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Equality Logic

0 0 0 1 0 1

B Domain: £,,T,,T; €N

m The satisfiability problem: 1s there an assignment to
T,,%,,25 that satisfies ¢F ?

m Q: When 1s Equality Logic useful ?...
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Equality Logic

0 0 0 1 0 1

m A: Mainly when combined with Uninterpreted
Functions f(x,y), g(2),...

m Mainly used in proving equivalences, but not only.
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Basic notions

r:rx=yAy=zAz#cx

(non-polar) Equality Graph:

i Z

Gives an abstract view of ¢"
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From Equality to Propositional Logic
Bryant & Velev CAV’00 — the Sparse method

L1
O T =, N, =xy ATy # 24 %
B: e, AN e3 AN —eps g T,
¥E
L3

m Encode all edges with Boolean variables
[0 This 1s an abstraction
(1 Transitivity of equality 1s lost!

1 Must add transitivity constraints!
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" J
From Equality to Propositional Logic

L
E . — —
O T, =Ty \NTHy =23 N T # T4 1%
. Q)'_:
B . 61,2 /\ 62,3 /\ _|61,3 gjz
e
L3
M : For each cycle of size n,

forbid a true assignment to n-1 edges

T>=(eja Neys —e3) A
(e1a Nejz—ex3) A
(13N €33 —€,)

Check: BA TS
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From Equality to Propositional Logic
Bryant & Velev CAV’00 — the Sparse method

m Thm-1: It 1s sufficient to constrain simple cycles only
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From Equality to Propositional Logic
Bryant & Velev CAV’00 — the Sparse method

m Thm-2: It 1s sufficient to constrain chord-free simple
cycles
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From Equality to Propositional Logic
Bryant & Velev CAV’00 — the Sparse method

m Still, there can be an exponential number of chord-
free simple cycles...

m Solution: make the graph ‘chordal’!
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From Equality to Propositional Logic
Bryant & Velev CAV’00 — the Sparse method

m Din: A graph 1s chordal iff every cycle of size 4 or
more has a chord.

m How to make a graph chordal ? eliminate vertices one
at a time, and connect their neighbors.
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" N
From Equality to Propositional Logic
Bryant & Velev CAV’00 — the Sparse method

m In a chordal graph, it 1s sufficient to constrain only
triangles.

Contradiction!

m Polynomial # of edges and constraints.

m # constraints = 3 X #triangles
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An 1improvement
Reduced Transitivity Constraints (RTC)

m So far we did not consider the polarity of the edges.

:rx=yAy=zAz#cx

m Assuming ¢F 1s in Negation Normal Form

(polar) Equality Graph: .3/
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"
Monotonicity of NNF

m Thm-3: NNF formulas are monotonically satisfied
(in CNF this 1s simply the pure literal rule)

m Let ¢ be in NNF and satisfiable. Thm-3 implies:

O letak ¢

[0 Derive o’ from o by switching the value of a ‘mis-assigned’
pure literal in o

I Now o’ F ¢
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An 1improvement
Reduced Transitivity Constraints (RTC)

m Claim: in the following graph TR=e; A e, — €, is
sufficient

Q Allowing e.g.
B e,=e,=1,e;=F
# e
e SRS
1 RS
O e o)
€T =) Yy

m This 1s only true because of monotonicity of NNF
(an extension of the pure literal rule)
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Basic notions

N
, N
’ N
’, N
Q. \

z

m Fquality Path: a path made of equalities.
we write x =*z

m Disequality Path: a path made of equalities and
exactly one disequality. We write x #*y

m Contradictory Cycle: two nodes x and y, s.t. ="y
and z #* y form a contradictory cycle
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Basic notions

m Thm-4: Every contradictory cycle 1s either simple or
contains a simple contradictory cycle
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Definitions

m Dfn: A contradictory Cycle C is constrained under T
if T does not allow this assignment
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Main theorem

m |l
TR constrains all simple contradictory cycles,

and

. S
For every assignment o, o F TS — o F TR

From the
m then Sparse method

oF is satisfiable iff B A TR is satisfiable

The Equality

Formula
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Proof of the main theorem

m (=) ¢oF is satisfiable > BAT S is satisfiable > BATR
1s satisfiable

m (€) Proof strategy:
1 Let aR be a satisfying assignment to B A TR
1 We will construct o that satisfies B A 75

[0 From this we will conclude that ¢£ is satisfiable

Skip proof
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Definitions for the proof...

m A Violating cycle under an assignment aR:

m This assignment violates 7> but not necessarily TR
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More definitions for the proof...
m An edge e = (v;,v,) 1s equal under an assignment o 1t
there 1s an equality path between v; and v, all assigned

T under a.. Denote: v; =7 v
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More definitions for the proof...
m An edge e = (v;,v)) 1s disequal under an assignment o
iff there 1s a disequality path between v; and v, in

which the solid edge 1s the only one assigned false by
o. Denote:v; #5 v
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Proof...
m Observation 1:
The combination ¢y #£* v3 vy =% vo vy =5

is impossible if o= aX

(recall: oR E TR) Sa.
T\\
T
T 0

m Observation 2: if (vy,v5) 1s solid, then vy #7, v-
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ReConstructing o

Type 1: Type 2:
It 1s not the case that Vo zfy V- Otherw>li<se 1t 1S not the case that
V1 Fa U
“e.
9 T T
SN r ®
Y1 v,
m Assign o® (e,,) =F m Assigna(e,)=T

In all other cases a8 = aR
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ReConstructing o

m Starting from ok, repeat until convergence:
1 alep) :=F mall Type 1 cycles
1 alep) :=Tinall Type 2 cycles

m All Type 1 and Type 2 triangles now satisfy TS
m /3 is still satisfied (monotonicity of NNF)

m Left to prove: all contradictory cycles are still
satisfied
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Prootf...

m Invariant: contradictory cycles are not violating
throughout the reconstruction.

m vy =} v contradicts the precondition to make this

assignment. ..
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Prootf...

m Invariant: contradictory cycles are not violating
throughout the reconstruction.

m v1 =/, v contradicts the precondition to make this
assignment. ..
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"
Applying RTC

m How can we use the theorem without enumerating
contradictory cycles ?

B Answer:
[0 Consider the chordal graph.

[0 Constrain triangles 1f they are part of a (simple)
contradictory cycle

O How?
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m Focus on Bi-connected dashed components built on
top of a solid edge

[0 Includes all contradictory cycles involving this edge
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m Make the component chordal

1 Chordal-ity guarantees: every cycle contains a simplicial
vertex, 1.€. a vertex that 1ts neighbors are connected.
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The RTC algorithm

m Constraints cache:
e, Ney— ¢
e, Ne;, — ¢
[ es Aeg— ¢y

~
~
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~
~
~
~
~
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Constrains all contradictory cycles

m Constraints cache:
e, Ney— ¢
e, Ne;, — ¢
AN e N

-
.
- -
-
S 4
\\\ /,
~ . -
-
11 s ’
~ e
SS e
~
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Constraining simple contradictory cycles

The constraint e; ; A e; s 2 €54 is not added cache:

€56 /\ €46 2 €45

@ {- O
7 / S
/7 | / | \
/ I / : S
4 | 4 | \
/ / \
/ | /7 | \
V4 | V4 : \
/ / \
/’ I /7 i \
’ 1 7 I \
' & O O
L T\ Ls T
3 /7 6
S P
~
~ A
Sy - - i -

~-——_——

Open problem: constrain simple contradictory cycles in P time
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Constraining simple contradictory cycles

the consHEdRt s drSph Rag 3 AoROLagEsd, though needed

Here we will stop, although ... cache:
7 S €56 /\ €46 2 €45
7 T S
~ \
- ~ - // | // | \
S /7 | 7/ | N
e | / : \
7 SO y: \
y; 4 y; I \
’ S ¢ \
/7 | 7z ~ | \
/ I / ™ I \
4 ‘ / Mg \ \
L1\ T3\ s L6
S 7 7’
~ ~ ~ &
Sy e ~ . - -

Sy -
5 s e - —

Open problem: constrain simple contradictory cycles in P time
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Results
Benchmark | # Sparse method RTC
set files | Constraints | Uclid zchaff | total Constraints | Uclid zchaff | total
TV 9 16719 148.48 1.08 149.56 16083 151.1 0.96 152.06
Cache.inv 4 3669 47.28 | 40.78 | 88.06 3667 54.26 | 38.62 | 92.88
Dix1c 3 7143 18.34 2.9 21.24 7143 20.04 2.73 22.77
EIf 3 4074 27.18 2.08 29.26 4074 28.81 1.83 30.64
000 6 7059 26.85 | 46.42 | 73.27 7059 290.78 | 45.08 | 74.86
Pipeline 1 6 0.06 37.29 | 37.35 6 0.08 36.91 | 36.99
Total 26 38670 268.19 | 130.55 | 398.74 38032 284.07 | 126.13 | 410.2
TV 9 103158 1467.76 | 5.43 | 1473.19 9946 1385.61 | 0.69 | 1386.3
Cache.inv 4 5970 48.06 42.39 90.45 5398 54.65 44.14 98.79
DIx1c 3 46473 368.12 | 11.45 | 379.57 11445 350.48 | 8.88 | 359.36
EIf 5 43374 473.32 | 28.99 | 502.31 24033 467.95 | 28.18 | 496.13
000 6 20205 78.27 | 29.08 | 107.35 16068 79.5 24.35 | 103.85
Pipeline 1 96 0.17 46.57 46.74 24 0.18 46.64 46.82
g2 1 3531 30.32 | 46.33 | 76.65 855 32.19 | 35,57 | 67.76
Total 29 | 222807 >|2466.02 | 210.24 | 2676.26 | 67769 | 2370.56 | 188.45 | 2559.01
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" J
Example: Circuit Transformations

Stage 1 lf , , :
m A pipeline processes data in stages
m Data 1s processed 1n parallel — as 1n an
i . assembly line
Stage 2 : m Formal Model:
C? () Ly = f(I)
C‘P Ly = Iy
: " Lz = k(g(L1))
[ > Lo Ly Ly
l ] Ly = h(Lq)

— C(LQ)?Lg , l(L4)

h
ol
|

> Ls Technion 40




"
Example: Circuit Transformations

lf

m The maximum clock frequency depends
on the longest path between two latches
> b m Note that the output of g 1s used
l as input to k
QP d) m We want to speed up the design by
QP postponing k to the third stage

= Ly L,

> Ls Technion




Validating Circuit Transformations

0
(o) A
)
Q%F%
Ly = f()
Lo = L,

h
W
|

= k(g(L1))

o

|+~

> L

]
oNo
Lot

>

74

Ly
Ly, =
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" J
Validating a compilation process

m Target program B Source program
U, =T, +Y; z=(x, +y) - (T, +9,);
u, =, + y.; Compilation
Z=u, - U; (T

m Need to prove that:

(u1:x1+y1Au2:x2+y2/\Zzul.u2) <_> Z:(x1+y1).(x2+y2)

— v - J
" N
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" J
Validating a compilation process

m Target program B Source program
U, =T, +Y; z=(x, +y) - (T, +9,);
u, =, + y.; Compilation
Z=u, - U; (T

m Need to prove that:

(u1:x1+ylAu2:x2+y2/\Z:ul.u2) H Z:(x1+y1).(x2+y2)
NI - N - N

1 /o 91 1 /o

~— —
—

97

Technion 44



"

Validating a compilation process

m Instead, prove:
L UF _ [ ... _  r A . _

under : for every uninterpreted function f
r=y— f(x)= f(y)
m Need to prove that:
(u1:x1+ylAu2:x2+y2Azzul.u2) <_> Z:(x1+y1).(x2+y2)

0 Which@ﬁslates to @?Ackermagﬂn’s reductionv T
1 , 1 1 2

—

(21 =a0Ay1 =
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