
the event signal handler uses a local copy of the management information. After an event has
been consumed the event signal handler overwrites the corresponding entry in the event queue
with an invalid event signature. After the event has been processed, the event signal handler up-
dates the local management information about the event queue. Like in case of the hardware
event queue the event signal handler checks if there are more valid events in the event queue.
When the event signal handler detects an event with an invalid signature then there does not exit
any further events. Because the event queue is located in the main memory the cost to check for
further events are cheaper compared with the cost of a hardware access. When there are no fur-
ther events in the memory queue the event signal handler has to update the hardware read offset
in the Extoll to free the processed events from the hardware view of the event queue (see Figure
3-13 (6)). Then the event signal handler also needs to enable the event signalling system again.
To avoid an extra access the activation of the event signalling system is coupled with the read
offset update.

In the worst case where always only one event is available this system requires two write oper-
ations. The first write from the Extoll NIC to the main memory writes the event into the main
memory. The second write from the event signal handler updates the event queue read offset in
the Extoll NIC.

Advantages

» This approach requires very few hardware resources.

» Allows to realise a variable sized event queue.

» Buffered events in the hardware can be written with a burst.
Disadvantages

» Because the write back of the read offset is coupled with the activation of the event signal-
ling system it is not possible to use a lazy pointer approach.

40

Extoll Hostport Interface

(1)

event-signal-handler

()

event-signal-handler

Event Queue
event-

signalling-
system

write-offset 8

read-offset 0

| write-offset | 0 l ‘ read-offset ‘ 0 ‘ | write-offset | 8 | | read-offset | 0 ‘
signal
write evept — — — — — — ~———=—~ | -~ ———— — — — — — —/ - - - -

Event Queue

event-
write-offset 8 signalling-

system
read-offset 0

signalling | 0 |

@)

event-signal-handler

write-offset| 8 l ‘read-offset‘ 8 ‘

(4)

event-signal-handler

write-offset| 16 | | read-offset | 16 ‘

read event + invalidate

write events

Event Queue

event-
write-offset 24 trigger Slg;:t”elrr:]g-
read-offset 0

signalling | 0 |

read event + invalidate

Event Queue

event-
write-offset | 24 signalling-

system
read-offset 0

signalling | 0 |

(®)

event-signal-handler

write-offset| 24 l ‘ read-offset ‘ 24 ‘

(6)

event-signal-handler

write-offset| 24 | | read-offset | 24 ‘

read event + invalidate

Event Queue

event-
write-offset | 24 signalling-

system
read-offset 0

signalling | 0 |

read (invalid)event

Event Queue
event-

signalling-

write-offset 24

system

signals | | signalling

read-offset 24 enable

Figure 3-13 : Memory Event Queue

41

Extoll Hostport Interface

3.6.2.5 Conclusion: Event delivery

The event register approach is very limited and would be a bottleneck in the final design. There-
fore the event queue based approach is preferred. As shown before the hardware and the mem-
ory event queue have almost similar performance shapes. Because the memory event approach
is more flexible and has no hard limits like the hardware event queue, this solution is the pre-
ferred approach for the final design of Extoll.

3.6.3 Event Format

?3 i j
| I |

0 Payload
1 Event Type ‘ Event Description

Figure 3-14 : Event layout

The event layout is shown in Figure 3-14. The event type field in the event is used to identify
the kind of event. The event description field is event specific and is used to provide more de-
tails about an event. The payload is used for data that needs to be transferred by an event. The
event type of 0x0000 specifies an invalid event. To avoid a race condition, as in the case of the
notifications, it is important that the event type field is located on the highest possible address
of the event descriptor.

3.7 Order of communication

3.7.1 General observations

The following list gives an overview of general observations in respect to the order of commu-
nication:

» The operations that belong to different virtual connections are independent and therefore
can be executed in parallel.

* All the send operations that belong to the same virtual connection should be received in-
order. If the sends are not received in-order sequence-numbers have to be introduced to
restore the correct order of the messages.

* Because the “GET” operation does not modify data it is possible to exchange the order
between “GET” operations, even for operations on the same virtual connection.

» If the order of operations is important a specific mechanism needs to be introduced to guar-
anty in-order of the operations.

* Accumulate operations need to be atomic on the destination for at least the minimum data
word.

42

Extoll Hostport Interface

3.7.2 Order of Communication in MPI

In MPI messages do not overtake each other. If a process sends two messages to the same des-
tination that match the same receive operation, then the receive operation cannot receive the sec-
ond message if the first message is still pending. If a user posts 2 receive operations with the
same matching information and a matching message arrives than the second receive operation
cannot be satisfied while the first is still pending.

MPI does not define a specific order between RDMA operations or specific order between
RDMA operations and send operations. This allows the implementation to exploit the maxi-
mum possible performance by executing these operations in parallel. In general there are cases
where the order of the operations is important. For these cases MPI defines several synchroni-
sation mechanisms.

The simplest synchronisation mechanism is the MPI Win_fence (IMPI2], [UMPI2]) function.
The MPI Win_fence function is a collective operation across all processes that share the same
window. The collective calls of the MPI Win_fence function divides the time in several time
slices. These time slices are called access epochs. In general there exist two different kinds of
access epochs. In the first kind of access epochs only RDMA operations are allowed to access
the memory window while in the second kind of access epochs only local accesses to a memory
window are allowed. This is necessary to guarantee the correct semantic behaviour ([MPI2]). If
a RDMA capable device would access the main memory at the same time as the local CPU,
there could be some coherence problems of the data. Between all RDMA operations that are ex-
ecuted in a certain access epoch no specific order is defined. For all access epochs the following
rules apply:

» All RDMA operations that have been issued in certain access epoch must apply on the tar-
get window in the same epoch. They must not apply to the target window in any other
access epoch.

» The MPI Win_fence call that finishes a certain access epoch is responsible that all locally
issued RDMA operations have been completed.

43

Extoll Hostport Interface

Process 0
4| Fence
Epoch 1

Fence

-
Epoch 2 ‘
4| Fence
Epoch 3

PUT/GET

Process 1

PUT/GET

Figure 3-15 : MPI Win_fence Operation

As mentioned the MPI Win_fence call is the simplest mechanism to synchronise the access to
memory windows. The MPI Win_fence function is collective across all processes that share the
same memory window. In many cases it is enough to synchronise with a few processes (e.g.
nearest neighbours). For these cases MPI provides the MPI Win post, MPI Win_start,
MPI Win _complete and MPI Win wait functions. These functions only synchronise between
a special group of processes that share the same window.

Process 0

|

MPI_Win_start

access
Epoch 1

—— MPI_Win_complete | - -

PUT/GET

Process 1

| MPI_Win_post

expose
Epoch 1
\>

MPI_Win_wait

Figure 3-16 : Synchronisation between a small group of processes

The MPI Win_start and MPI Win complete are used to specify the start and the end of an ac-
cess epoch. The MPI Win_post and MPI Win_wait are used to specify the start and the end of
an expose epoch. RDMA operations are always issued by the processes that opened an access

44

Extoll Hostport Interface

epoch. The issued operations are only allowed to access the window of processes that are in the
corresponding expose epoch. For all operations that are issued in the access epoch no specific
order has been defined. The MPI Win_complete functions must guarantee that all operations
that have been issued in the access epoch have been competed. The MPI Win_wait function
must guarantee that all RDMA operations that have been issued by all corresponding access ep-
ochs have been locally completed (see Figure 3-16). The MPI Win fence function can be seen
as a special case of this synchronisation scheme (see Figure 3-17).

MPI_Win_complete close last epoch
MPI_Win_wait
MPI_Win_fence = —
MPI_Win_post start next epoch
MPI_Win_start

Figure 3-17 : MPI Win fence emulation

The two previously discussed synchronisation mechanisms have the drawback that the target
process always needs to participate actively in the synchronisation. There are cases where a
process does not need the involvement of the target process. For these cases MPI specifies the
MPI Win_lock and MPI Win_unlock functions. With the MPI Win_lock function a process
can lock the memory window of a process. The grant for the lock does not require any active
involvement of the target process. A memory window can be locked either exclusive or shared.
After a process has been successfully locked a window the process is allowed to issue RDMA
operations on the locked window. The return of the MPI Win_unlock function must guarantee
that the issued operations have been completed on the origin and the target side (see Figure 3-

18).

Process 0 Process 1 Process 2
| MPI_Win_lock
locked
PUT/GET
L e
MPI_Win_unlock unlocked MPI_Win_lock
— |
C locked

PUT/GET
PUT/GET

unlocked MPI_Win_unlock

Figure 3-18 : MPI Window Locking

45

Extoll Hostport Interface

3.7.3 Order of Communication in DAPL

The DAPL standard ([DAT]) defines the following ordering rules:

» The data payload for the send operation matching a receive operation must be delivered into
the receiver-indicated memory buffer without errors prior to the receive completion.

» Receive operations on a connection must be completed in the order of posting of their corre-
sponding sends.

+ Each RDMA write operation posted on a connection prior to a send operation must have its
data payload delivered to the target memory region prior to the completion of the receive
operation matching that send.

3.7.4 Order Classifications

order-of-execution

e T

complete in-order between in-order between out-of-order
in-order virtual connections virtual connections
and operation classes

Figure 3-19 : Orders of communications

In Figure 3-19 an overview of different kind of communication orders are presented. The level
of parallism increase from the left to right side.

3.7.4.1 Complete in-order

Complete in-order means that all operations are executed sequentially in the same order as they
have been started by the user. In the case that the layer below the MPI respectively DAPL would
support a complete in-order, no extra efforts would be necessary to guarantee the required or-
dering.

Advantages

* No further software corrections are necessary. This may lead to a simpler software stack.

Disadvantages

* No parallism is exploited which could lead to a performance penalty.
3.7.4.2 Complete in-order on a Virtual Connection

Complete in-order on a virtual connection means that all operations that will transfer data via a
virtual connection are executed in-order. This implicitly means that operations that perform
communication on two different virtual connections may be executed out-of-order.

In the case that the layer below MPI respectively DAPL would support a complete in-order on
a virtual connection no extra efforts would be necessary to guarantee the required ordering.

Advantages

» Better performance can be achieved because of the exploitation of some parallism.

46

Extoll Hostport Interface

* No further software correction for the correct semantic is necessary.

Disadvantages
* Requires additional hardware to control/manage the execution of the VCI.

» For the communication between two processes there is no exploitation of parallism.
3.7.4.3 In-order on Virtual Connections and the same Communication Class

In this mode, operations that operate on the same virtual connection and belong to the same class
of operations are executed in order. The different operation classes are send/receive and RDMA
operations.

In the case that the layer below MPI would support in-order on virtual connections and the same
communication class no further efforts would be necessary to guarantee the correct semantic
that is defined by MPI.

In the case of DAPL there would be a problem. The DAPL standard requires that the receive
that matches to a send operation completes after all previously posted RDMA write operations
have been completed. In the case of an in-order on virtual connections and the same communi-
cation class there is no relation between the RDMA write operation and the send/receive oper-
ations. Therefore the DAPL standard requirements cannot be satisfied without any extra efforts.

Issued Writes #0 Completed Writes #0
Issued Writes #1 ‘ RDMA Write (1)
Issued Writes #2 ‘ RDMA Write (2)
Issued Writes #2 [send (2
Receive Completed Writes #0
receive MATCH
completed Completed Writes #0
completed Completed Writes #2
receive COMPLETE

Figure 3-20 : Fix for RDMA writes in DAPL

To synchronise between the send/receive and the RDMA write operations each virtual connec-
tion manages sequence numbers for RDMA write operations. Each endpoint has 2 sequence
numbers for RDMA write operation, one for the locally issued and one for locally completed
RDMA operations. Both sequence numbers a sequentially incremented when either a RDMA
write operation is issued or completed. All RDMA write operations and send operations are
tagged with the current RDMA write sequence number. If the send operation should match to a

47

Extoll Hostport Interface

receive before the previously issued RDMA write operations has been completed, the comple-
tion of the receive can be delayed until all RDMA write operations have been completed (see
Figure 3-20).

Advantages
» Higher exploitation of parallism.

» Exploitation of parallism on a virtual connection.

Disadvantages

* Increased hardware effort to guarantee the in-order of operations of the same operation
class.

3.7.4.4 Out-of-order

Out-of-order means that there is no guarantee for any order between any operations. In the case
that the layer below MPI or DAPL would not support any kind of ordering extra efforts are nec-
essary to guarantee correct semantic behaviour for both cases.

In both cases it is necessary that the sends on a virtual connection match in order to the posted
receives. This can be guaranteed by introducing sequence numbers for the send operations.
With this sequence numbers the receiver would be able to reorder the arrived sends if necessary.
In the case of DAPL also the synchronisation between the RDMA write and send operations
needs to be added. This topic has already been discussed in “In-order on Virtual Connections
and the same Communication Class” on page 47.

Advantages
* Simple hardware.

* Maximum use of parallism.

Disadvantages

» Software must restore the order of the operations after they have been disturbed or use only
one operation per virtual connection at once.

3.7.5 Conclusion : Order of Communication

As shown in the previous sections is it only necessary to have software corrections for the cases
of “In-order on Virtual Connections and the same Communication Class” and “Out-of-order”.
In both cases the software overhead consists in sequence numbers that must be exchanged, plus
in worst case it can be necessary to store some information in a temporary buffer to avoid in-
correct behaviour. Because the used protocols tend to exchange only small messages via send/
receive and the big chunks of data via RDMA this worst case is very unlikely. Therefore it could
be an alternative to use an out-of-order system with software correction if the resulting system
would be faster and/or much simpler to realise.

48

Extoll Hostport Interface

3.8 Send and Receive System

send/receive
| \
ring-buffers posted send/receives emulation per RDMA
{ |
posted receive address types matching
retrieval
/l\ phys. addresses virt. addresses
descriptor descriptor software without matching in matching in
queue table supply matching hardware software

Figure 3-21 : Send/Receive Decision Tree

For the send/receive system several different approaches exist (see Figure 3-21). All approaches
will be discussed and analysed in the following sub-sections.

3.8.1 Send/Receive with Ring Buffers

Source Buffer Destination Buffer

Send Buffer Recv. Buffer

read write

Figure 3-22 : Send/Receive with Ring Buffers

The send/receive system with ring-buffers is the same approach that has been used in the Atoll
design. In this approach every VP has a send- and a receive-buffer. Both buffers consist of phys-
ically continuous memory and are managed as a ring-buffer with wrap-around semantic. To
send a message the data needs to be copied into the send buffer. Then a corresponding VCI, that
describes the location of the data and the destination, must be inserted into the CIQ and trig-
gered. The data will be fetched from the send buffer when the corresponding VCI will be proc-
essed inside the Extoll. After the message has been transferred to the destination the whole
message will be stored in the corresponding receive buffer of the destination VP (see Figure 3-
22). After the whole message has been stored in the receiver buffer a receive notification is in-
serted into the NQ of the destination VP.

49

Extoll Hostport Interface

Advantages
* Because the memory is physically continuous there will be no trashing of the Extoll TLB.
+ It is possible to manage the send buffer completely in software.

» It is possible to manage the send buffer in any way and not only in a strict ring-buffer
semantic.

» Perfect resource scalabillity, because an VP always needs only a buffer pair to communicate
with any number of other VPs.

Disadvantages

* Requires 2 extra copies of each data (1. copy data from source into send buffer, 2. copy data
from receive buffer to destination).

» Because there exists only one send/receive buffer for all communication partners, these
buffers could become a bottleneck.

3.8.2 Posted Send/Receive Operations

Source Buffer Destination Buffer

read

specify
Posted
Receive
Retrieval

clQ

Figure 3-23 : Posted Send/Receive

In the case of posted sends, the send VCI directly specifies the data buffer in the process space
(see Figure 3-23) and not an offset in the send buffer. When the send operation will be processed
the Extoll NIC will read the data directly from the source buffer and sends them to the destina-
tion. There is no further need for a send buffer because no data needs to be copied into the send
buffer to send a message.

On the receiver side the received message will cause the Extoll to request the corresponding re-
ceive descriptor. This descriptor specifies the destination buffer where the message should be
received. After the message has been transferred into the destination buffer a notification in the
corresponding NQ will be created.

Advantages

+ Allows zero-copy data transfers.
* Works with virtual addresses.
Disadvantages

* Contributes to TLB cache pollution.

50

Extoll Hostport Interface

* Because of TLB misses the overall throughput and the latency suffers.
3.8.2.1 Posted Receive Descriptors stored in Queue

The posted receives can be stored in a physically continuous buffer in the main memory. The
buffer will be managed like a ring buffer with wrap around semantic. The posted receive de-
scriptors will be appended at the end of the queue by the user while Extoll will fetch received
descriptors from the beginning. If there shouldn’t be a receive descriptor available Extoll could
wait until a new one is posted or create an event for the device driver.

Advantages
» Simple implementation in hardware (reuse of the RDR as posted receive queue).

» If there are receive descriptors available (should be the default case) the receive operation
can be performed fast.

Disadvantages

* Do not support matching of messages an posted receives.
3.8.2.2 Posted Receives Descriptors stored in a Table

As in the event descriptor queue approach, the receive descriptors are stored in a physical mem-
ory buffer in the main memory. But instead of managing the buffer like a queue the buffer is
managed as a table. Extoll can find a receive descriptor either by searching through the whole
table or by a hash mechanism.

Advantages

* Supports matching.

Disadvantages

* Fixed matching mechanism in hardware.

* Searching of the device in main memory is expensive.
3.8.2.3 Posted Receives provided by Software

Instead of performing the determination of the right posted receive descriptors in hardware the
determination will be done in software. Therefore if the Extoll requires a receive descriptor a
corresponding event for the device driver will be created. The device driver will perform all nec-
essary actions to determine the corresponding receive descriptor and provide it to Extoll.

Advantages

» The software solution is not fixed therefore more flexible.

* A software search will be much faster than the equivalent search done by the Extoll NIC.
Disadvantages

» High latency for every receive operation.
3.8.2.4 Posted Send/Receive without Matching

In the case that explicit matching is performed the messages that arrive will be matched in any
order that depends on the receive descriptor delivery mechanism. In the case of a receive de-
scriptor queue the receive descriptors will be matched in the order as they have been posted.

51

Extoll Hostport Interface

Advantages
* Simple realisation.

* No overhead for matching.

Disadvantages

* Because there is no matching it is not possible to receive the messages directly into the cor-
responding receive buffers.

3.8.2.5 Posted Send/Receive with Matching in Hardware

If the Extoll would support matching of arrived messages with posted receives in hardware, the
Extoll NIC would be responsible for determination of the right receive descriptor. If the corre-
sponding receive descriptor cannot be determined the Extoll NIC would generate an event to
inform the device driver. The device drive would receive the message in a temporary buffer.

Advantages

* The support of matching would allow a real zero-copy implementation.
Disadvantages

* Searching in hardware is expensive.

» The management/search of the receive descriptors in hardware is fixed.
3.8.2.6 Posted Send/Receive with Matching in Software

The search of receive descriptors that are located in the main memory can be done cheaper in
software. Therefore when a message arrives, the Extoll NIC would generate an event to query
the device driver for the corresponding receive operation.

Advantages

* The matching in software is very flexible and can be exchanged.
* The matching in software is faster than in hardware.
Disadvantages

» For every incoming message an event (and possibly an event signal) must be created.
3.8.2.7 Posted Send/Receive with Virtual Addresses

The use of virtual addresses in the send/receive descriptors has the following advantages/disad-
vantages:

Advantages

* Available in user- and kernel-space.

Disadvantages

» The virtual address needs to be translated into a physical address. This would lead to a big-
ger cache pollution.

* Requires that send- and receive-buffers are inside a memory window because of the TLB
design([FRANGERO04],[REMBORO06]).

52

Extoll Hostport Interface

3.8.2.8 Posted Send/Receive with physical addresses

The use of physical addresses in the send/receive descriptors has the following advantages/dis-
advantages:

Advantages

* Fast because no address translation is required.

Disadvantages
* Physical addresses are available in kernel space.

» If an ordinary user-level process would be able to specify any physical address this would
endanger the security of the system.

3.8.3 Send/Receive Emulation per RDMA

Instead of realising the send/receive mechanism (Figure 3-22) explicit in hardware it is possible
to emulate this system with RDMA operations. In the case of the send/receive emulation via
RDMA operations a send-/receive-buffer needs to be allocated and a corresponding memory
window needs to be created for each connection.

Advantages

* Does not require explicit hardware support for a send/receive mechanism.

Disadvantages
* The RDMA operations contribute to the TLB cache pollution.

» This approach does not scale very well because the send-/receive-buffers are allocated per
connection.

3.8.4 Conclusion: Send/Receive Systems

As shown all presented solutions have their advantages and drawbacks. Because the TLB cache
is a very critical resource in the Extoll design the send/receive mechanism via ring buffers will
be supported because this mechanism will not affect the TLB cache.

To avoid the unnecessary copies of the data the Extoll will also support the mechanism of posted
send/receive. For performance reasons the Extoll will use the posted receive descriptor queue
approach. Because of the posted receive descriptor queue approach and for performance reasons
the Extoll will support only the simple matching approach where the incoming messages are
matched to the next available posted receive descriptor in the receive descriptor queue. In the
case of Extoll there is no special queue for posted sends. The posted sends are represented as a
special VCI. The posted receive descriptors are stored in the posted receive descriptor queue.
To avoid additional entries in the VPD the ring buffer of the receive queue will be used as posted
receive queue. Therefore it is not possible to use both communication mechanisms simultane-
ously with the same VP. Because of the design of the TLB cache all the send/receive buffers
that are posted need to be covered by a memory window. To avoid the creation of a memory
window for every piece of data a global memory window that covers the whole accessible ad-
dress space of the process could be created. Because all data of the process will be inside this
global window the user will not need to create an extra window for all posted buffers. The em-
ulation of the send/receive system is automatically supported by the Extoll.

53

Extoll Hostport Interface

3.8.4.1 Posted Receive Descriptor Format

0 Address
1] winip ||| Length I
|

| | | | |
| ' I ' |
63 31 0

VA/PA

Figure 3-24 : Posted Receive Descriptor Format

The posted receive descriptor is shown in Figure 3-24. In Table 3-11 all members of the receive
descriptor are described.

Name Size Description
Address 64 This field contains the virtual/physical base address of the
buffer.
Length 23 This field describes the length of the buffer in bytes.
Window ID 16 The window that enclose the send/receive buffer. In the

case that the posted receives work with physical addresses
the window ID must be set to Oxfftf.

VA/PA 1 This bits indicate if the address should be interpreted as
physical address (bit set) or as virtual address (bit not set).
The use of physical addresses is only permitted when the
corresponding bit in the VPD is set (see See “Virtual Port
Descriptor” on page 26).

Table 3-11: Posted receive descriptor members

a. Size in bits.

3.9 Extoll Caches

For performance reasons the Extoll uses several different kind of caches. The Extoll has the fol-
lowing 4 caches which will be described in this section:

* Routing Cache

* Window Descriptor Cache

» Context Cache

» Translation Lookaside Buffer

For more details about the Extoll cache system refer to the diploma thesis of Felix Rembor
(IREMBORO06]).

54

Extoll Hostport Interface

3.9.1 Cache Management

Cache Management

hardware managed software managed

Figure 3-25 : Cache Management

The cache management decides which entries in a cache will be replaced when a new entry
needs to be inserted into the cache. As shown in Figure 3-25 two possibilities to manage a cache
exists: either by software or by hardware (some cache types like a direct mapped cache are im-
plicit managed by the hardware and a software management does not make any sense). Each
approach has its advantages and disadvantages.

The advantage of a hardware management is the performance. Because of the very fast access
to the cache, the hardware management can use LRU information about the entries efficiently.
The disadvantage is that the hardware management is fixed.

A software management has the advantage that the implementation is variable and can be ex-
changed. In general the software has much more information about the processes and the host-
system and therefore it is possible to make more sophisticated optimizations. The biggest
disadvantage of a software management is the bigger latency for accessing the cache.

3.9.2 RC - Routing Cache

Routing Cache

Request Entry

Functional
Unit

Driver

3

i

Figure 3-26 : Routing Cache Use Case Diagram

The routing cache is responsible for caching the routing strings which are used to send data
through the network. While all the other Extoll caches are caching objects with a fixed size the
routing cache needs to cache routing strings with variable lengths. The whole routing informa-
tion is stored in a physically continuous memory block in the main memory. Each VCI contains
the length and the offset of the corresponding routing string inside the routing area. As shown
in Figure 3-26 the software needs the following functionality:

55

Extoll Hostport Interface

* Flush One. The flush one operation removes one specific routing string from the cache.
The entry will be specified by the tupel of length and offset. This function must be exclu-
sively accessible for the device driver.

* Flush All. The flush all operation resets the whole routing cache. This function must be
exclusively accessible for the device driver.

The routing strings are globally shared between all VPs. All operations must create a corre-
sponding event when the requested operation have been performed.

3.9.3 WDC - Window Descriptor Cache

i

Driver

%

User

Window Descriptor Cache

Request Entry —

Figure 3-27 : Window Descriptor Cache Use Case Diagram

Functional
Unit

i

The window descriptor cache is responsible for the caching of the window descriptors. The win-
dow descriptor is a fixed size object. All memory objects are sequentially stored in a physically
continuous buffer in the main memory. As shown in Figure 3-27 the software requires the fol-
lowing functionality:

* Flush One. The flush one operation invalidates one specific entry in the window descriptor
cache. The entry is specified by the VPID and the window descriptor Id. This functionality
must be accessible to the user and the device driver.

* Flush VPID. The flush VPID function invalidates all entries that belong to the specified
VPID. The function requires the VPID of the entries that should be invalidated. This func-
tionality must be exclusively accessible to the device driver.

* Flush All The flush all function invalidates all entries in the window descriptor cache. This
functionality must be exclusively accessible to the device driver.

3.9.4 CC - Context Cache

The context cache is responsible for the caching of VPDs. A VPD is a fixed size object. The
context cache must allow the hardware to modify some parts of the VPD (e.g. read/write point-
er). This leads to a synchronisation problem because some parts of the VP descriptor are man-
aged in software while some others are managed by hardware. This problem arises if the
software updates the VP descriptor in the memory while in the same time the Extoll modifies

56

Extoll Hostport Interface

the corresponding entry in the hardware. This problem can be solved by performing all modify
operations in the hardware. If the software needs to update an entry in the VPD (e.g. pointer up-
date) a corresponding VCI will be posted.

Context Cache

Update
User ‘
Request Entry

Functional
| Unit
. Release Entry

Invalidate
Write Back

Figure 3-28 : Context Cache Use Case Diagram

.
.
/ |

<

Driver

As shown in Figure 3-28 the software layer requires the following functionality:

* Flush One. This flush-one operation invalidates a specific entry in the cache. The entry is
specified by the VPID. The cache will generate an event when the corresponding entry in
the cache has been invalidated or if there was not a matching entry. This functionality must
be exclusively accessible to the device driver.

» Update. The update operation modifies a VPD. The update operation can be requested
either by a functional unit or by a user request via a VCI. The entry is specified by a VPID.
This functionality must be exclusively accessible to the device driver.

* Flush All. The flush all operation invalidates all entries in the context cache. This function-
ality must be exclusively accessible to the device driver.

3.9.5 TLB - Translation Lookaside Buffer

The translation lookaside buffer is responsible for caching address translations from virtual to
physical addresses. The TLB stores address translations for memory regions that are described
by the base address and a length and not single pages. The size of memory regions must be a
multiple of 4k with a power of 2 and must be aligned to 2**4k. This is necessary because Extoll
will run in different environments with different page sizes. Therefore it is not possible to build
the TLB for a fixed page size. The next advantage is that if the address translation of a virtual
area maps to physical continuous pages it is possible to represent this by only one entry in the
TLB. This will lead to a significant reduction of the cache entries. Because the address transla-
tion is specific for every process the corresponding VPID needs to be stored for each entry.

57

Extoll Hostport Interface

Additionally, the correct permission flags of the memory pages need to be stored in the corre-
sponding cache entries. If a virtual address range maps to physically continuous pages with dif-
ferent permission than it is not longer possible to use only one entry for the whole mapping. In
this case the mapping needs to be splitted into smaller mappings that have the same permissions.
These extra permissions are necessary because the permission flags of a memory windows are
not enough to guarantee the security of the system. Actually this would lead to a security whole
that would offer administration rights to every user that is able to communicate via the Extoll.

virt. address space

memory window (RW) mmap of “/etc/passwd” (RO)

D read only access

% read/write access

Figure 3-29 : Memory Window Exploit

Figure 3-29 shows one possible exploitation of a permission check that is only based on the per-
mission of the memory window. The process could memory map a file for which he has only
read permission (e.g. “/etc/passwd®). Than the process would create a memory window that
covers the whole memory mapping of the file with read/write permissions. Now the process
could modify the content of the memory mapped file by using put operations on the memory
window. Without the check of the page permissions the Extoll would overwrite the content of
the memory mapped file. Therefore it is necessary to check also for the current page permis-
sions.

Everytime a function unit requires an address translation a corresponding request is sent to the
TLB (Figure 3-30 (a)). If the TLB has a cache miss the software needs to be activated to provide
the corresponding address translation (Figure 3-30 (b)). There are situations when the software
layer cannot provide a valid address translation, e.g. if the address translation does not exits in
the address space of the process or the address belongs to a prohibited area (e.g. a user process
tries to access the kernel space). In this case the software layer will provide a special address
translation to the TLB (Figure 3-30 (c)). This address translation will be map all invalid address-
es to a unique magic value (paddr = -1, length = -1). This magic value means that there does not
exist a valid address translation. After the software transferred this special translation to the
TLB, the TLB interprets this special translation as an error and returns an error to the function
unit that requested the address translation (Figure 3-30 (d)).

58

Extoll Hostport Interface

(Ssoftware ’
A
— I
®)} | DMA-Engine I
TLB EPU
(a)

Figure 3-30 : Cache miss with direct error delivery

The functional unit will detect the error and will gracefully finish the operation with an error.
Gracefully means that if the error happens at the first address translation of the operation the
whole operation is completely discarded and a corresponding notification with an error is gen-
erated. If the operation has already been started the functional unit is responsible that the oper-
ation finishes gracefully and does not cause any problems on the local or the remote side.

A problem that is not directly related to the TLB is the problem of the posted receive that uses
physical addresses. Because the user directly provides the physical address in the receive de-
scriptor the TLB is bypassed. In this case the user can provide any physical address. If the spec-
ified address has no representation in the system this may lead to a problem. Therefore Extoll
needs a mechanism to handle this kind of invalid addresses. This problem could be solved by
introducing a lower- and an upper-memory-bound for physical addresses. Only operations that
transfer data between the lower- and the upper-memory-bound are legal. If an operation violates
one of the bounds, the functional unit is responsible to gracefully shutdown the operation. This
limitation would also offer the possibility to support a basic form of virtualisation. The Extoll
could be limited to operate only on the memory of a guest operating system (see Figure 3-31).

upper bound

lower bound

Extoll NIC

Guest OS

Super Visor

Figure 3-31 : Virtualisation Support

As shown in Figure 3-32 the software requires the following functionality:

59

Extoll Hostport Interface

* Flush One. The flush one function invalidates one specific cache entry. The entry is speci-
fied by the VPID, the window ID and the virtual address. After the entry has been invali-
dated by the cache a corresponding event will be generated. This functionality must be
exclusively accessible to the device driver.

* Flush Context. The flush context function invalidates all entries that belong to a certain
context. The software provides the context of the entries. This functionality must be exclu-
sively accessible to the device driver.

* Flush All. The flush all function invalidates all entries of the cache. After the whole cache
has been invalidated an event will be generated. This functionality must be exclusively
accessible to the device driver.

* Provide Entry. The provide entry function transfers an address translation to the cache.
The software provides the virtual address, physical address, the context and some manage-
ment/status information. The functionality must be exclusively accessible to the device
driver.

TLB

Release Entry

- Invalidate
, Functional
S/ : Request Entry

Unit
Generate Event :
Request Translation

Figure 3-32 : TLB Use Case Diagram

€

Driver

ik
o

Provide Translation

3.10 The Barrier

Definition 3-5: A barrier is a collective operation across a set of processes. The
barrier call blocks all processes that participate on the barrier
until all processes have entered the barrier. This means that there
must be one point in time where all processes are inside the bar-
rier.

The synchronisation of processes across a cluster is a very common task. In general the cluster

interconnects does not support any special functionality to perform such a synchronisation.
Therefore the barrier functionality is emulated on top of the message passing system.

60

Extoll Hostport Interface

The Extoll SAN will have support for a barrier synchronisation directly in hardware. The fol-
lowing description gives a short overview of the barrier mechanism if a single barrier. Extoll
will support a support a small (about 8) amount of barriers. For a deeper description of the bar-
rier functionality refer to the Diploma thesis of Richard Sohnis ([SOHO0S5]).

host barrier node
—» UP message
DOWN message

Figure 3-33 : Extoll Barrier Tree

The Extoll barrier uses a tree based approach (see Figure 3-33) where the synchronisation is per-
formed in the root node of the barrier tree. A barrier node (see Figure 3-34) is a special purpose
unit in each Extoll NIC. As shown in Figure 3-33 and Figure 3-34 each barrier node has one up-
link to his parent and several down links to his children. A child of a barrier node can be either
another direct connected Extoll NIC or host system of the current Extoll NIC. A barrier node
always has a host system but does not need to have a parent (root node) or any other child than
the host system (leaf node).

parent
hild[0
?HlosE[)] barrier node
child[1] child[i] child[n-1]

Figure 3-34 : Barrier node

Every host system that enters the barrier sends a so called UP message to the root barrier node.
After a barrier node received the UP messages from all children one UP message will be sent to
the corresponding parent barrier node. After the root barrier node received the UP messages

61

Extoll Hostport Interface

from all his children the root barrier node will send a so called DOWN message to each child to
signal that the barrier is released. Every barrier node will forward this DOWN message to all of
his children.

If every host system in the tree would send the UP message directly to the root barrier node or
the root barrier node would send a DOWN message to every host system, the produced traffic
on the root barrier node would become too high. Therefore the UP messages are collected in
every barrier node and only after all children have signalled that they entered the barrier, one
collective UP message is sent to the parent barrier node. In the case of the DOWN messages a
broadcast mechanism is used instead of sending a DOWN message to every host system.

An important constraint is that the barrier tree is a global tree across all nodes in the cluster. This
means that if some host systems does not participate in the barrier the corresponding host system
must enable a dummy mechanism that always enters a barrier or the corresponding barrier node
would wait forever for all UP messages. A barrier node has only one connection to the host sys-
tem and therefore only one process can participate on the barrier. If several processes on the
same system want to participate on the same barrier they have to first synchronise on the host
with the process that has access to the barrier. After the local synchronisation with the process
this process will send an UP message to the barrier node and wait for the corresponding DOWN
message. After the down message arrived the other local processes will be informed.

3.10.1 Design of the Barrier Software Interface

barrier
| | | |
allocation management usage
single collective central distributed barrier enter barrier leave
page VCI page notification

Figure 3-35 : Barrier decision tree

3.10.1.1 Single Barrier Allocation

A single barrier allocation means that if a group of processes needs to allocate a barrier, only
one process requests a barrier by the local Extoll Daemon. The allocation request contains in-
formation about all processes that participate in the barrier. The Extoll daemon will perform all
necessary actions to allocate and setup a barrier tree and return the corresponding barrier ID.
The process that requested the barrier will distribute the returned barrier ID to the other proc-
esses in the process group. Then all processes will open the received barrier on the correspond-
ing hosts. The release of a barrier works inversely to the allocation. First all processes close the
barrier. Then the processes that requested the barrier must release the barrier by sending a re-
lease request to the daemon.

Advantages

* The user can optimize the exchange of the information.

62

Extoll Hostport Interface

Disadvantages

+ First information about all processes needs to be collected and then the barrier ID needs to
be distributed.

* Too many tasks need to be done by the user.

3.10.1.2 Collective Barrier Allocation

| Process Count Magic Value I

64 32 0

Figure 3-36 : Barrier Allocation Cookie

In the case of a collective barrier allocation all processes in a process group request simultane-
ously a barrier by the responsible Extoll daemon. To match the different request issued across
the network all processes that participate in the same barrier need to pass the same cookie with
the barrier request. The layout of the cookie is shown in Figure 3-36. The magic value is used
to match the request that have been issued across the network. The process count is necessary
to detect when all processes have sent the allocation request. The information about which hosts
are participating in the barrier and which hosts are not participating can easily be determined by
the received allocation request messages. Each node that has send an allocation request is par-
ticipating in the barrier and the rest is not. Before the barrier allocation requests of the processes
returns the allocated barrier could automatically be opened. The release of a barrier works in the
same way. All processes of a barrier send a barrier release request to their corresponding Extoll
daemon. This release request will close the barrier and release the barrier tree.

Advantages

» Simple interface for the user.

* The internal management of the barriers could be optimized.
Disadvantages

* The used magic number for a process group must be unique.
3.10.1.3 Central Barrier Management

In the case of a central managed barrier there exist one distinct resource that is responsible for
the barrier assignment.

Advantages

* Simple to realize.
Disadvantages

+ Single point of failure.

» Despite the central barrier arbitration the corresponding barrier units on each node needs to
be configured.

63

Extoll Hostport Interface

3.10.1.4 Distributed Barrier Management

In the case of a distributed barrier management there does not exist a distinct management re-
source in the network. The arbitration of the barrier is made by all Extoll daemons across the
network by using a distributed allocation algorithm.

Advantages
» The arbitration and the configuration of the barrier could be done in one step.
Disadvantages

* Very complex.
3.10.1.5 Barrier Enter via Memory mapped I/0 Page

As mentioned above the process that is running on a host system must tell the local barrier node
that the barrier has been entered. A simple way is to map a special piece of Extoll I/O memory
to the process. When the process enters the barrier, the process needs to read from a certain oft-
set of the mapped I/O space. This read operation will inform the barrier unit inside Extoll that
the process entered the barrier. In the return value of the read the Extoll is able to transfer addi-
tional information (e.g. errors like barrier not ready, barrier already entered, ...).

Advantages
* The read operation is very fast and the user gets additional information.
+ Faster than a VCIL

Disadvantages

* Does not fit in the VCI principle.
3.10.1.6 Barrier Enter via VCI

An alternative approach to signal that the local process has entered the barrier is by using a spe-
cial VCL

Advantages
 Fits in the general design of the Extoll.

Disadvantages

» The VCI flow would increase the latency of the barrier.
3.10.1.7 Barrier Leave via 1/0 mapped Memory

After the barrier has been release each barrier node needs to inform the process on the corre-
sponding host system. One way to get informed about the release of a barrier would be to poll
on I/O memory that has been mapped to the process.

Advantages

* Results in a very low latency.

Disadvantages

* Polling approach waste CPU cycles.

64

Extoll Hostport Interface

* Polling on the I/O device cause unnecessary traffic on the I/O bus. This would lead in a
decreasement of the whole communication performance.

* Does not fit the rest of the Extoll design.
3.10.1.8 Barrier Leave via Notification

When the barrier is released the process could be informed via a notification.

Advantages
» Fit in the global Extoll design.

Disadvantages

» The creation of the notification and the generation/signalling of the corresponding event
would increase the latency too much.

3.10.1.9 Conclusion : Extoll Barrier

The Extoll barrier will use a collective allocation operation. As shown the collective barrier al-
location mechanism will simplify the usage for the user and allows the management system to
implement some optimizations which are transparent to the user.

The management of the barrier will be done by a central unit because the amount of available
barriers is very limited. Therefore the overhead of a distributed allocation mechanism is not jus-
tified and would possibly increase the complexity and decrease the performance.

Because the main goal of the barrier is to achieve a very fast synchronisation primitive the ap-
proaches to enter and leave the via a mapped I/O memory will be used. The other approaches
with the notification and the VCI would fit better to the global design of the Extoll but are too
inefficient.

3.10.2 Extoll Barrier Usage

This section will give some suggestions how Extoll barriers could be used in practice. Therefore
the following sub-sections will provide different approaches how the MPI Barrier functionality
could be realised with the Extoll barrier. The MPI Barrier function is used to synchronise the
processes that belong to the passed communicator.

3.10.2.1 Barrier Mapping 1:1

The first and simplest approach would be a 1:1 mapping of a communicator and an Extoll bar-
rier. In this case the processes of communicator allocate a Extoll barrier which would be used
for synchronisation.

Advantages
* Simple realisation.

Disadvantages

» For some cases (e.g. a communicator with 2 processes on the same node) the overhead of
the Extoll barrier would be bigger than a software based synchronisation.

» There exist only few Extoll barriers for the whole network (about 16).

65

Extoll Hostport Interface

3.10.2.2 Barrier Mapping M:N

As shown the 1:1 mapping of the communicator and an Extoll barrier is not very practical.
Therefore the next approach could be to use a M:N mapping between communicators and Extoll
barriers. This means that a certain amount of communicators will be mapped to a different
amount of Extoll barriers. In general the number of communicators is much bigger than the
available number of Extoll barriers. Therefore the MPI program will allocate a certain amount
of Extoll barriers at the start of the program. These Extoll barriers will be configured to cover
all processes in the MPI program and will be managed in a special Extoll barrier pool (see Fig-
ure 3-37). Then the implementation can decide which communicators will be mapped to a bar-
rier and which not. If a communicator is mapped to an Extoll barrier and has less processes than
the whole MPI program the processes that are not in the corresponding communicator must al-
ways enter the barrier automatically.

MPI MPI MPI MPI
Communicator Communicator Communicator Communicator

—

_ — =~ ~
(HW HW HW N\
~ arrie Barrier Barrier e
_____ BarferPool
Figure 3-37 : Barrier M:N Mapping
Advantages

* Only valuable communicators are associated with an Extoll barrier.
* The resource Extoll barrier will be efficiently used.

* Only a small amount of Extoll barriers are needed per MPI program.

Disadvantages

* Does not work with dynamic process creation features of MPI-2.

3.11 The ULTRA System

ULTRA stands for “Ultra low latency transaction”. The ULTRA system is a special purpose
communication system to archive the lowest possible latency. ULTRA consists of send and re-
ceive units which are called send/receive ports. The rest of this section gives an overview of the
ULTRA system and the corresponding software interface. For more detailed information espe-
cially design decisions refer to the diploma thesis of Heiner Litz ([LITZ05]).

* ULTRA units are not virtualized. Therefore each hardware unit is exclusively assigned to
one specific user.

* The ULTRA system only supports the transfer of messages and no RDMA operations.

* The ULTRA message size is limited to a maximum size of 64 bytes.

66

Extoll Hostport Interface

* The ULTRA system guaranties in-order message delivery on a virtual connection.

* Each ULTRA send port is able to send messages to each ULTRA receive port and each
ULTRA receive port is able to receive messages from each ULTRA send port.

» There exists one I/O configuration space for all ULTRA units that must not be accessible to
a user.

» The ULTRA system uses PIO for realisation of fast send operations.

» Ultra communication is uni-directional from a send port to a receive port (see Figure 3-38).

Receiver

ULTRA
recv. port

Extoll

ULTRA | |
send port

Figure 3-38 : ULTRA Communication System

3.11.1 ULTRA Management

The Extol NIC will support up to 8 send ports and 8 receive ports per Extoll NIC. All ULTRA
ports are managed via a special I/O memory area in the Extoll configuration space. This mem-
ory is only accessible for the device driver.

3.11.2 ULTRA Send Port

One of the design goals of the ULTRA unit is to reach the lowest possible latency. With the
FAST SEND VCI the VP interface already has a low latency send operation. But the
FAST SEND operation still needs several accesses until the send operation can be performed.
As shown in Table 3-12 the FAST SEND requires 2-4 1/O bus accesses. The approach of the
ULTRA system is to reduce the number of I/O bus accesses to the smallest possible amount.
The big number of I/O bus accesses are caused by the virtualisation of the hostport. Because the
ULTRA units are not virtualized it is possible to avoid these extra I/O bus accesses.

1/0 Bus Accesses FAST SEND ULTRA
best case a 1
worst case 4b 1

Table 3-12: Comparison of FAST SEND and ULTRA

a. triggering of the VCI + fetching of the VCI
b. triggering of the VCI + fetching of the VPD + fetching of the VCI + fetch-
ing of the routing

67

Extoll Hostport Interface

The ULTRA approach requires only one I/O bus access (see Table 3-12) per message. Because
there is only one I/O bus access the data needs to be transferred by this access via P1O. In general
it would be possible to write FAST SEND VCI into the ULTRA send unit. With this VCI the
ULTRA send unit would have all necessary information and the data at once. The problem with
the FAST SEND VCl is that there could be a cache miss. To avoid this additional cache misses
the ULTRA unit stores the routing to the destination directly in hardware.

3.11.3 ULTRA Receive Port

3.11.3.1 ULTRA Receive via PIO

A symmetric approach to the send would receive the messages also via PIO. This approach has
the disadvantage that the process would need to poll on the Extoll NIC, which would lead in
unnecessary I/O bus accesses.

Advantages

* Very fast way of receiving the data.

Disadvantages

+ Polling in Extoll NIC lead in unnecessary 1/O bus accesses.

* Data must be buffered in hardware until the user is able to consume them and buffers in
hardware are always limited and relatively small compared to buffers in software.

3.11.3.2 ULTRA Receive via DMA Buffer

This approach would be to store the incoming ULTRA messages via DMA into a special mes-
sage queue in the main memory. The buffer of the message must be physically continuous so
that the ULTRA receive unit needs only the base address and the length of the buffer.

Advantages

* Only one I/O bus access for every received message.
* The user polls only on memory or the cache.

» Buffers in Software can have different sizes.
Disadvantages

» Slower than the PIO mode because the data needs first to be written to the main memory
before the user is able to load them into the CPU.

3.11.4 Conclusion : ULTRA Receive

Because the solution with the message buffer is more flexible and only minimal slower than the
PIO approach the ULTRA receive port will use the message buffer in the main memory ap-
proach.

68

Extoll Hostport Interface

3.12 Proposal for a new RDMA Operation

Source l | I I I |
Destination l | I I I |
miss-aligned
Source | ‘ ’¢|¢|¢|¢|¢|¢ ’ | ’ ’ ’ |
Destination || | P P] [[[[]
aligned
sowce | | [[LI T TP LTI ERET T[]
Y vvvvyoyoel o
Destination || [| [T PP T TP EE] [[1] []
miss-aligned
sowce [| [[T[T T T I L]][]
Destination | ‘ | | | | | | | | |
I:' source/destination data
D already transfered source data
% still to be transfer destination data

Figure 3-39 : Optimal RDMA Transfer

So far two different classes of RDMA operations have been specified ((FRANGERO04]), the
aligned and miss-aligned operations. The aligned RDMA operations are able to transfer any
amount of data as long as the data is aligned to 8 bytes and the length is a multiple of 8 bytes.
The miss-aligned RDMA operations are limited to a maximum amount of 8 bytes data which
are allowed to be miss-aligned. If a bigger miss-aligned buffer needs to be transferred two dif-
ferent cases exists. In the first case the source and the destination buffer have the same miss-
alignment offset (offset relative to the 8 byte alignment). In this case the transfer of the buffer
can be splitted into a maximum of three RDMA operations, two miss-aligned and one aligned
RDMA operation (see Figure 3-39). In the case that the source and the destination buffer have
a different miss-alignment offset it is not longer possible to transfer the buffer with only three
RDMA operations. After the first miss-aligned RDMA operation the source buffer is aligned
but the destination buffer not, after the second miss-aligned operation the destination buffer is
aligned but the source buffer not and so on (see Figure 3-40). This means that the buffer must

69

Extoll Hostport Interface

be transferred by many miss-aligned RDMA operations. The amount of required miss-aligned
RDMA operations scales linearly with the buffer size. A solution for this problem would be the
introduction of a new RDMA operation which supports double miss-aligned buffers.

Source

Destination

Source

Destination

Source

Destination

Source

Destination

sowce | | [[LI TP T PRI T[]}
Destination | | | | | | PRI PP TFEEETET] []

p

sowce [| [I T T PP TT]|
pestination | | | [| [[P PP PP PTFFTPF] [

I:' source/destination data

D already transfered source data

still to be transfer destination data

Figure 3-40 : Worst Case RDMA Transfer

70

Design of the ESS a2

4

This chapter introduces the design of the Extoll Software Stack (ESS). First the global design
of the ESS will be presents. The first step consists of the analysis of the requirements of the ESS.
Based on the requirements the design with all design decisions will be shown.

After the global design of the ESS has been described each component will be presented in a
more detailed view. As for the global design, the first step consists of a requirement analysis,
followed by the presentation of the component design.

The chapter ends with discussion of features that are supposed to be handled by the Extoll Dae-
mon.

4.1 Extoll Software Stack

4.1.1 Requirements of the ESS

This section gives an overview of the requirements of the ESS. Based on these requirements the
final ESS design will be presented.

* The ESS is a software environment for a high performance and low latency RDMA NIC.
Therefore ESS must add the lowest possible latency penalty to the whole communication.
Especially the critical path should be optimized and free of all unnecessary operations
which would increase the latency.

» The software should be efficient. Efficient means efficient in speed and resource footprint.
The required resources should be as small as possible but as high as necessary to reach the
maximum performance.

* The software must be robust. Robust means that the Extoll Software Stack and the host sys-
tem must not crash even if some operations fail (e.g. a process dies). It also means that there
will no be resources lost.

* The software must avoid any backdoor mechanism that would violate the security of the
host system or the whole network.

* The software should be modular. It should be possible to replace each component of the
software by a different implementation without any change in the behaviour of the whole
software stack.

* The Extoll Software Stack API for communication should be usable in the user- and the
kernel-space with the same interface.

» The Extoll Software Stack should have strong debugging and monitoring support.
» The Extoll Software design should follow the object oriented paradigm as much as possible.

* The software should be portable and run on different architectures. The initial target archi-
tectures are IA32 and AMD64.

71

Design of the ESS

* The Extoll Software Stack must be able to handle multiple Extoll NICs in the same host
system simultaneously.

* The Extoll Software Stack should work closely with currently existing operating system
features (e.g. epoll).

» This version of the ESS is supposed to work under the Linux operating system. Because of
additional platforms that may be supported in the future the ESS should be implemented as
portable as possible.

* The ESS should enable and simplify the development of an ethernet emulation device
driver (IPoExtoll) that tunnels IP data over the Extoll SAN. The development of the IPoEx-
toll is not part of this thesis.

ESS

User Access to Extoll Resources

<~ Access to Management Capabilities
Daemon Extoll NIC

- Raw Access to Extoll Resources

Simulation

Figure 4-1 : ESS Use Case Diagram

As shown in Figure 4-1, 4 different customers of the ESS can be identified. These customers are
the user, the daemon, the simulation and the Extoll NIC. The user is a process, either in user- or
kernel-space, that needs access to Extoll resources for communication purposes. The daemon is
a management process that runs on every host in the network. The daemon’s main tasks consist
of management and configuration of the Extoll NICs (See “Extoll Daemon” on page 88). To ful-
fil these tasks the Extoll Daemon needs raw access to the Extoll Resources and also access to
the Extoll management functionality. The simulation ([SPONEROS5], [FELDNERO04],
[FRANGERO04]) consumer is an ordinary user process that requires a raw access to the Extoll
resources to simulate the behaviour of the Extoll NIC in software. The last consumer is the Ex-
toll NIC itself. The Extoll NIC needs access to the management functionality of the ESS. Every
time a problem is encountered by the Extoll NIC (for e.g. the Extoll NIC needs an address trans-
lation, a link broke, ...) the Extoll NIC will inform the ESS to solve the problem.

4.1.2 Design of the ESS

4.1.2.1 Routing Management

Definition 4-1 : The routing management covers the complete management of
the routing buffer in the main memory. The main tasks of the

72

Design of the ESS

routing management are the insertion, deletion and the query of
routing strings.

Definition 4-2 : The routing determination is the process of calculating the
routing strings for a given topology.

The routing is stored in a physically continuous memory buffer. In the case of Atoll the routing
was calculated and managed by the Atoll Daemon. If a user of the Atoll needed the routing in-
formation a corresponding request has been send to the Atoll Daemon and the daemon replied
with the requested information or an error.

This approach does not work for the Extoll because there are user-level and kernel level con-
sumers. If the management of the routing would be done by a user-level process there would be
a problem when a kernel consumer needs to query routing information, because there does not
exist a standard way for communication from kernel space to user space. Therefore the complete
routing management must be done in kernel space by a dedicated kernel module. This routing
managing module is called Extoll Routing Manager (ERM, see “Extoll Routing Manager” on
page 79 for more information).

4.1.2.2 Memory Management

Almost all buffers that are associated with a VP must be physically continuous memory. The
allocation of physically continuous memory during runtime can become a problem because of
the fragmentation of the memory. Fragmentation is caused by usage of the paging mechanism
([TANENBAUM)]). In general fragmentation increases with the uptime of a system.

The first approach of the Atoll design to overcome this problem was to truncate the physical
memory that is managed and associated with the host system ([FELDNERO04]). To void this
truncation of memory the next approach was the introduction of the mempin module. The task
of the mempin module is to be loaded after the system start when the memory fragmentation is
still minimal and grab all the required physically continuous memory buffers that are necessary
to satisfy the requirements of all hostports. This approach is not longer working for Extoll be-
cause the Extoll design supports up to 216 VPs and not only 4 like the Atoll design. Therefore
the required resources cannot be allocated at once. Because the static memory allocation ap-
proach does not work very well with Extoll a dynamic memory management system is required.
The dynamic memory management system of the Extoll is called Extoll Memory Manager
(EMM, see “Extoll Memory Manager” on page 77 for more informations).

4.1.2.3 Logging Support

A strong logging system is essential to keep track of the ongoing actions of the software stack.
Therefore the ESS will have a strong logging mechanism. Instead of implementing the logging
functionality for each ESS module separately an extra logging module is created. The logging
module is called Extoll Logging System (ELS, see “Extoll Logging System” on page 76 for
more information). The ELS must be working on kernel- and user space because the ESS is
working on both systems.

73

Design of the ESS

4.1.2.4 Application Programming Interface

. 24 —
High o | E o
Level w| o <

o | 0O

Low
<Leve| EUI EMI)

Figure 4-2 : Extoll API

The Extoll API is partitioned in 2 parts, one low level and one high level part. The low level part
is a layer that abstracts from the hardware and the differences between kernel- and user-space.
The low-level part of the Extoll API itself is partitioned again into two different parts, the Extoll
User Interface (EUI) and the Extoll Management Interface (EMI). The EUI offers an interface
for any user that wants to communicate via the Extoll (see “Extoll User Interface” on page 84
for more information). The EMI offers a special interface that allows the direct access to Extoll
resources and the management functions. On top of the EUI the different API can be implement-
ed. The standard API of the ESS is the Extoll Programming Interface (EPI). The EPI has the
task to offer a high level interface to the user that simplifies the usage of the ESS (See “Extoll
Programming Interface” on page 87 for more information). All components of the Extoll API
must be running in kernel- and user-space.

4.1.2.5 Device Driver

The Extoll Device Driver (EDD) is the central component of the ESS. The EDD is responsible
for all resource configuration and management tasks of the Extoll NICs (See “Extoll Device
Driver” on page 80 for more information).

4.1.2.6 Conclusion : Design of the ESS

As shown in the previous sections the ESS consists of the following components:
» Extoll Logging System

* Extoll Memory Manager

» Extoll Routing Manager

* Extoll Device Driver

» Extoll User Interface

» Extol Management Interface

» Extoll Programming Interface

Every component has a certain task to serve. All components are independent of each other and
offer a well defined interface to the other components. The arrangement of the components is
shown in Figure 4-3.

74

Design of the ESS

EPI MPI uDapl Daemon, Simulation, ...
LYYy !
O
g EUI EMI
@
e A A L ¢ A
w
% Y
ELS
EPI IPoEXxtoll kDapl
A A A
Y
EUI EMI
Sl :
W Y A A
(&)
& EDD
@
-
: ;
Z
14
w
X ERM
EMM
j' Y $ Y i
ELS
vy

Hardware (Extoll NIC)

Figure 4-3 : ESS Design

75

Design of the ESS

4.2 Extoll Logging System

4.2.1 Requirements

The Extoll Logging System has the following requirements:

» The Extoll Logging System must be fast to avoid any performance impacts to the applica-
tion or whole system.

» The Extoll Logging System must be usable in a development and a productive environment.

» The Extoll Logging System must be simple and abstract from the underlaying logging back-
end (e.g file, stdout).

* The Extoll Logging System must work in kernel- and user-space with the same user inter-

face.

» The Extoll Logging System should provide logging to different mediums.

Application

Open Log
L~ | i

Write to Backend

I
Print Message
Close Log

Kernel Module

As shown in Figure 4-4 there are two customers for the Extoll Logging System, applications
that are running in user space and kernel modules that are running in kernel space. The func-
tionality that must be offered by the Extoll Logging System are the creation and deletion of log-
ging objects and corresponding logging functionality.

76

Figure 4-4 : ELS Use Case Diagram

Design of the ESS

4.2.2 Design

ELS Interface
Y

ELS Core

y

ELS Backend

File Network Stdout

Figure 4-5 : ELS Design

The ELS component consists of the following modules:

ELS Interface. The ELS interface consists of the functions that are offered to the custom-
ers.

ELS Core. The ELS core is responsible for the pre-processing of the log information,
before they are transferred to the backend.

ELS Backend. The ELS backend is responsible to transfer the log data to the log medium.

4.3 Extoll Memory Manager

4.3.1 Requirements

The Extoll Memory Manager has the following requirements:

The EMM must guarantee enough memory for at least a certain amount of VPs.

The EMM should be able to support different usage patterns (e.g. a few VPs are opened/
closed very infrequently versus a lot of VPs are opened and closed very often).

The EMM should work well with the Linux memory sub-system.

Need only run in kernel mode.

The memory that is returned by the EMM must be physical continuous.
The EMM should be able to support different allocation mechanisms.

71

Design of the ESS

EMM

allocate memory
free memory

Figure 4-6 : EMM Use Case Diagram

EDD

As shown in Figure 4-6 two customers exists for the EMM, the ERM (See “Extoll Routing Man-
ager” on page 79) and EDD (See “Extoll Device Driver” on page 80). The functionality that
must be offered by the EMM is the allocation and the release of memory blocks.

4.3.2 Design

EMM-Interface

#

Memory Manager

Memory Manager Policy

#

Allocation Manager Memory-Block Pool Memory Pool

Figure 4-7 : EMM Design

Definition 4-3 : Extoll Memory Block Object. An Extoll Memory Block Object
is an abstract software object that represent a memory region.
The memory region can be either RAM or I/O mapped device
memory.

As shown in Figure 4-7 the EMM consists of the following components:

* EMM Interface. The EMM interface consists of the functions that are offered to the cus-
tomers of the EMM.

78

Design of the ESS

* Memory Manager. The Memory Manager is the core of the EMM, that is responsible for
managing the memory requests of the customers. The way in which the memory is managed
is defined by the Memory Manager Policy (e.g. the Memory Manager Policy decides if it is
worthy to split a cached memory block into smaller chunks or directly allocate new memory
from the system).

» Allocation Manager. The Allocation Manager is responsible for the memory allocation/
release from the host system.

* Memory Block Pool. The Memory Block Pool is responsible for the allocation/release of
memory block objects.

* Memory Pool. The Memory Pool is used to cache memory blocks that are not currently
used by a customer.

4.4 Extoll Routing Manager

4.4.1 Requirements

The ERM requirements are:

* The ERM must be able to handle multiple routing tables.

» The ERM must manage the routing tables.

* The ERM is not responsible for the calculation of the routing strings.

» The ERM must be able to associate several routing strings with the same routing target.

ERM

create routing table

EDD
\ modify routing
destroy routing table

Figure 4-8 : ERM Use Case Diagram

As shown in Figure 4-8 the ERM only has the EDD as customer. The ERM must offer functions
to create and destroy routing tables, because for each available device an extra routing table is

required. For each routing table, functions to insert, delete and modify the routing strings must
be offered.

79

Design of the ESS

4.4.2 Design

ERM Interface I

Routing Table Core

Routing Block Pool Routing Target Pool

Routing Table Manager

Figure 4-9 : ERM Design

Definition 4-4 : Routing Target Object. A routing target object is a software
object that describes a routing target.

Definition 4-5 : Routing Block Object. A routing block object describe a part of
the routing space that contains a routing string.

As shown in Figure 4-9 the ERM consists of the following components:
« ERM Interface. The ERM interface consists of the functions that are offered to customers.

* Routing Table Core. The Routing Table Core is responsible for handling the customer
requests.

* Routing Block Pool. The Routing Block Pool is a dynamic cache of routing block objects.
If there are no free routing block objects the Routing Block Pool will automatically allocate
new routing block objects.

* Routing Target Pool. The Routing Target Pool is a dynamic cache of routing target
objects. If there are no free routing target objects the Routing Target Pool will automatically
allocate new routing target objects.

* Routing Table Manager. The Routing Table Manager performs the low level routing table
manipulations of a routing table.

4.5 Extoll Device Driver

4.5.1 Requirements

» The EDD must be able to support multiple NICs.
* The EDD must support user and super user access methods to the available resources.

* The EDD must take care about the allocated resources and is responsible that under normal
circumstances no allocated resources get lost.

80

Design of the ESS

* The EDD must be able to support the select/poll/epoll interface to allow the usage of the
Extoll resources together with other resources of the operating system.

* The EDD should be as independent as possible of the I/O bus between the host system and
the Extoll NIC.

EDD

/ access management

access resources
EMI
query information
open resources
EUI
close resources

Figure 4-10 : EDD Use Case Diagram

As shown in Figure 4-10 the EDD has the EMI and EUI as customers. For the EMI customer
EDD must offer functionality to access all available resources and all management functions.
In the case of the EUI customer a less privileged access to the resources must be offered.

81

Design of the ESS

4.5.2 Design

User-Mode-View Kernel-Mode-View

|
Y

FOPS-Mapper

' '

EDD - Interface

S S S N
iAol
Ly T Tl
= 1

event flow

— p» access

Figure 4-11 : EDD Design

Definition 4-6 : EDD Device. An edd device is an abstract software object that is
used to describe an Extoll device inside the EDD. All sub-mod-
ules of the EDD, except the Device Pools, operate on EDD
Device objects. Therefore the biggest part of the EDD is inde-
pendent of the real Extoll device adapter (e.g. PCI or simulation
adapter). This approach has the advantages that new Extoll
adapters (e.g. via HyperTransport) can be introduced without the

82

Design of the ESS

need to change the EDD (only a new device pool needs to be
added).

Definition 4-7 : Device Pool. A device pool is a collection of all devices that are
connected via the same /O bus, e.g. the PCI device pool contains
all PCI(X) Extoll NICs. The Device Pool is responsible to find
all devices that are connected to the corresponding I/O bus and
create corresponding EDD device objects.

Definition 4-8 : EDD Process. For each user process that opens an Extoll
resource a corresponding Extoll Process is created. An Extoll
Process collects information about all Extoll resources that have
been associated with the user process.

Definition 4-9 : EDD Connection. An EDD connection is an abstract software
object that represents a routing information (routing offset and
routing length). There is no corresponding equivalent in the hard-
ware. An EDD connection is a special object that allows the
EDD to track which process use which routing entries. This is
necessary when e.g. a process crashes, then the EDD is able to
update the reference count of the corresponding routing entries.

Definition 4-10 : Virtual Port Group (VPG). The Virtual Port Group is an
abstract object that has no representation in the Extoll hardware.
The Virtual Port Group allows the user to group several VPs
together and wait until one of the VPs in the VPG received a new
notification.

The design of the EDD module is shown in Figure 4-11. The EDD module consists of the fol-
lowing sub-modules:

Event Manager (EM). The event manager is responsible for the processing of the events
that are generated from the devices (See “Event System” on page 34).

Cache Manager (CM). The cache manager is responsible for TLB management. This man-
agement includes the address translation from virtual to physical addresses. If the address
cannot be translated immediately because the page is swapped out the Cache Manager is
responsible to swap the page in.

Device Manager (DM). The device manager is responsible for the access to all available
devices in the system. The available devices are collected from the device pools.

Simulation Device Pool (Sim-Pool). The simulation device pool contains a set of software
devices. The device of the Simulation Device Pool does not have a representation in real
hardware. The missing I/O memory of a real device is replaced by RAM memory blocks.

PCI Device Pool (PCI-Pool). The PCI Device Pool contains all Extoll devices that are con-
nected via a PCI/PCI-X bus.

Process Manager (PM). The process manager is responsible for managing Extoll Proc-
esses.

Virtual Port Manager (VPM). The Virtual Port Manager is responsible for the manage-
ment of the VPs that belong to a device.

83

Design of the ESS

Virtual Port Group Manager (VPGM). The Virtual Port Group Manager is responsible
for the management of the VPGs.

Ultra Manager (UM). The Ultra Manager is responsible for the management of the Ultra
Ports that belong to a device.

Barrier Manager (BM). The Barrier Manager is responsible for the management of the
Barriers that belong to a device.

EDD Interface. The interface that is offered to the customers.

FOPS-Mapperl. The FOPS-Mapper maps the EDD-Interface from the kernel-space into
the user-space.

4.

6 Extoll User Interface

4.6.1 Requirements

The requirements of the EUI are:

The EUI should offer a simple and easy to use interface for accessing all user relevant fea-
tures.

The EUI should have the same interface for kernel- and user-space.

The EUI is an abstract layer that hides the low-level details and the differences of the ker-
nel- and user-level access to the EDD from the user.

EUI

DAPL

Figure 4-12 : EUI Use Case Diagram

84

1. FOPS means “file operations” and is a structure that consists of function pointers to functions that can
be performed on a file (e.g. open, close, write). For a complete description refer to [LDD].

Design of the ESS

Figure 4-12 shows that the EUI has three possible customers. All customers require access to
all resources that are accessible for the user.

4.6.2 Design

EUl-Interface I

EUI-Core

EUI-Backend

Kernel-Space

Figure 4-13 : Design EUI

* EUI Interface. The EUI interface consists of the functions that are offered to the custom-
ers.

« EUI Core. The EUI Core layer consists of all backend independent functionality.

» EUI Backend. The EUI Backend layer is responsible for dealing with the EDD interface
either via the kernel- or the user-interface. This layer hides all differences between the dif-
ferent backends.

4.7 Extoll Management Interface

4.7.1 Requirements

The requirements of the EMI are:
* The EMI should offer a simple and easy to use interface to access all super user features.
* The EUI should have the same interface in kernel- and user-space.

» The EUI is an abstraction layer that hides the low-level details and the differences of the
kernel- and user-level access to the EDD from the user.

85

Design of the ESS

EMI

Daemon

Simulation

Access Barrier

Figure 4-14 : EMI Use Case Diagram

As shown in Figure 4-14 the EUI has two possible customers. All customers require access to
all resources that are accessible for the super user. The EMI must offer functionality to access
all resources of a Extoll device.

4.7.2 Design

EMlI-Interface I

EMI-Core

EMI-Backend

Kernel-Space

Figure 4-15 : Design EUI
 EMI Interface. The EUI interface consists of the functions that are offered to the custom-
ers.
* EMI Core. The EUI Core layer consists of all backend independent functionality.

+ EMI Backend. The EUI Backend layer is responsible for dealing with the EDD interface
either via the kernel- or the user-interface. This layer hides all differences between the dif-
ferent backends.

86

Design of the ESS

4.8 Extoll Programming Interface

4.8.1 Requirements

The EPI has the following requirements:
* The EPI must be fast and efficient.
* The EPI must have a small and easy to use interface.

* The EPI must offer all the functionality of the Extoll NIC to the user.

Applicatio

DAPL

Figure 4-16 : EPI Use Case Diagram

As shown in Figure 4-16 the EPI has several customers that all need access to the resources for
normal users. Only a small set of possible customer is shown in Figure 4-16. MPI and DAPL
can be ported to the EUI or the EPI interface. Both approaches have their advantages and dis-
advantages.

87

Design of the ESS

4.8.2 Design

RDMA
Management

Window
Management

SDR
Management

RDR
Management

EPI-Event
Management

CIQ Management NQ Management

Ultra Barrier
Management Management

As shown in Figure 4-17 the EPI consists of the following sub-units:

Figure 4-17 : EPI Design

* Ultra Management. The Ultra Management is responsible for the management of the
access and control to the Ultra ports.

* Barrier Management. The Barrier Management is responsible for the management of the
access and control to the Barrier ports.

*+ RDMA Management. The RDMA Management is responsible for the creation of RDMA
specific VCIs which are passed to the VCI management.

* Window Management. The Window Management is responsible for the creation, modifi-
cation and deletion of memory windows.

* SDR Management. The SDR Management is responsible for the management of the SDR
in the case of DMA send and posted sends.

* RDR Management. The RDR Management is responsible for the management of the RDR
in the case of DMA receive and posted receives.

* CIQ Management. The CIQ Management is responsible for the management of the CIQ
and the triggering of VCls.

* NQ Management. The NQ Management is responsible for the management of the NQ.

+ EPI-Event Management. The EPI-Event Management converts notifications into software
events. The EPI-Event Management must reorder the notification if they arise out-of-order.

4.9 Extoll Daemon

The Extoll Daemon is special management system that is running on every node in the network.
The Extoll Daemon has similar tasks as the Atoll Daemon ([NUSO03]). The main tasks of the
Extoll daemon are:

* Topology Exploration. The Extoll Daemon is responsible for the determination of the cur-
rent network topology.

88

Design of the ESS

* Routing Determination. Based on the network topology the Extoll Daemon is responsible
for the calculation of the routing strings for each host.

* Error Detection/Correction. If errors occur in the network or the local NICs the Extoll
Daemon is responsible to solve the problem and put the system back into a working state.
To fulfil this task the Extoll Daemon has to work very closely with the EDD.

* Barrier Management. Based on the network topology the Extoll Daemon is responsible
for the calculation, configuration and management of the barrier trees (See “The Barrier” on
page 60).

The design and development of the Extoll Daemon is not part of this thesis.

89

Design of the ESS

90

Implementation of the ESS N2

D

This chapter gives an overview of the implementation of the Extoll Software Stack. The first
part of the chapter covers the general aspects of the implementation. In addition to the global
implementation approaches the testing mechanism is presented.

After the general design has been discussed a more detailed description of the ESS implemen-
tation is given. For each ESS component a description of the implementation of the most im-
portant features is given. For a complete overview of the ESS interfaces refer to the ESS
Reference Manual ([STORKO0S5]).

5.1 General

5.1.1 Symbol Resolving

As a consequence of module stacking the problem occurs that one module needs the address in-
formation of symbols that are located in modules. As show in Figure 5-1 two possibilities to
solve this problem exists, either by an automatic or a manual symbol resolving mechanism.

Symbol Resolving

automatic manual

Figure 5-1 : Symbol Resolving Decision Tree

5.1.1.1 Automatic Symbol Resolving

The automatic symbol resolving is done by the standard mechanism of module loading. If a
module is loaded which has unresolved symbols the mechanism tries to find the required sym-
bol in one of the other installed modules. If the symbols could be found in another module this
module will automatically be loaded else the whole module loading mechanism will be can-
celled with an error.

Advantages
* No extra code to resolve the symbols is required.
* Dependent modules are automatically loaded (if they are installed).

* The Kernel knows which modules depend on each other.

91

Implementation of the ESS

Disadvantages

* During the linking of the kernel modules compiler warnings will be created for each unre-
solved symbol.

5.1.1.2 Manual Symbol Resolving

In the case of a manual symbol resolving the module must itself search for the required symbols
during the initialization. If the required symbols cannot be found the initialization breaks with
an error and the module will not be loaded.

Advantages

* No compiler warnings.

Disadvantages

* Dependent modules will not automatically be loaded.

» Extra code to find the symbols must be written.

* The kernel does not know which modules depend on each other.

* There must be an indirect step for each symbol (e.g. function pointer).

* The mechanism of how symbols can be searched can changed between different kernel ver-
sions.

5.1.1.3 Conclusion : Symbol Resolving

The ESS will use the automatic approach because of the following reasons . The automatic ap-
proach require no extra code, especially it looks and feels like a library mechanism. This leads
to the fact that differences between kernel- and user-level implementation will be reduced. The
automatic approach is the default mechanism of the Linux system.

5.1.2 Extoll Testing Framework

To verify the correct implementation and behaviour of the ESS a testing mechanism was re-
quired. The currently available unit testing frameworks do not fit for the ESS, because the ESS
is running in kernel- and user-space and the available unit testing frameworks work only in one
part, either kernel- or user-space. Therefore a new testing framework for the ESS had to be de-
veloped. The developed testing framework for the Extoll is called Extoll Testing Framework
(ETF).

5.1.2.1 Design Goals

The ETF was designed with the following design goals:
» Testing environment must be able to testing kernel- and user-space test cases.
* The ETF should be fast and efficient.

* The ETF must be able to run the tests automatically and provide a short and informative
report to the user. The report should be as small as possible and as informative as necessary
to allow the user a fast overview.

* The ETF must be simple to use, manage and to extend.

92

Implementation of the ESS

* In the case that some test cases fail the testing framework must guaranty that everything that
belongs to the failed test case will be removed from the system.

5.1.2.2 Structure

Test Case 0
ke'rnel-space kernel-space
/ interface module
Test function \
user-space p| USer-space
~E interface application
c
O
m °
« °
v °
O
~
Test Case N
ke.rnel-space 3 kernel-space
/ interface module
Test function \
user-space p-| User-space
interface application

-

Figure 5-2 : Test-Bench Structure

To achieve the required goals the ETF has the general structure that is shown in Figure 5-2. Eve-
ry test-bench consists of several test cases. A test case is responsible for testing one particular
part of the implementation. A test case is able to test the property in kernel-space and user-
space. As shown in Figure 5-2 every test case has a single test function. The test function is a C
function that performs the whole testing (initialisation, testing, cleanup). The test function re-
turns 0 on success and -1 on an error.

Because the interfaces of the ESS modules are equal for kernel- and user-space the test function
is independent and therefore can be used for testing in kernel- and user-space. To execute the
test function in user space the test function is compiled and linked with the user-space interface.
The user-space interface consists of a main function that executes the test function and use the
return value of the testing function as exit code. For the kernel space the test function is com-
piled and linked with the kernel-space interface. The kernel-space interface consists of module
init- and exit-function ([LDD]). The module init function will execute the test function and use
the corresponding return value as return value of the module initialization.

93

Implementation of the ESS

All test cases are executed in a sequential order by the test bench. The test-bench is a shell script
that either executes the user-level program or tries to load the kernel-level module. The failure
of the test function can be detected by the exit value of the started test case. If the executed test
application or the loading of the test module returns 0 the test has been passed. In the case that
the exit value is not equal 0 the test has failed. Listing 5-1 shows an example of an test bench

== Test Bench for the Extoll Routing Manager ==
Running ERM Interface Test ...ttt iiiiiii ittt ettt eeeeaaaaeens [passed]
Running Routing Pattern 1xX1 Testiiiiiiinn e e et teeeeaaaeeeens [passed]
Running Routing Pattern 4x4 Test .. .uuiiiiii it e e ettt eeeaaeeeens [passed]
Running Routing Pattern 8x8 Testiiiiiiii ittt eeeeeeeeenns [passed]
Running Routing Pattern 16X16 Test .. .iiiiiiin i e et eeeeeeeeeeenns [passed]
Running Routing Pattern 32xX32 TesSt .. iiiiiiin i ittt e eeeeeaeenns [passed]
Running Routing Pattern 64x64 Test ... iiiin i e et eeeeeeaeeeenns [passed]
Running Routing Pattern 128x128 TesSt ..t i it eeeeeeeeeeenns [passed]
Running Routing Pattern 256x256 Test ...t ineeeeeeeeeenn. [passed]
Running Routing Pattern 512x512 Test ... iiiiii i ieeeeeeeeeeenn. [passed]
Running Routing Pattern 1024x1024 Test ..t ieeeeeeeeeeenn. [passed]

Runned Tests 11

Passed Tests 11

Failed Tests : 0

Listing 5-1 : Output Test Bench of ERM
5.1.3 Configuration

5.1.3.1 Compiletime Configuration

All values/parameters in the ESS are initialized with reasonable default value. While many of
the parameters are changeable during loadtime and/or runtime, there exists some parameters
that are fixed and can only be changed by re-compilation (e.g. the number of maximum support-
ed devices).

5.1.3.2 Loadtime Configuration

Every kernel module of the ESS supports module parameters. The module parameters are
passed when the module is loaded into the kernel. The available module parameters can be de-
termined with the modinfo command.

5.1.3.3 Runtime Configuration

All kernel modules support the ability to change some parameters during runtime. To view and
modify the runtime parameters the extollctl tool (see “extollctl” on page 136) can be used. The
mechanism of the runtime parameters works via the Linux sysfs ((LDD], [MAURERY]).

94

Implementation of the ESS

5.2 ELS

As described in “Extoll Logging System” on page 76 the ELS system consists of 3 layers. The
ELS systems supports a per log priority threshold. With this threshold it is possible to filter out
low priority messages. This priority threshold can be changed during runtime and therefore of-
fers the ability to use the ELS system in a development and productive environment. This ap-
proach also has the advantage that when in a productive environment an errors occurs, the
threshold can be changed back to the lowest possible priority and the full debugging capabilities
can be accessed to search for the error.

5.3 EMM

As described in “Extoll Memory Manager” on page 77 the real management is specified by the
memory management policy. The policy mechanism is realized via a set of function pointers to
functions that implement the corresponding functionality. In the current implementation a sim-
ple memory management policy has been implemented. The simple memory management pol-
icy directly allocates and releases the memory from the host system without any caching of the
memory buffers. The policy can be changed at loadtime of the EMM module.

5.4 ERM

5.4.1 Routing Table Management

As described in “Extoll Routing Manager” on page 79, the ERM supports several routing tables.
The ERM supports a number of routing tables up to the maximum device count. The current
implementation of a routing table is presented in Figure 5-3.

As shown in Figure 5-3 every routing table contains a physical continuous routing area where
the routing information is stored. This routing area is subdivided into smaller areas, called rout-
ing slots, that either contain routing information or are unused. Each routing slot of the routing
area is described by a routing block object. All routing blocks are connected in a list. This mech-
anism allows the ERM easily to merge several free routing slots that are continuous into one big
free routing slot. To speed-up the determination of free routing slots each routing table manages
a list of all free routing blocks in the routing table. The last part of a routing table is a target set
that contains all routing target objects of the routing table. To speed-up the search operation for
a specific target, the target set is implemented as a hash table that uses the target device ID as
input for the hash function. Each routing target has fixed amount of routing slots that can be as-
sociated with the routing target object. This allows the implementation to use several routing
strings per target.

95

Implementation of the ESS

Routing Table

routing-
area

=

routing
block

s e

block block

routing block
list

routing
block

A A

routing
block

routing block
free-list

target set

Figure 5-3 : ERM Routing Table Implementation

5.4.2 Routing Failure

In the case that a certain routing string becomes invalid (e.g. a network link breaks) the user will
receive a notification with the corresponding error. After the user receives a notification with
such an error the user needs to disconnect the old connection (release the routing string) and
then the user needs to create a new connection to the target (request a new routing string). With
this new connection the user is able to restart the failed operation.

5.5 EDD

5.5.1 Process Management

To perform a fast look up for an EDD process all EDD processes are managed in a hash table.
The input for the hash function is the address of the Linux task structure of the Linux process.

5.5.1.1 Threads

Under Linux every thread is represented by a task in the Linux kernel and a process is repre-
sented by a group of tasks ((MAURER]). Each task group has one distinct main task (main
thread), the so called group leader. When the group leader ends all other tasks in the same task
group will be terminated too, while the other tasks (threads) in the task group can be created and
terminated in any order without any effect to the whole task group. Therefore each EDD process
is always associated with the group leader task of a task group.

96

Implementation of the ESS

5.5.2 Device management

As described in “Extoll Device Driver” on page 80 the EDD device is the central object of the
EDD. The EDD device mainly consists of 2 Extoll memory objects. The first memory object
describes the Extoll Device Resource Area and the second describes the Extoll Device Trigger
Page Area. Additionally each EDD device contains information about the device and the avail-
able resources on the device. A unique number is associated with each EDD device that is used
to identify the device inside the system.

5.5.3 VP Management
N
fixed allocation VP
vp_upper_bound
E dynamic allocation VP
vp_lower_bound
fixed allocation VP
0

Figure 5-4 : VP Allocation Map

To open a VP the user must specify the corresponding VPID of the VP that should be opened.
Many general purpose user (e.g. MPI) do not require a specific VPID. Such general purpose us-
ers can use the symbolic constant EXTOLL VP _ID ANY to force the VP manager to dynam-
ically open any VPID that is currently unused. The VPIDs that are dynamically managed by the
VP manager are located in the area between the value of vp_lower bound and vp_upper bound
(see Figure 5-4). This approach has the advantage that the first VPIDs can be reserved for users
that explicitly request these VPIDs and are not associated to a general purpose user by accident.

As mentioned in “Extoll Device Driver” on page 80 the EDD differentiates between a normal
users and super users. A normal user is only to able open resources that are actually not opened
by a normal user. The super users are able to access all resources independently whether the re-
sources have already been opened by a normal user or not. It is also possible that multiple super
users access the same resource at the same time bit it is important to note that only normal users
are able to use the opened resources for communication.

97

Implementation of the ESS

(

(
t

(

(
(
(
(
(
(

VP_CLOSED

(e)

VP_CONFIGURED { VP_CLOSING

VP_OPENED

(i) — » “normal” user
—p “super” user

a) A normal user opens a closed/free virtual port.

b) The normal user closed his virtual port and there were no “super” users simultaneously accessing
he same virtual port.

c) All resources and operations of the VP have been ended/freed.

d) A “super” user opened an unused/free port. There is no “normal” user at the moment.

e) A “super” user opened a virtual ports that is only opened by “super” users and no “normal” user.
f) A virtual port that has been opened by a “super” user has been requested by a “normal” user.
g) A “normal” user closed its virtual port, but there are still “super” users using the resources.

h) A virtual port has been closed by the last “super” user.

i) A “super” user has opened the VP.

Figure 5-5 : VP States

The support for normal and super users leads to the following 4 states for a VP (see Figure 5-5):

98

VP_CLOSED. The state VP_CLOSED means that no normal and no super user has opened
the corresponding VP. Because there are no users of the VP there are no resources associ-
ated with the VP.

VP_OPENED. The state VP_ OPENED means that a normal user has opened the VP.
Beside the normal user there can be any number of super user accessing the VP at the same
time. Because the VP has at least one user, the VP has a complete set of resources.

VP_CONFIGURED. The VP_CONFIGURED state is reached when at least one super
user has accessed the VP but no normal user. Because there exists at least one user the VP
has a complete set of resources.

VP_CLOSING. Like the VP_CLOSED state a VP in the VP_CLOSING state has no users,
but unlike in the VP_CLOSED state a VP in the VP_CLOSING state has still some
resources. The VP_CLOSING is a kind of parking state for a VP that needs to wait until all
resources could be freed.

Implementation of the ESS

Every time when a normal user opens a VP (enters state VP OPENED) or the normal user clos-
es the VP again (leaves state VP_OPENED) functions to enable and disable the VP are called
(see Listing 5-2). Both functions are responsible to update the corresponding VP descriptor and
to flush the possibly existing old entries from the caches. The edd vp_disable function addition-
ally must ensure that no resources of the VP are used any longer by the Extoll NIC.

extoll error t edd vp enable(edd vp t *vp)
extoll error t edd vp disable(edd vp_ t *vp)

Listing 5-2 : VP enable/disable Prototypes

5.5.4 Barrier Management

The barrier management supports no dynamical allocation of barriers. Therefore the user that
opens a barrier needs to know which barrier he wants to join. Like in the VP only one normal
user is able to open a barrier at a time while several super users are allowed to open a barrier
simultaneously.

5.5.5 UP Management

The UP Management is similar to the VP management. Because an UP has no dynamic resourc-
es (except the receive UP) and the UP are fixed hardware resources that are associated with a
process the management of the UP is much simpler. As for a VP only one normal user is allowed
to open a VP at once while several super users are allowed to open simultaneously.

5.5.6 Connections Management

There are no special management issues for the connection management. The user can create
new connections as long as there is enough memory available. Every connection that has been
created by the user must also be freed again.

5.5.7 VPG Management

There are no special management issues for the VPG management. The user can create new
VPG as long as there is enough memory available. Every VPG that has been created by the user
must also be freed again. Before a VPG can be freed the user must first remove all previous in-
serted VPs.

5.5.8 FOPS-Mapper

The FOPS-Mapper is a mechanism that maps the EDD interface that is offered by the EDD ker-
nel module to the user space. The mapping is realized by using device files (([LDD]). All device
file that belong to the EDD are locate in the “/dev/extoll” sub-directory. Unlike in the Atoll im-
plementation the Extoll device files are hierarchically organised (see Figure 5-6). The naming
of the device files is self explanatory. Device files that are prefixed with an ‘s’ are for super user
access. For the creation of the device files the extoll mknod tool can be used (see
“extoll_mknod” on page 133).

99

Implementation of the ESS

/
L dev

L extoll

—0

— barrier
—device
—up

—vp

— sdevice
— sup
—svp

—1
—barrier
—device
—up

—vp

— sdevice
— sup
—svp
—info

— Vpg

Figure 5-6 : FOPS-Mapper Device Files

The partitioning of the minor device number is shown in Figure 5-7 and Table 5-1. The device
is the number of the EDD device. The mode of the minor number specifies if the accessor is
normal user or super user. The mode encoding is shown in Table 5-3. The resource part of the
minor device specifies which device resources to open. The resource encoding is shown in Ta-

ble 5-2.
7 0
N AN
device mode resource
Figure 5-7 : Device file minor number partitioning
Minor Number Bits Description
7-5 The device number. This value represents the number of the
Extoll NICs.

Table 5-1: Minor device number partitioning

100

Implementation of the ESS

Minor Number Bits Description
4-3 The mode. This value describes how the resources should be
accessed (e.g. user or super user,).
2-0 The function-unit. This value identifies which resource to open,
e.g. the device, a virtual port, a barrier,
Table 5-1: Minor device number partitioning
Coding Name Description
000, info Provide access to general information.
001, device To open a device.
010, vp To open a VP.
011, barrier To open a Barrier.
100, up To open a Ultra port.
101, - 111, reserved Reserved.
Table 5-2: Minor number resources
Code Privileges Description
00, none Nobody is allowed to access this device. Not used.
01, user Only user functionality is allowed.
10, super user Super user functionality is allowed.
11, invalid This combination is not allowed.

Table 5-3: Minor number privileges

For the memory mapping of the different memory buffers and regions a half-automatic mapping
system has been implemented. First the user must query how many objects are mapped for a
given object and then the user must query which objects (type and size) are mapped. With this
system the order and the size of the mapped object can be dynamically evaluated.

5.5.9 Cache Management

The Cache Management mainly consists of the management of the TLB (“TLB - Translation
Lookaside Buffer” on page 57). The two main tasks of the Cache Management are the virtual
to physical address translation for the Extoll NIC (see Figure 5-8) and the maintenance of the
TLB consistence when memory remappings occur (see Figure 5-9).

101

Implementation of the ESS

EDD

Cache Manager

(3)
Event Manager

()

Swap In Page

Transfer Translation/Error

(%)

Extoll NIC TLB Update (TLB Miss "F(Create MissEvent ’

(1)

Figure 5-8 : TLB Miss Handling

Every time when the TLB has a miss, a corresponding TLB miss event will be created (Figure
5-8 (1)). The event will be received by the event manager of the EDD (Figure 5-8 (2)) and will
be delivered to the cache manager (Figure 5-8 (3)). The cache manager tries to perform the re-
quested translation (Figure 5-8 (4)). If the corresponding page is available in the main memory
(Figure 5-8 (Ia)) the translation information will be transferred to the Extoll NIC and the TLB
will update his information. If there exits a valid memory mapping for the requests address
translation but the corresponding page is actually swapped out (Figure 5-8 (Ila)) the cache man-
ager thread will be activated to swap the corresponding page in (Figure 5-8 (IIb)). An portable
and easy way to cause the swap in of valid user pages can be achieved with the get user pages
function ([LDD]). After the page has successfully been swapped in the address translation will
be transferred to the Extoll NIC where the TLB will update his information. In the case that
there is no valid memory mapping (Figure 5-8 (Illa)) a special address translation will be trans-
ferred to the Extoll NIC to signal the TLB that there is no valid memory mapping.

The memory mapping of a process can always be changed (e.g. swapping, mmap, munmap, ...).
Every time the memory mapping changes, the problem can occur that the Extoll NIC will use
address translations which are no longer valid. Let us consider the case that the Extoll NIC has
an address translation for a page that translates the virtual page address X to physical page ad-
dress Y and exactly this page will be swapped out. After the page has been swapped out the page
will be associated with a process or the operating system. If the Extoll would still use the old
translation information the wrong processes could be damaged by over-writing the memory.
Therefore the Extoll NIC must be consistent with the memory data structures of the processes.

102

Implementation of the ESS

(1) EDD

Memory Mapping
Change Hook
(2)

Flush TLB Entries
()

Wait for Flush
Completion

(1

(V)
Event Manager

(I

(4)

(1
Extoll NIC TLB Flush Entries Create FlushEvent

Figure 5-9 : Memory Remapping Handling

In Figure 5-9 the principle approach of a memory mapping modification is shown. Every time
the mapping of a process is changed a callback function in the EDD cache manager will be
called with all necessary information that describe the memory mapping modification (Figure
5-9 (1)). This hook function will determine if and which entries of the TLB are affected and
flush them from the TLB (Figure 5-9 (2)). After the flush operation has been initialized the func-
tion will wait until the flush operation has been completed. The Extoll NIC receives the flush
request and removes the TLB entries form the TLB. After the Extoll NIC ensured that none of
the flushed translations is used by any other resource of the Extoll NIC a flush completion event
is generated (Figure 5-9 (I1)). The flush completion event is received by the event manager (Fig-
ure 5-9 (III)) which will wake up the hook function. After the hook function received the com-
pletion of the flush operation the hook function will return and therewith return the control back
to the system. The standard Linux kernel has no support for the mentioned callback mechanism.
Therefore a kernel patch either of Quadrics (JQUADRICS]) or Thomas Schlichter
([SCHLICHO3]) must be applied to add the described callback functionality to the Linux kernel.

5.5.10 Poll/ePoll Support

As mentioned one of the biggest drawbacks of the Atoll design was that only polling has been
supported. This means that every time a process was waiting for e.g. a new message the process
had to poll in the replicator page. This busy polling wastes valuable CPU time that could be used
by another process to make some progress. Therefore the Extoll will support a non busy waiting.
If a process needs to wait for e.g. the arrival of a new message the process will go to sleep and
the Extoll NIC, or more precisely the EDD, will wake up the thread on the arrival of a new mes-
sage.

103

Implementation of the ESS

With the select/poll/epoll functions (see “Linux Select/Poll/Epoll” on page 129) Linux offers a
standardised way to wait for actions on different resources. The idea behind this functions is to
bundle several different file descriptors (e.g. sockets, files, futexes, ...) together and wait until
something happens on at least one of the file desriptors. To integrate the ESS with the standard
Linux system the ESS will also support the Linux poll mechanism.

The first thing that needs to be supported is a file descriptor, because the poll mechanism works
only on file descriptors. This can be done without any extra effort because the user already ob-
tained the file descriptor when a specific resource has been opened in user space. This also has
the advantage that with the file descriptor automatically specifies the resource. The file descrip-
tor that is passed to the user must not be closed by the user because this would lead to the release
of the specified resource.

To support the poll mechanism the EDD must implement the FOPS poll function. The function-
ality of the FOPS poll function is to check for the specified file whether new actions can be per-
formed or not (e.g. reading, writing, ...). If there are new actions for a file the FOPS poll function
will return the corresponding actions via a bit mask. For a detailed description of the FOPS poll
function refer to Linux Device Driver ([LDD]). The EDD will only support a wait functionality
for VPs and VPGs. The condition when a VP can make progress is reached when the VP has a
new notification in his NQ. To determine where to check for a new notification the read offset
of the NQ is required. Unfortunately it is not possible to transfer this information via select/poll/
epoll functions. Therefore the EDD must extract this information from the corresponding file
descriptor. To solve the problem each VP has a so called config page. The config page is a single
memory page that is associated with each VP. At the beginning of the config space an
extoll vp tobject (see Figure 5-10) is stored. The extoll_vp t object represents all information
that is necessary to manage a VP. The user must initialize and manage the extoll vp t object
and is responsible to keep the data structures up to date. A kernel user is able to use the
extoll vp t object directly while an user-level user needs to map the config page. In Figure 5-
11 both cases are visualized.

typedef struct extoll vp t {

extoll vp id t id;

extoll queue t sdr;

extoll queue t rdr;

extoll queue t cig;

extoll queue t ng;

extoll queue t wdt;

extoll ptr t trigger page;
} extoll vp t;

Figure 5-10 : Definition extoll vp t

Now the EDD has all necessary information to implement the poll functionality. When the EDD
needs to check for a certain VP if there is a new notification the EDD will extract the current
read offset from the config page that is associated with each VP.

104

Implementation of the ESS

edd_device0

KERNEL-SPACE : USER-SPACE
edd_vpX) >
config-
page
mem_sdrX [-
SDR
> mem_rdrX) ; - <
RDR
—(mem_cigX) < .
clQ
—»(mem_ngX) > '
NQ
mem_wdtX) > *
= - <
WDT
trig-page
o . :
> _mem_config0 /
dev-config
» \ ». :
> _mem_pages0)
trig-pages

A 4

» \
> _ mem_evq0)
event-queue

<:> Kernel Space Management Object —» Pointer

I:l Physical Continuous Memory —» Management Information

» - \
> mem_routing0) q
routing

Figure 5-11 : extoll vp t Object with memory mapping

105

Implementation of the ESS

5.6 EUI

As mentioned the EUI is an abstraction layer that hides the differences of the kernel- and user-
space access of the resources from normal users. The implementation is straight forward and
consists mainly of a mapping of functions to kernel- and user-space access methods.

5.7 EMI

As mentioned earlier the EMI is an abstraction layer that hides the differences of the kernel- and
user-space access to the resources for super users. The implementation is straight forward and
consists mainly of a mapping to functions for kernel- and user-space access methods.

5.8 EPI

In this section the word event does not refer to the events that have been introduced in “Event
System” on page 34. In this section the word event refers to EPI event (“EPI Events and Event
Dispatcher” on page 107).

5.8.1 Structure

- epedt | epeventt
+epi_evd new() +epi_event g)
+epi evd delete() +$:e\ent:get?t:ﬁe>¢()
+epi_ewd get fd() +epi_event get vp()
+epi_evd add vo() : +epi_event get notification()
+epi_evd del vp() ————eppt
++epi_evd test() \ Ll ErE)
+epi_evd wait() +epl v dosd)

+epi_wp get \p id()
+epi wp_get evd()
epi_deviee t +epi vp_send()
+epi_device open() +epi W _post send()
+epi_device dose() +epi_vp _post_receive()
+epi device get device id() +epi Vp_post_get()
+epi_vp_post_put()
+epi W post software event()
+epi W _post windowm)
+epi_wp_get connection qualifier()
. +epi W get events()
| epi bamiert | TEREL R i
! s b ; : | epiupt
-+epi_barrier_open() “rep objedt try lod{) SRl +epi_up open
+epi barier dose() || *éPLobjedt tnlodd) +epi_connection new() +eg_ug_d§eg
+epi_bamier enter() I:g:—ggiﬁg *+epi_connedtion delete() +epi_up corfig()
LGl e +epi_object set context() TRl pEETE)
+epi_object get. context() scplpleeer)

Figure 5-12 : Class Diagram of EPI

The structure of the EPI implementation is shown in Figure 5-12. As shown above there exists
one object for each resource of the Exoll. The event and evd object are new and are described
in “EPI Events and Event Dispatcher” on page 107. The EPI, like the whole Extoll, uses an

106

Implementation of the ESS

asynchronous communication model. The user starts an operation and the hardware will asyn-
chronously perform the requested operation. When the execution of an operation has finished
the user will be informed (see Figure 5-14).

5.8.2 EPI Events and Event Dispatcher

User

¢ EPI-Events

Event Dispatcher
(EVD)

EPI-Events

Notification ?

Extoll NIC Extoll NIC

Figure 5-13 : EVD

Definition 5-1 : EPI Events. The EPI events are not related to the events that are
generated by the Extoll for the EDD. The EPI Events are pure
software events that consist of a notification, a context value and
several management information. The EPI Events are events that
are generated by the EPI layer to inform the user about com-
pleted operations (see Figure 5-13).

Definition 5-2 : Event Dispatcher (EVD). An event dispatcher is a software
object that allows the user to bundle several VPs together and
receive events from them.

As shown in Figure 5-13 the EVD is an object that allows the user to bundle several VPs togeth-
er and receive events from them. If there are no events in the associated VPs it is possible to
sleep on a EVD until at least one of the associated VPs has a new event. The introduction of the
EVD is required to allow the user to have a single object to wait on for new events. If there was
not an EVD the user would have to poll on all opened VPs in a round robin fashion. The user is
able to receive a file descriptor that represents the EVD. This file descriptor can be used with
the poll/epoll functions. This allows the user to wait simultaneously on different resources (e.g.
futex, socket, file, ...) without polling. The EVD is also able to work on VPs of different NICs.

107

Implementation of the ESS

5.8.3 Polling and Waiting

Request Request Request EPI-Events

Re-Order
Barrier Ultra VP Unit

Notifications

EUI
\ Polling J K Polling + Wait

Figure 5-14 : EPI polling and waiting parts

As mentioned earlier the Extoll supports a polling and a waiting approach for detection of com-
pleted operations. As shown in Figure 5-14 barriers and Ultra ports only support the polling ap-
proach. This makes sense because both components are optimized for low latency. For VPs and
EVDs it is possible to poll for new EPI events or to wait until there are new events available.

5.8.4 VP window management

Like the communication operations are the window management operation asynchronously.
This means that the user posts a request operation and, later after the operation has completed,

the user will receive a corresponding event. The following kind of window operations are avail-
able:

* Window Create. This operation allows the user to create a new memory window. The user
is able specify the window ID of the window that should be created or specify
EXTOLL WINDOW ID ANY to create a window with the next available free ID. The
user must not use the window until the corresponding window-created-event has been
received.

* Window Modify. With window modify operation it is possible to change the configuration
of an already opened window.

* Window Delete. The window delete operation frees the specified window. The user must
not use the window after the corresponding delete operation has been posted.

For all operations it is important to flush the corresponding entry from the window descriptor
cache to avoid wrong behaviour of the hardware in the case that there is an old version cached.

108

Implementation of the ESS

Window Modify EPI-Events

Window Create Window Delete
Create EPI-Event Create EPI-Event
Window Created Window Deleted
Create EPI-Event
Window Modified

Notification Handler

A

Allocate new WD

Modify WD

Create WDFlushVCI

(_ Post WDFlushVCl ’

Flush WD-Cache

Delete WD

EPI

Extoll NIC

Create WDFlushNotification

Figure 5-15 : Window Management

5.8.5 Thread Safety

Definition 5-3 : Co-operative thread safety. To avoid expensive locking opera-
tion inside the EPI the EPI supports co-operative thread safety.
This means that EPI is per default not thread safe. If different
threads want to access the EPI simultaneously each thread has to
lock all objects that are passed via parameter to the functions that
are called.

For performance reasons the EPI will only support co-operative thread safety.

5.8.6 Context Value

The context value is a user specific value (64 bit word) that can be associated with each EPI
object and every communication operation that is triggered (excepted the Ultra port communi-
cation). This context value has no internal meaning and therefore can contain any value. The
context value is a mechanism for the user to manage asynchronous communication. When for
example a user starts a send operation the pointer of the corresponding request or connection
object can be used as context value. After the operation is completed the user will receive the
corresponding event and therewith the context value. This allows the user an efficient and fast
matching of events to his own data structures.

109

Implementation of the ESS

110

Conclusion & Outlook N9V

6

6.1 Conclusion

The goal of this diploma thesis was to evaluate and design the software interface of the Extoll
device by using the hardware-software co-design approach. As result of this thesis, a complete
specification of the hostport software interface for the currently specified features has been de-
signed. In parallel to the specification of the hostport software interface a complete software en-
vironment with the name Extoll Software Stack (ESS) has been developed. The ESS consists of
seven specialized modules which are working in user- and kernel-space. The ESS modules can
be grouped into the Device Driver Framework (EMM, ERM and EDD) and the Extoll Software
Developer Kit (EUIL, EMI and EPI).

The device driver framework supports all necessary functionality for management and main-
tains all of the Extoll resources currently specified. The Extoll SDK enables a user to access the
Extoll resources either in user- or kernel-space. All the implemented features have been tested
as far as the current development allowed. Each of the ESS modules is itself sub-divided into
smaller modules. This modular approach makes the whole ESS very stable, maintainable and
flexible. Therefore the ESS modules can be easily adopted and extended to future Extoll fea-
tures.

Name Core Examples Tests Sum
COMMON 3610 90 170 3870
ELS 1200 180 310 1690
EMM 2590 170 280 3040
ERM 3020 260 21140 24420
EDD 9110 - 60 9170
EUI 3780 1990 790 6560
EMI 3660 1240 150 5050
EPI 4810 - 810 5620
Sum 31780 3930 23710 59420

Table 6-1: Quantitative Analyse of the ESS (lines of code)

The whole ESS consists of approx. 59000 lines of code! (see Table 6-1). Despite the fact that
the code has been written in C, the whole design follows the object oriented design paradigms.
The resulting libraries are able to be used in C/C++ programs. The whole code has been docu-
mented with an in-line API documentation system ([DOXYGEN])).

1. Measure with the word count utility wc.

111

Conclusion & Outlook

6.2 Outlook

As mentioned before this thesis covers only the Extoll resources that are currently specified.
There are still some features under active development which need to be integrated. This applies
to the whole cache system of the Extoll. The design and implementation of the Extoll cache sys-
tem is part of the diploma thesis of Felix Rembor ((REMBORUO06]). Therefore the mechanism of
the address translation management are still missing in the EDD implementation. In the case of
a process crash the EDD takes care that no resources are lost, but the detection of a process crash
and the final cleanup are still missing in the implementation.

Due to the of lack of existing hardware or software simulation the communication mechanism
in the ESS could not be tested. Therefore more testing of the communication mechanism is re-
quired at the time the necessary environments are available.

The ESS already covers a lot of the tasks that have been done by the former Atoll Daemon (e.g.
routing management). Therefore an evaluation is required if an Extoll Daemon is still required
and which tasks have to be performed by this daemon.

112

References [

[ATOLL] The Atoll Homepage; http://www.atoll-net.de.

[ATOLL99] Lars Rzymianowicz, Ulrich Briining, Jorg Kluge, Patrick Schulz and
Mathias Waack; ATOLL: A Network on a Chip; 1999.

[ATOLLO0] Markus Fischer, Ulrich Briining, Jorg Kluge, Lars Rzymianowicz,
Patrick Schulz and Mathias Waack; ATOLL, a new switched, high
speed Interconnect in Comparison to Myrinet and SCI; 2000.

[ATOLLO2] Ulrich Briining, Holger Froning, Patrick R. Schulz, Lars Rzymianow-
icz; ATOLL: Performance and Cost Optimization of a SAN Intercon-
nect; 2002.

[ATOLLO03] David Slogsnat, Patrick R. Haspel, Holger Froening and Ulrich Bruen-
ing; ATOLL: Performance and Cost Optimization of a SAN Intercon-
nect; 2003.

[CSB] Lambet Schaelike, Alan L. Davis; Design Tradeoff for User-level I/O
Architectures;

[DAT] Direct Access Transport Collaborative Specification; http://www.dat-
collaborative.org.

[DOXYGEN] Doxygen documentation system Homepage; http://www.doxygen.org.

[DREPPEROS] Ulrich Drepper; Futexes are Tricky; http://people.redhat.com/~drepper/
futex.pdf; 2005.

[ELAN] Quadrics Ltd.; Elan Programming Manual, http://www.quadrics.com;
2005.

[FELDNERO04] Ingo Feldner; High Level Executable Specification Development of a
high performance SAN chip; Diploma Thesis, Computer Architecture
Group at the Department of Computer Engineering, University of Man-
nheim; 2004.

113

References

[FOWLER]

[FRANGERO04]

[GCC]
[IBTA]

[LDD]

[LITZ05]

[MAURER]
[MPIFORUM]

[MPI2]

[MX]

[MYRICOM]

[NUSO03]

[PERF05]

[PFISTER]

114

Martin Fowler; UML Distilled Third Edition. A Brief Guide to the
Standard Object Modelling Language; Addision Wesley; 2003.

Dirk Franger; A Multi-Context Engine for Remote Memory Access to
Improve System Area Networking; Diploma Thesis, Computer Archi-
tecture Group at the Department of Computer Engineering, University
of Mannheim; 2004

GNU Compiler Collection Homepage; http://gcc.gnu.org
Infiniband Trade Association Homepage; http://www.infinibandta.org.

Jonathan Corbet, Alessandro Runini, Greg Kroah-Hartman; Linux
Device Drivers; O’Reilly; 2005.

Heiner Litz; Advance hardware communication techniques; Diploma
Thesis, Computer Architecture Group at the Department of Computer
Engineering, University of Mannheim; 2005.

Wolgang Maurer. Linux Kernelarchitectur. Hanser 2004.
The MPI Standard; http//www.mpi-forum.org.

MPI-Forum; The MPI-2 Standard; Homepage http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.htm; 1997.

Myricom; Myrinet Express (MX): A High-Performance, Low-Level,
Message-Passing Interface for Myrinet; http://www.myricom.com;
2005.

Myrinet Inc. Homepage; http://www.myrinet.com.

Mondrian Nuessle; Design and Implementation of a distributed man-
agement system for the ATOLL high-performance network; Diploma
Thesis, Computer Architecture Group at the Department of Computer
Engineering, University of Mannheim; 2003.

Holger Froning, Mondrian Niissle, David Slogsnat, Patrick R. Haspel,
Ulrich Briining; Performance Evaluation of the ATOLL Interconnect;
2005.

Gregory F. Pfister; An Introduction to the InfiniBand Architecture.

References

[POSIX] The POSIX standard; http://www.opengroup.org/onlinepubs/
009695399/toc.htm.

[QUADRICS] Quadrics Inc. Homepage; http://www.quadrics.com.

[REMBORO06] Felix Rembor; Exploration, Development and Implementation of differ-
ent TLB Function and Mechanism; Diploma Thesis, Computer Archi-
tecture Group at the Department of Computer Engineering, University
of Mannheim; expected 2006

[RZY97] Lars Rzymianowicz; Designing Efficient Network Interfaces for System
Area Networks; Dissertation Thesis, Computer Architecture Group at
the Department of Computer Engineering, University of Mannheim,;
1997.

[SCHLICHO03] Thomas Schlichter; Exploration of Hard- and Software requirements
for one-sided zero copy user-level communication and its implementa-
tion; Diploma Thesis, Computer Architecture Group at the Department
of Computer Engineering, University of Mannheim; 2005.

[SOHOS] Richard Sohnius; Creating an Executable Specification Using SystemC
of a High Performance, Low Latency Multilevel Network Router;
Diploma Thesis, Computer Architecture Group at the Department of
Computer Engineering, University of Mannheim; 2005.

[SPONEROS] Timo Sponer. Development, Verification and Integration of a Process-
ing Unit in the Communication Function of a SAN Device in SystemC;
Diploma Thesis, Computer Architecture Group at the Department of
Computer Engineering, University of Mannheim; 2005.

[TANENBAUM] Andrew S. Tanenbaum; Operating System - Design and Implementa-

tion;
[TOP500] The TOP 500 Homepage; http://www.top500.org.
[STE9S] Richard Stevens. UNIX Network Programming, Volume 1, Second Edi-

tion: Networking APIs: Sockets and XTI. 1998.

[STORKO05] Sven Stork. ESS Reference Manual. Internal Documentation, Computer
Architecture Group at the Department of Computer Engineering, Uni-
versity of Mannheim; 2005.

[UMPI2] William Gropp, Ewing Lusk, Rajeev Thakur. Using MPI-2 - Advanced
Features of the Message Passing Interface. The MIT Press. 1999.

115

References

[UML] James Rumbaugh, Ivar Jacobson, Grady Booch; The Unified Modelling
Reference Manual; Addision Wesley; 1999.

[VERBS] Mellanox Technologies; Mellanox IB-Verbs API; http:// www.mel-
lanox.com; 2001

116

Glossary a3/

B

API

API is an acronym “Application Programming Interface”.

ATOLL

ATOLL is an acronym for “Atomic Low Latency”. The ATOLL NIC belongs to the family
of SANs and is the direct predecessor of the Extoll NIC.

BSD

BSD is an acronym for “Berkley Software Distribution”.

CIQ

CIQ is an acronym for “Communication Instruction Queue”.

Cluster

A cluster consists of several independent nodes that are connect by a SAN. Computation task
are distributed across the nodes of a cluster to increase the over all computation power.

CSB

CSB is an acronym for “Conditional Store Buffer”.

DAPL

DAPL is an acronym for “Direct Access Programming Library*.

DTO

DTO is an acronym for “Data Transfer Operation®.

EDD

EDD is an acronym for “Extoll Device Manager”.

ELS
ELS is an acronym for “Extoll Logging System”.

EMI

EMI is an acronym for “Extoll Management Interface”.

117

Glossary

EMM
EMM is an acronym for “Extoll Memory Manager”.

EP

EP is an acronym for “Endpoint”.

EPI

EPI is an acronym for the “Extoll Programming Interface”. The EPI is the successor of the
ATOLL-Palms.

EPU

EPU is an acronym for “Extoll Processing Unit”.

EUI

EUI is an acronym for “Extoll User Interface”.

ESS

ESS is an acronym for “Extoll Software Stack™.

ETF

ETF is an acronym for “Extoll Testing Framework”.

Event

An event is an well defined descriptor that is generated by the Extoll NIC to provide the de-
vice driver with information.

Extoll

Extoll is an acronym for “Extended ATOLL”. The Extoll NIC belongs to the family of
SANSs.

FU

FU is an acronym for “Function Unit”.

GM
GM is the acronym for “Glenn’s Messages”. GM is an older API for the Myricom SANSs.

HCA
HCA is an acronym for “Host Channel Adapter”.

118

Glossary

HT
HT is an acronym for “Hyper-Threading”.

IBA

IBA is an acronym for “Infiniband Architecture”.

IPoExtoll
[PoExtoll is a network device driver that tunnels IP packets through the Extoll SAN.

ISV

ISV is an acronym for “Independent Software Provider”.

LRU
LRU is an acronym for “Least Recently Used”.

MMU

MMU is an acronym for “Memory Management Unit”. A hardware resource that translate
virtual addresses into physical addresses.

MPI

MPI is an acronym for “Message Passing Interface”.

MX

MX is an acronym for “Myrinet Express”. MX is the most current API for Myricom SAN
solutions.

Notification

A notification is an well defined descriptor that is generated by the Extoll NIC and stored in
the NQ of a VP.

NIC

NIC is an acronym for “Network Interface Controller”.

NQ

NQ is an acronym for “Notification Queue”.

PIO

PIO is an acronym for ”Programmed Input/Output”.

119

Glossary

PRO

PRQ is an acronym for “Posted Receive Queue”.

oP

QP is an acronym for “Queue Pair”.

RDR

RDR is an acronym for “Receive Data Region”.

SDR

SDR is an acronym for :Send Data Region”.

SAN

SAN is an acronym for “System Area Network”.

TLB

TLB is an acronym for “Translation Lookaside Buffer”.

ULTRA

ULTRA is an acronym for “Ultra Low Latency Transaction®.

UML
UML is an acronym for “Unified Modelling Language” and/or “User Mode Linux”.

User-Level-Communication

In the case of a user-level communication a process is able to trigger network operations di-
rectly by accessing some resources of the hardware instead of trapping into the operating sys-
tem.

VCI

VClI is an acronym for “Virtual Communication Instruction®.

VP

VP is an acronym for “Virtual Port”.

VPD

VPD is an acronym for “Virtual Port Descriptor®.

VPID
VPID is an acronym for “Virtual Port Identifer*.

120

Glossary

WD

WD is an acronym for “Window Descriptor*.

wDT

WDT is an acronym for “Window Descriptor Table”. The WDT is organized as an array of
window descriptors.

121

Glossary

122

Coding Style N2

C

C.1 Coding Styles

To avoid mistakes during the implementation and usage of the ESS libraries/modules the fol-
lowing coding-style rules have been introduced. These rules help developers and users of the
ESS to become fast familiar with the modules and their usage. Some of these rules are necessary
to guaranty the collaboration with other libraries and user applications.

C.2 Naming convention

» Each function must be prefixed with “<§MODULE> <$OBJECT>* (see Figure C-1). The
module specifier is the module the function belongs to (e.g. els, epi or extoll for the global
scope). The object identifies the object that is manipulated by this function (e.g. vp, device,
...). The whole function name must be only consist of lower-case letters and underscores.
This is necessary to avoid conflicts with already existing functions of existing software
modules.

extoll error t epi vp open(...);
extoll error t extoll queue empty(...);
extoll error t els log open(...);

Listing C-1 : Examples of function names

» All object are expressed by an structure or enum. Like for the function each object has the
following naming convention <SMODULE> <§NAME> t. The module and name have
the same meaning as for functions. The whole name must only consist of lower case charac-
ters and under scores. To simplify the usage all objects must have a typedef to their own
name (see Listing C-2).

123

Coding Style

typedef struct epi vp t {
<$MEMBER>
<$MEMBER>
<$MEMBER>

lepi_vp_t;

typedef enum extoll barrier id t {

EXTOLL BARRIER ID 00 = 0x00,
EXTOLL BARRIER ID 01 = 0x01,
EXTOLL BARRIER ID 02 = 0x02,
EXTOLL BARRIER ID 03 = 0x03,
EXTOLL BARRIER ID 04 = 0x04,
EXTOLL BARRIER ID 05 = 0x05,
EXTOLL BARRIER ID 06 = 0x06,
EXTOLL BARRIER ID 07 = 0x07

} extoll barrier id t;

Listing C-2 : Examples of object names

» All enum values or defines are prefixed with <SMODULE_ > <$OBJECT> and must only
consist of capital characters and underscores. In the case of enums at least the first value

must have a value assigned. In general ever value should have a value assigned (see Listing
C-2).

* All environment variables that are used to control the behaviour are prefixed with
“EXTOLL ” and must only contain capital letters and underscores (e.g.
EXTOLL LOG LEVEL).

* All ordinary variable ‘[ypesl must have a typedef to an unique name that is prefixed with
“extoll . This is necessary to avoid problems between the 32 Bit and 64 Bit architectures
when different data types can have different sizes.

C.3 Source Code

» At the beginning of each file a copyright message must be present (see Listing C-5).

» All header files must encapsulated their context in an extern “C” extern statement. This is
necessary to compile and link the ESS modules with C++. For readability reasons the
“BEGIN_C DECLS” and “END_C DECLS* macros have been defined (see Listing C-5).

* Each function must have a documentation header that describes the behaviour and the
parameters of the function (see Listing C-3).

1. e.g.int, char, ...

124

Coding Style

*

<$FUNCTION DESCRIPTION>

@param <$SPARAM NAME> <SPARAM DESCRIPTION>
@param <SPARAM NAME> <SPARAM DESCRIPTION>
@param <SPARAM NAME> <SPARAM DESCRIPTION>
@return <SRETURN VALUE DESCRIPTION>

X o o % % % % %

~

Listing C-3 : Comment header template
All source code files must have an indention 4. The indention is made by spaces and not by
tabs to avoid problems with different editors.

The return value of each function call must be checked for an error. This check can be omit-
ted if the function has no return value or always returns success.

ex _err = eul vpg(&vpg);

if (ex err != EXTOLL SUCCESS) {
// do error handling

}

ex err

Listing C-4 : Examples of correct error checking

All header files are accessible by “extoll/<SMODULE>/<$HEADER>" (e.g. “extoll/com-
mon/extoll_list.h”).

A template for a header file is shown in Listing C-5.

125

Coding Style

/*******~k~k~k~k~k~k~k~k~k~k~k~k~k~k**

(C) <S$SYEAR>, <S$AUTHOR>, Computer Architecture Group,
University of Mannheim, Germany

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

R S b I S b e b b I S IR S b I S R I S I S S S b I b SR I dh S 2b S b S b e S b I SR e S b Sh b S db S db I Sb db B Sb 2b I S 2

N R e S S S . S S . S S k. S I S N

#include <extoll/common/extoll defines.h>

#ifndef EXTOLL_ _<SMODULE> <$SFILENAME>
#define EXTOLL_ _<SMODULE> <S$FILENAME>

BEGIN C_DECLS
<$INCLUDES>
<$DATATYPES>
<$PROTOTYPES>
END C_DECLS

#endif /* | EXTOLL _<$MODULE> <$FILENAME> _ */

Listing C-5 : Header template

C.4 General

» All variables, structures and memory blocks must be initialised before they are used.

* The order of the parameters should be first the IN parameters then the OUT parameters. IN/
OUT parameters are handled as OUT parameters.

» Inline functions should be used instead of macros, because in the case of inline functions the
compiler is able to make type checking on the parameters and the return value while a
macro is only a text replacement of the pre-processor. This helps to detect and to avoid mis-
takes already during the compilation.

126

Coding Style

To reduce the name pollution as much as possible functions and global variables that do not
belong to the interface must not be visible outside of the corresponding component.

All function have to return an error of the type extoll error t.

All objects that must have a certain size (e.g. descriptors) must be marked with the packed
attribute ([GCC]) to ensure that the compiler will not optimize the memory layout of the
structure (see Listing C-6).

typedef struct attribute ((packed)) extoll window descriptor t ({
<SMEMBERS>
} extoll window descriptor t;

typedef struct attribute ((packed)) extoll uint48 t ({
extoll uint64 t value:48;
} extoll uint48 t;

Listing C-6 : Examples of a packed objects

Instead of writing one big function that performs a big number of actions it is better to split
a huge function into several smaller functions that only perform one specific task.

As long as there is no need because of timing problems, the code should be optimized for
readability, because code is written once but read several times.

127

Coding Style

128

Linux Select/Poll/Epoll FE9VI=

D,

D.1 Motivation

In real world applications the user needs to read/write data from a file or socket. To perform this
operations the user will call the standard posix read/write functions. These functions can work
in a blocking or in a non-blocking mode. In the best-case these functions immediately transfer
the requested amount of data before they return. The difference occurs in the case when there
are not enough resources to transfer the whole requested amount of data. In the blocking mode
the process will sleep inside the function call until the whole amount of data has been trans-
ferred. In the non-blocking case the function call will return if the process would need to wait.

fd0 fd1 fd0 fd1 fdO fd1
(] | J;
=
|_
v _— L l:l data transfer
|:| sleeping
] polling

OcKing non-blocking + polling non-blocking + waiting

(a) (b) (€)

Figure D-1 : blocking vs. non-blocking

In the case that a user works with only one file descriptor there is no real problem with this se-
mantic. The problem occur in the case when a process needs to transfer data on different file
descriptors. If the user would use the blocking approach the user would need to wait until the
whole data had been transferred on the first file descriptor before he could transfer data on a
second descriptor. This is illustrated in Figure D-1 (a).

129

Linux Select/Poll/Epoll

In the non-blocking case the user may transfer as much as possible data on the first file descrip-
tor until the function would block, but instead of going to sleep the user could start transferring
data on the second file descriptor until this file descriptor also would cause the function to block.
If the user is not able to transfer data on any file descriptor the user would have to poll on all
file descriptors to figure out when and which descriptor becomes ready next. This will lead to
the case that the CPU does an active polling which waste a lot of CPU power. This behaviour
is shown in Figure D-1 (b).

The blocking approach has the drawback that the process wastes lot of time sleeping in a func-
tion call on the first file descriptor while the user could transfer data on another file descriptor.
The non-blocking approach solves this problem by introducing the problem, while at the same
time the problem of active pollins is introduced in the case the that there are no descriptors ready
for a data transfer. The behaviour that would be desired is show in Figure D-1 (c). The user tries
to transfer as much data as possible on each file descriptor and when all file descriptors are busy
the user decides to go to sleep until one of the file descriptors becomes ready again. For this
purpose the select, poll and epoll mechanisms where introduced. To avoid that a process needs
to wait forever all these mechanisms support timeout value.

D.2 Classical Approaches

D.2.1 Select

Select is the oldest mechanism that has been introduced to solve the described problem. The idea
is that the user is interested in the state (or changing of state) of a set of file descriptors. The user
creates a file descriptor set and adds the file descriptors into this set. As shown in Listing D-2
the select call supports 3 different kind of file sets, one for reading events, one for writing events
and one for other events (e.g. connection events).

int select

(

int n,

fd set *readfds,
fd set *writefds,
fd set *exceptfds,

struct timeval *timeout

Listing D-1 : Prototype Select

130

Linux Select/Poll/Epoll

D.2.2 Poll

The poll system call is a newer implementation that uses only one file descriptor set for all file
descriptors. For each file descriptor the user can specify the events that should be observed (see
Listing D-2).

int poll

(
struct pollfd *ufds,
unsigned int nfds,
int timeout

Listing D-2 : Prototype Poll

D.2.3 Drawbacks

The drawback with both approaches is that both mechanism do not scale very well for a large
amount of file descriptors. This comes from the fact that in both cases for every function call
the kernel must copy all the information from the user-space to the kernel space and prepare the
data structures for waiting. This must happen every time even when the user wants to wait for
a file descriptor set even if there was no change in the file descriptor set. Because the amount of
data that must be exchanged is linear to the amount of file descriptors this approach scales very
bad for a huge amount of file descriptors.

D.3 New Approach

D.3.1 EPoll

The innovation of the new approach is to avoid the drawback of the old systems by splitting the
mechanism in 2 parts. The managing and the wait functionality (see Listing D-3). The epoll sys-
tem offers the possibility to modify the file descriptor set in the kernel with the epoll ct/ func-
tion. To wait on the file descriptor set the epoll system offers the epoll wait function. Because
the file descriptor set is pre-build in the kernel the epoll wait function does not need to ex-
change all the descriptor information. In the case that the file descriptor set does not change the
user needs only to call the wait function. In this case the wait is much more efficient.

int epoll ctl int epoll wait

((
int epfd, int epfd,
int op, struct epoll event *events,
int id, int maxevents,
struct epoll event *event int timeout

))

Listing D-3 : Prototypes of the epoll functions

131

Linux Select/Poll/Epoll

A special feature of the epoll object is that it has itself a file descriptor that is useable inside epoll

object (see Figure D-2).

Figure D-2 : Epoll System

D.4 Driver Support

To support each of the described mechanisms the driver needs to support the “poll” function of
the file operations structure (see Listing D-4).

unsigned int (*poll)

(
struct file *filp,
struct poll table struct *table

Listing D-4 : Prototype FOPS Poll function

The implementation of this function has to check which kind of operation on the specified file
will not block. Then the function must return a bitmask of all possible operations that can be
performed on the file without blocking. Independent of the current state of the file the function
also must specify a wait queue where the process can sleep on([LDD]).

132

Extoll Tools &5

E

E.1 extoll-config

E.1.1 Description

The extoll-config program offers access to all information that is necessary for compilation and
linking to Extoll Software Stack components.

E.1.2 Parameters

Parameter Description

--help Display all available parameters.

--version Display the current version of the installed ESS.

--prefix Display the installation prefix directory of the installed
ESS.

--cflags Display the C/C++ flags that are necessary to compile
modules/programs that used the ESS.

--els-libs Display the C/C++ flags to link a programs against ELS.

--eui-libs Display the C/C++ flags to link a programs against EUIL.

--emi-libs Display the C/C++ flags to link a programs against EMI.

--epi-libs Display the C/C++ flags to link a programs against EPI.

Table E-1: Parameters extoll-config

E.1.3 Possible Error

none.

E.2 extoll mknod

E.2.1 Description

This program creates all device files that are necessary for usage of the ESS. Before this pro-
gram can be executed the EDD module must be loaded to obtain the corresponding major
number. Per default the extoll mknod creates device files for 4 NICs. Before the new device
files are created possible old files will be removed.

133

Extoll Tools

E.2.2 Parameter

None.
E.2.3 Possible Errors

* The EDD module has not been loaded and therefore the program could not determine the
major number.
Solution : Load the EDD module.

» The device files cannot be deleted and/or created because of insufficient permission of the
user that executed the program.
Solution : The program must be executed by a user that has enough permissions to perform
the deletion/creation of device files.

E.3 extoll_modules

E.3.1 Description
This program loads and unloads the Extoll Software Stack kernel modules.

E.3.2 Parameter

Name Description
load Load the kernel modules.
unload Unload the kernel modules.

Table E-2: Parameter extoll modules

E.3.3 Possible Errors

* The user that called the program does not have enough rights to load/unload modules.
Solution : The program must be executed by an user with sufficient rights to load/unload
kernel modules.

134

Extoll Tools

E.3.4 Example

Unload
Unload
Unload
Unload
Unload
Unload
Unload

linux:~ #extoll modules load

Y=o R T 5 [OK]
T =X A Y (¢ [OK]
Y= o ¢ [OK]
Y= R Y [OK]
Y Y= N T [OK]
Y Y= =Y 2 [OK]
LT =K B Y o B [OK]

linux:~ #
linux:~ #extoll modules unload

[0 [OK]
EIMM 4 e e e e e e e e oo o oo o oo oo e e eneneeeeneeneeneeneeeeeeeneeeneens [OK]
[£ [OK]
1Y L O [OK]
LS e [OK]
15302 [OK]
[2 [OK]

linux:~ #

Listing E-1 : Example of extoll modules

E.4 extoll_info

E.4.1 Description

This program displays the configuration of the currently available devices in the system.

E.4.2 Parameters

None.

E.4.3 Possibly Errors

* The program cannot query the information because the EDD modules is not loaded.
Solution : Load the EDD modules.

* The program is executed with insufficient rights.
Solution : Execute the program as user with sufficient rights.

135

Extoll Tools

E.4.4 Example

linux:~ # extoll info
Found 2 devices

Extoll
|
| --Device:
| | -— Device Number
| | -— Device ID
| | --— Virtual Port Count
| |-— Barrier Count
| |--— Routing Table Len
| |-— Routing Slot Len
| |-— Routing Slot Count
| |-- CIQ len
| |--= WDT len
| |-- SDR len
| |-- RDR len
| |-- NQ len
| |-- VP lower bound
| +-- VP upper bound
|
+--Device:
| -— Device Number
| -— Device ID
| -— Virtual Port Count
| -— Barrier Count
|-- Routing Table Len
|--— Routing Slot Len
|-- Routing Slot Count
|--— CIQ len
|-— WDT len
|-- SDR len
|--— RDR len
|-— NQ len
+-- VP lower bound

0
[Oxcafe0000]
64

8
4096
128
4
4096
4096
4096
4096
4096
0

24

1
[Oxcafe0001]
64

8
4096
128
4
4096
4096
4096
4096
4096
0

Listing E-2 : Output of extoll info

E.S extollctl

E.5.1 Description

This program is used to query and change the runtime parameters of the Extoll Software Stack

kernel modules.

136

Extoll Tools

E.5.2 Paramters

Parameter

Description

-w variable=value

Modify a runtime variable.

-a

Display all available runtime variables.

Table E-3: Parameters of extollctl

E.5.3 Possibly Errors

* The user has not enough rights to access/modify the runtime parameters.

Solution : Execute the program as user with sufficient rights.

* There are no ESS components loaded.
Solution : Load ESS components.

E.5.4 Example

linux:~ # extollctl -a
emm.config.mem min order = 0
emm.config.mem max order = 11
emm.config.policy = simple

emm.config.els priority = ELS PRIORITY NONE

erm.config.slots per target = 4
erm.config.max table count = 4

erm.config.els priority = ELS PRIORITY NONE

linux:~ #

Listing E-3 : Output of extollctl

137

Extoll Tools

138

Declaration of Honour

I assure that this diploma thesis came into being without the help of a third person and without
the use of other sources and tools and that the used sources, if literal or in content, are marked.

The diploma thesis has not been submitted in this or in any other form to any authority of ex-
amination.

I am aware that a misstatement will have legal effects.

Mannheim, 11 January 2006

Sven Stork

	Abstract
	Contents
	Abstract III
	Contents V
	List of Figures XI
	List of Tables XIII
	List of Listings XV
	Introduction 1
	Communication Interfaces 5
	Extoll Hostport Interface 19
	Design of the ESS 71
	Implementation of the ESS 91
	Conclusion & Outlook 111
	References 113
	Glossary 117
	Coding Style 123
	Linux Select/Poll/Epoll 129
	Extoll Tools 133
	Declaration of Honour 139

	List of Figures
	List of Tables
	List of Listings
	Introduction
	1.1 Outline
	1.2 Conventions
	1.2.1 Definitions
	1.2.2 Decision Tree
	1.2.3 UML

	Communication Interfaces
	2.1 BSD Socket API
	2.2 Atoll - PALMS
	2.3 Myrinet - MX
	2.4 Quadrics - Elan Library
	2.5 InfiniBand - Verbs
	2.6 DAPL
	2.7 MPI
	2.8 Conclusions

	Extoll Hostport Interface
	3.1 Atoll Basics
	3.1.1 Atoll Architecture
	3.1.2 Atoll Send
	3.1.3 Atoll Receive
	3.1.4 Summary

	3.2 Extoll Overview
	3.3 Global Information for VPs
	3.3.1 Global Information for Event Queue

	3.4 Extoll Descriptors
	3.4.1 Virtual Port Descriptor
	3.4.1.1 Virtual Port Status Word
	3.4.1.2 Virtual Port Map

	3.4.2 Window Descriptor
	3.4.3 Notification Descriptor
	3.4.4 Virtual Communication Instruction
	3.4.5 Consistency

	3.5 Notification system
	3.5.1 Notification Error Codes

	3.6 Event System
	3.6.1 Event creation control
	3.6.1.1 Global Event Creation Controlling
	3.6.1.2 Event Creation Control per Virtual Port
	3.6.1.3 Event creation control per VCI
	3.6.1.4 Conclusion : Event creation control

	3.6.2 Event delivery
	3.6.2.1 Lazy Event Signalling
	3.6.2.2 Global Event Register
	3.6.2.3 Hardware Event Queue
	3.6.2.4 Memory Event Queue
	3.6.2.5 Conclusion: Event delivery

	3.6.3 Event Format

	3.7 Order of communication
	3.7.1 General observations
	3.7.2 Order of Communication in MPI
	3.7.3 Order of Communication in DAPL
	3.7.4 Order Classifications
	3.7.4.1 Complete in-order
	3.7.4.2 Complete in-order on a Virtual Connection
	3.7.4.3 In-order on Virtual Connections and the same Communication Class
	3.7.4.4 Out-of-order

	3.7.5 Conclusion : Order of Communication

	3.8 Send and Receive System
	3.8.1 Send/Receive with Ring Buffers
	3.8.2 Posted Send/Receive Operations
	3.8.2.1 Posted Receive Descriptors stored in Queue
	3.8.2.2 Posted Receives Descriptors stored in a Table
	3.8.2.3 Posted Receives provided by Software
	3.8.2.4 Posted Send/Receive without Matching
	3.8.2.5 Posted Send/Receive with Matching in Hardware
	3.8.2.6 Posted Send/Receive with Matching in Software
	3.8.2.7 Posted Send/Receive with Virtual Addresses
	3.8.2.8 Posted Send/Receive with physical addresses

	3.8.3 Send/Receive Emulation per RDMA
	3.8.4 Conclusion: Send/Receive Systems
	3.8.4.1 Posted Receive Descriptor Format

	3.9 Extoll Caches
	3.9.1 Cache Management
	3.9.2 RC - Routing Cache
	3.9.3 WDC - Window Descriptor Cache
	3.9.4 CC - Context Cache
	3.9.5 TLB - Translation Lookaside Buffer

	3.10 The Barrier
	3.10.1 Design of the Barrier Software Interface
	3.10.1.1 Single Barrier Allocation
	3.10.1.2 Collective Barrier Allocation
	3.10.1.3 Central Barrier Management
	3.10.1.4 Distributed Barrier Management
	3.10.1.5 Barrier Enter via Memory mapped I/O Page
	3.10.1.6 Barrier Enter via VCI
	3.10.1.7 Barrier Leave via I/O mapped Memory
	3.10.1.8 Barrier Leave via Notification
	3.10.1.9 Conclusion : Extoll Barrier

	3.10.2 Extoll Barrier Usage
	3.10.2.1 Barrier Mapping 1:1
	3.10.2.2 Barrier Mapping M:N

	3.11 The ULTRA System
	3.11.1 ULTRA Management
	3.11.2 ULTRA Send Port
	3.11.3 ULTRA Receive Port
	3.11.3.1 ULTRA Receive via PIO
	3.11.3.2 ULTRA Receive via DMA Buffer

	3.11.4 Conclusion : ULTRA Receive

	3.12 Proposal for a new RDMA Operation

	Design of the ESS
	4.1 Extoll Software Stack
	4.1.1 Requirements of the ESS
	4.1.2 Design of the ESS
	4.1.2.1 Routing Management
	4.1.2.2 Memory Management
	4.1.2.3 Logging Support
	4.1.2.4 Application Programming Interface
	4.1.2.5 Device Driver
	4.1.2.6 Conclusion : Design of the ESS

	4.2 Extoll Logging System
	4.2.1 Requirements
	4.2.2 Design

	4.3 Extoll Memory Manager
	4.3.1 Requirements
	4.3.2 Design

	4.4 Extoll Routing Manager
	4.4.1 Requirements
	4.4.2 Design

	4.5 Extoll Device Driver
	4.5.1 Requirements
	4.5.2 Design

	4.6 Extoll User Interface
	4.6.1 Requirements
	4.6.2 Design

	4.7 Extoll Management Interface
	4.7.1 Requirements
	4.7.2 Design

	4.8 Extoll Programming Interface
	4.8.1 Requirements
	4.8.2 Design

	4.9 Extoll Daemon

	Implementation of the ESS
	5.1 General
	5.1.1 Symbol Resolving
	5.1.1.1 Automatic Symbol Resolving
	5.1.1.2 Manual Symbol Resolving
	5.1.1.3 Conclusion : Symbol Resolving

	5.1.2 Extoll Testing Framework
	5.1.2.1 Design Goals
	5.1.2.2 Structure

	5.1.3 Configuration
	5.1.3.1 Compiletime Configuration
	5.1.3.2 Loadtime Configuration
	5.1.3.3 Runtime Configuration

	5.2 ELS
	5.3 EMM
	5.4 ERM
	5.4.1 Routing Table Management
	5.4.2 Routing Failure

	5.5 EDD
	5.5.1 Process Management
	5.5.1.1 Threads

	5.5.2 Device management
	5.5.3 VP Management
	5.5.4 Barrier Management
	5.5.5 UP Management
	5.5.6 Connections Management
	5.5.7 VPG Management
	5.5.8 FOPS-Mapper
	5.5.9 Cache Management
	5.5.10 Poll/ePoll Support

	5.6 EUI
	5.7 EMI
	5.8 EPI
	5.8.1 Structure
	5.8.2 EPI Events and Event Dispatcher
	5.8.3 Polling and Waiting
	5.8.4 VP window management
	5.8.5 Thread Safety
	5.8.6 Context Value

	Conclusion & Outlook
	6.1 Conclusion
	6.2 Outlook

	References
	Glossary
	Coding Style
	C.1 Coding Styles
	C.2 Naming convention
	C.3 Source Code
	C.4 General

	Linux Select/Poll/Epoll
	D.1 Motivation
	D.2 Classical Approaches
	D.2.1 Select
	D.2.2 Poll
	D.2.3 Drawbacks

	D.3 New Approach
	D.3.1 EPoll

	D.4 Driver Support

	Extoll Tools
	E.1 extoll-config
	E.1.1 Description
	E.1.2 Parameters
	E.1.3 Possible Error

	E.2 extoll_mknod
	E.2.1 Description
	E.2.2 Parameter
	E.2.3 Possible Errors

	E.3 extoll_modules
	E.3.1 Description
	E.3.2 Parameter
	E.3.3 Possible Errors
	E.3.4 Example

	E.4 extoll_info
	E.4.1 Description
	E.4.2 Parameters
	E.4.3 Possibly Errors
	E.4.4 Example

	E.5 extollctl
	E.5.1 Description
	E.5.2 Paramters
	E.5.3 Possibly Errors
	E.5.4 Example

	Declaration of Honour

