(Yet another) decision procedure for Equality Logic

Ofer Strichman and Orly Meir

Technion

Technion

Equality Logic

•
$$\phi^{\text{E}}$$
:
• $(x_1 = x_2 \land (x_2 = x_3 \lor x_1 \neq x_3))$

- Domain: $x_1, x_2, x_3 \in \mathbb{N}$
- The satisfiability problem: is there an assignment to x_1, x_2, x_3 that satisfies ϕ^{E} ?
- Q: When is Equality Logic useful ?...

Equality Logic

•
$$\phi^{\text{E}}$$
:
 $(x_1 = x_2 \land (x_2 = x_3 \lor x_1 \neq x_3))$

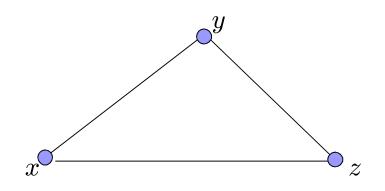
• A: Mainly when combined with Uninterpreted Functions f(x,y), g(z),...

Mainly used in proving equivalences, but not only.

Basic notions

$$\phi^{\mathrm{E}}: x = y \land y = z \land z \neq x$$

(non-polar) Equality Graph:

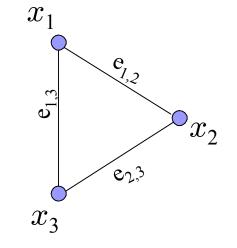


Gives an abstract view of ϕ^E

From Equality to Propositional Logic

Bryant & Velev CAV'00 - the Sparse method

$$\phi^{\mathrm{E}} : \quad x_1 = x_2 \wedge x_2 = x_3 \wedge x_1 \neq x_3$$
$$\mathcal{B} : \quad e_{1,2} \quad \wedge \quad e_{2,3} \quad \wedge \quad \neg e_{1,3}$$



- Encode all edges with Boolean variables

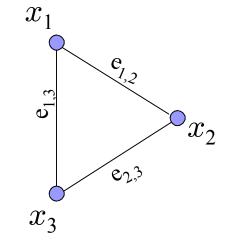
 This is an abstraction

 Transitivity of equality is lost!
 - □ Must add transitivity constraints!

From Equality to Propositional Logic

Bryant & Velev CAV'00 - the Sparse method

$$\phi^{\mathrm{E}} : \quad x_1 = x_2 \wedge x_2 = x_3 \wedge x_1 \neq x_3$$
$$\mathcal{B} : \quad e_{1,2} \quad \wedge \quad e_{2,3} \quad \wedge \quad \neg e_{1,3}$$



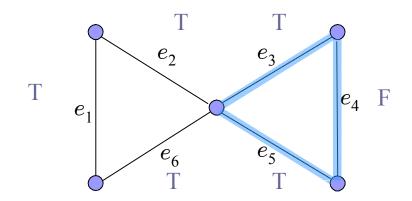
Transitivity Constraints: For each cycle of size n, forbid a true assignment to n-1 edges

$$\begin{aligned} \mathcal{T}^{\mathrm{S}} &= (e_{1,2} \wedge e_{2,3} \rightarrow e_{1,3}) \wedge \\ & (e_{1,2} \wedge e_{1,3} \rightarrow e_{2,3}) \wedge \\ & (e_{1,3} \wedge e_{2,3} \rightarrow e_{1,2}) \end{aligned}$$

Check:
$$\mathcal{B} \wedge \mathcal{T}^{S}$$

From Equality to Propositional Logic Bryant & Velev CAV'00 – the *Sparse* method

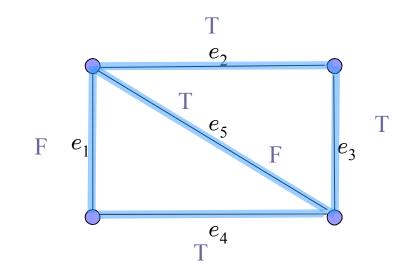
Thm-1: It is sufficient to constrain simple cycles only



From Equality to Propositional Logic

Bryant & Velev CAV'00 - the Sparse method

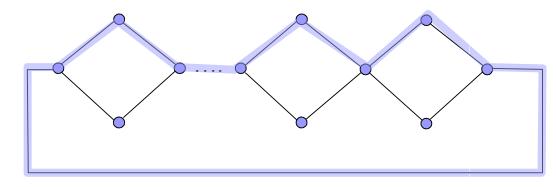
Thm-2: It is sufficient to constrain chord-free simple cycles



From Equality to Propositional Logic

Bryant & Velev CAV'00 - the Sparse method

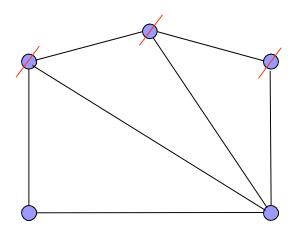
Still, there can be an exponential number of chordfree simple cycles...



• Solution: make the graph 'chordal'!

From Equality to Propositional Logic Bryant & Velev CAV'00 – the *Sparse* method

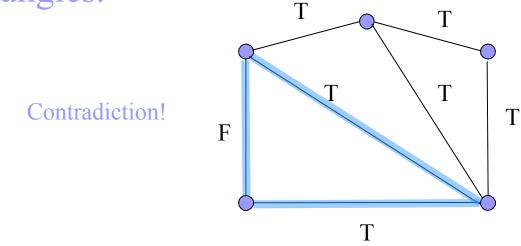
- Dfn: A graph is chordal iff every cycle of size 4 or more has a chord.
- How to make a graph chordal ? eliminate vertices one at a time, and connect their neighbors.



From Equality to Propositional Logic

Bryant & Velev CAV'00 - the Sparse method

In a chordal graph, it is sufficient to constrain only triangles.



Polynomial # of edges and constraints.

• # constraints = 3 × #triangles

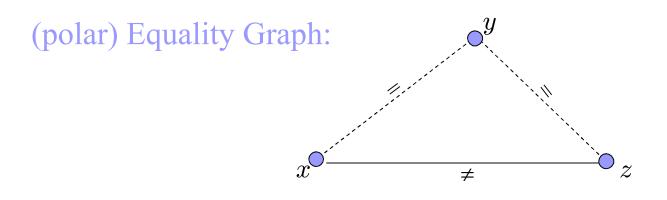
An improvement

Reduced Transitivity Constraints (RTC)

• So far we did not consider the polarity of the edges.

$$\phi^{\mathrm{E}} : x = y \land y = z \land z \neq x$$

• Assuming ϕ^{E} is in Negation Normal Form



Monotonicity of NNF

- Thm-3: NNF formulas are *monotonically satisfied* (in CNF this is simply the pure literal rule)
- Let ϕ be in NNF and satisfiable. Thm-3 implies:

 \Box Let $\alpha \vDash \phi$

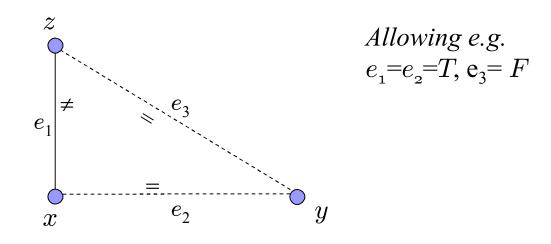
 \Box Derive α' from α by switching the value of a 'mis-assigned' pure literal in α

 \Box Now $\alpha' \models \phi$

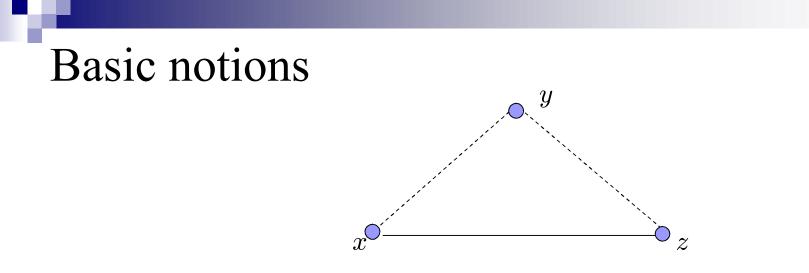
An improvement

Reduced Transitivity Constraints (RTC)

Claim: in the following graph $\mathcal{T}^{R} = e_3 \wedge e_2 \rightarrow e_1$ is sufficient

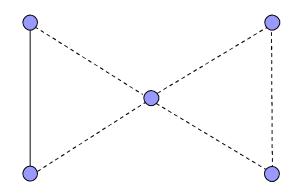


 This is only true because of monotonicity of NNF (an extension of the pure literal rule)



- Equality Path: a path made of equalities. we write x =*z
- *Disequality Path*: a path made of equalities and exactly one disequality. We write $x \neq *y$
- *Contradictory Cycle:* two nodes x and y, s.t. x = *yand $x \neq *y$ form a contradictory cycle

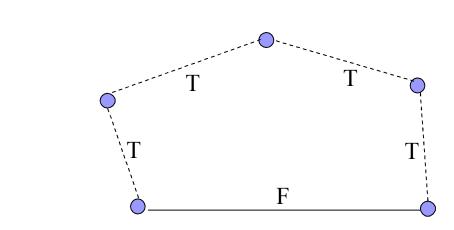
Basic notions



Thm-4: Every contradictory cycle is either simple or contains a simple contradictory cycle

Definitions

Dfn: A contradictory Cycle C is *constrained under* T if T does not allow this assignment



Technion

Main theorem

If

 $\mathcal{T}^{\mathbb{R}} \text{ constrains all simple contradictory cycles,}$ and $For every assignment <math>\alpha^{\mathbb{S}}, \alpha^{\mathbb{S}} \models \mathcal{T}^{\mathbb{S}} \rightarrow \alpha^{\mathbb{S}} \models \mathcal{T}^{\mathbb{R}}$ then From the Sparse method

 ϕ^{E} is satisfiable iff $\mathcal{B} \wedge \mathcal{T}^{R}$ is satisfiable *The Equality Formula*

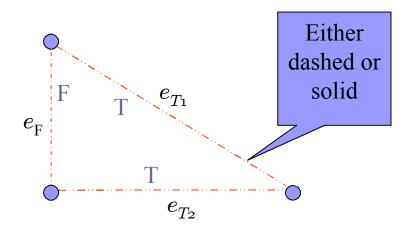
Proof of the main theorem

• (\rightarrow) ϕ^{E} is satisfiable $\rightarrow \mathcal{B} \wedge \mathcal{T}^{S}$ is satisfiable $\rightarrow \mathcal{B} \wedge \mathcal{T}^{R}$ is satisfiable

(←) Proof strategy:
 □ Let α^R be a satisfying assignment to B ∧ T^R
 □ We will construct α^S that satisfies B ∧ T^S
 □ From this we will conclude that φ^E is satisfiable

Definitions for the proof...

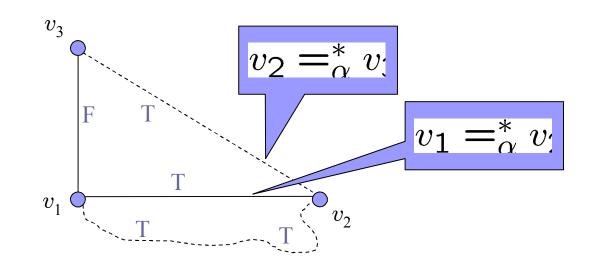
• A *Violating cycle* under an assignment α^{R} :



• This assignment violates \mathcal{T}^{S} but not necessarily \mathcal{T}^{R}

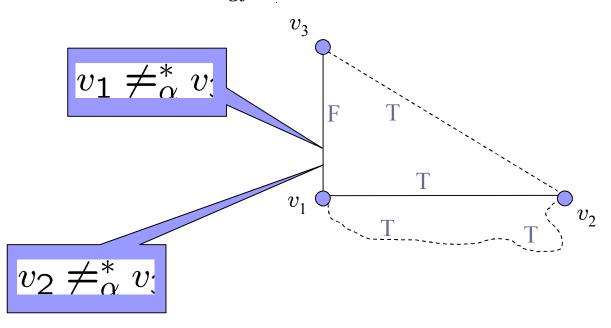
More definitions for the proof...

An edge $e = (v_i, v_j)$ is *equal under an assignment* α iff there is an equality path between v_i and v_j all assigned T under α . Denote: $v_i =_{\alpha}^* v_j$



More definitions for the proof...

An edge $e = (v_i, v_j)$ is *disequal under an assignment* α iff there is a disequality path between v_i and v_j in which the solid edge is the only one assigned false by α . *Denote*: $v_i \neq_{\alpha}^* v$



Proof...

• Observation 1: The combination $v_1 \neq^*_{\alpha} v_3$ $v_1 =^*_{\alpha} v_2$ $v_2 =^*_{\alpha}$ is impossible if $\alpha = \alpha^R$ (recall: $\alpha^R \models \mathcal{T}^R$) • v_1 • v_1 • v_2 • v_2 • v_2 • v_2 • v_2 • v_2 • v_3 • v_4 • v_2 • v_2 • v_3 • v_4 • v_2 • v_2 • v_3 • v_4 • v_5 • v_5

• Observation 2: if (v_1, v_3) is solid, then $v_1 \neq^*_{\alpha} v_1$

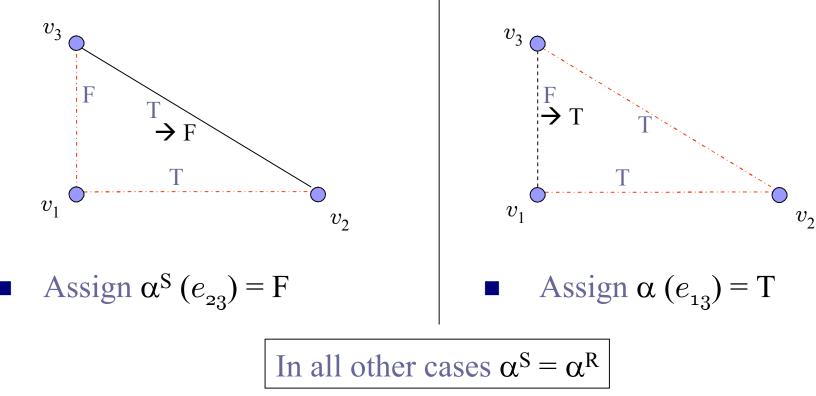
ReConstructing α^{S}

<u>Type 1:</u>

It is *not* the case that $v_2 =^*_{\alpha} v_1$

<u>Type 2:</u>

Otherwise it is *not* the case that $v_1 \neq^*_{\alpha} v_1$



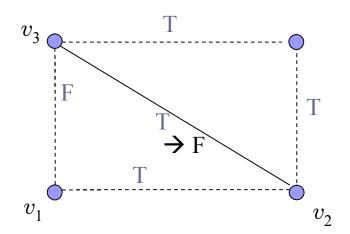
Technion

ReConstructing α^{S}

- Starting from α^{R} , repeat until convergence:
 - $\Box \alpha(e_T) := F \text{ in all Type 1 cycles}$
 - $\Box \alpha(e_F) := T \text{ in all Type 2 cycles}$
- All Type 1 and Type 2 triangles now satisfy \mathcal{T}^{S}
- **\square** *B* is still satisfied (monotonicity of NNF)
- Left to prove: all contradictory cycles are still satisfied

Proof...

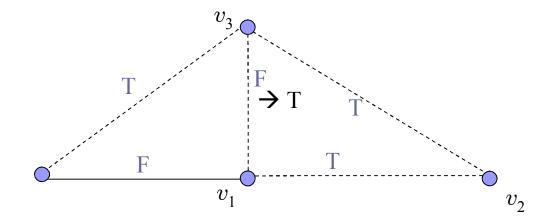
Invariant: contradictory cycles are not violating throughout the reconstruction.



• $v_2 =_{\alpha}^* v_1$ contradicts the precondition to make this assignment...

Proof...

Invariant: contradictory cycles are not violating throughout the reconstruction.



• $v_1 \neq^*_{\alpha} v_1$; contradicts the precondition to make this assignment...

Applying RTC

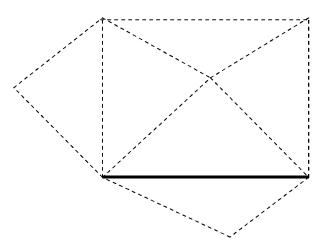
How can we use the theorem without enumerating contradictory cycles ?

Answer:

- □ Consider the chordal graph.
- □ Constrain triangles if they are part of a (simple) contradictory cycle
- \Box How?

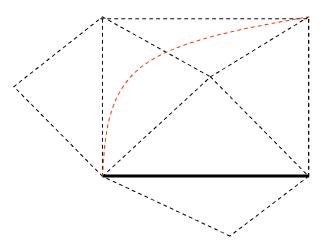
Focus on Bi-connected dashed components built on top of a solid edge

□ Includes all contradictory cycles involving this edge



Make the component chordal

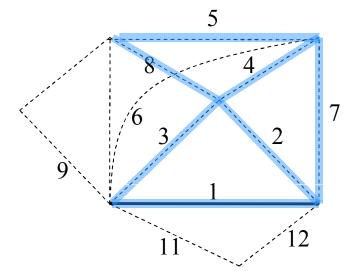
□ Chordal-ity guarantees: every cycle contains a simplicial vertex, i.e. a vertex that its neighbors are connected.



The RTC algorithm

Constraints cache:

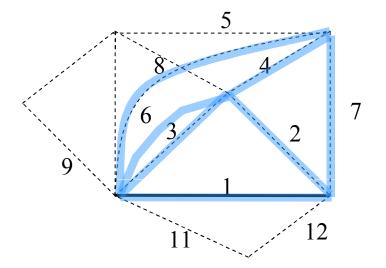
- $\Box \ e_2 \wedge e_3 \rightarrow e_1$
- $\Box \ e_4 \wedge e_7 \rightarrow e_2$
- $\Box \ e_5 \wedge e_8 \rightarrow e_4$



Constrains all contradictory cycles

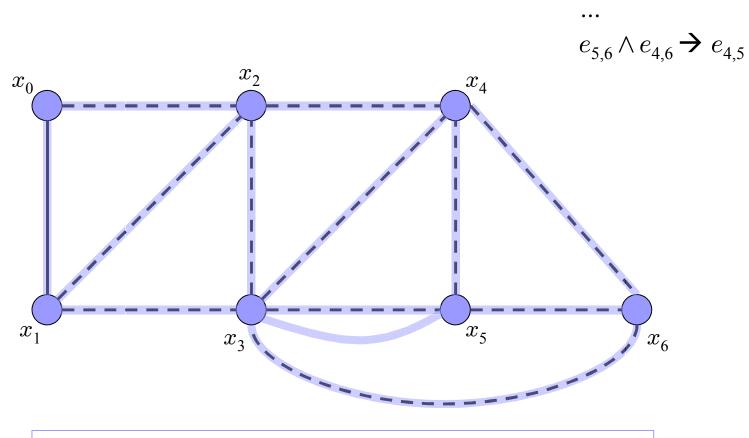
Constraints cache:

- $\Box \ e_2 \wedge e_3 \rightarrow e_1$
- $\Box \ e_4 \wedge e_7 \rightarrow e_2$
- $\Box \ e_6 \wedge e_3 \rightarrow e_4$



Constraining *simple* contradictory cycles

The constraint $e_{3,6} \wedge e_{3,5} \rightarrow e_{5,6}$ is not added



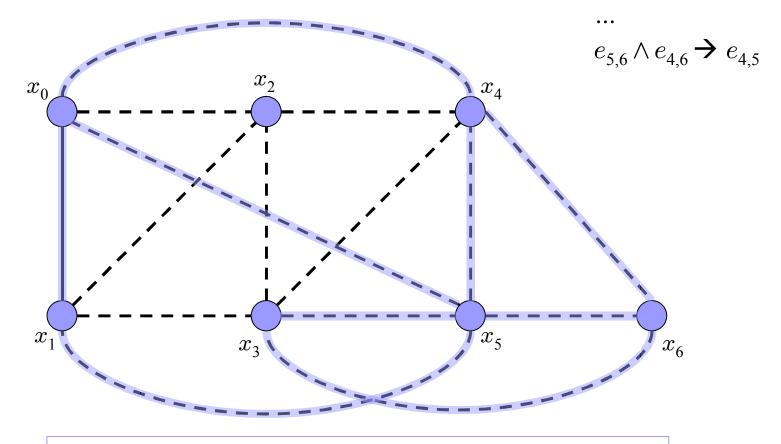
cache:

Open problem: constrain simple contradictory cycles in P time

Technion

Constraining *simple* contradictory cycles

the constraint the graph has 3 is not agged, though needed Here we will stop, although ... cache:



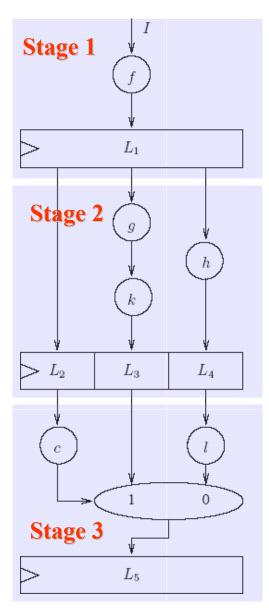
Open problem: constrain simple contradictory cycles in P time

Technion

Results

Benchmark	#	Sparse method				RTC			
set	files	Constraints	Uclid	zchaff	total	Constraints	Uclid	zchaff	total
TV	9	16719	148.48	1.08	149.56	16083	151.1	0.96	152.06
Cache.inv	4	3669	47.28	40.78	88.06	3667	54.26	38.62	92.88
DIx1c	3	7143	18.34	2.9	21.24	7143	20.04	2.73	22.77
Elf	3	4074	27.18	2.08	29.26	4074	28.81	1.83	30.64
000	6	7059	26.85	46.42	73.27	7059	29.78	45.08	74.86
Pipeline	1	6	0.06	37.29	37.35	6	0.08	36.91	36.99
Total	26	38670	268.19	130.55	398.74	38032	284.07	126.13	410.2
TV	9	103158	1467.76	5.43	1473.19	9946	1385.61	0.69	1386.3
Cache.inv	4	5970	48.06	42.39	90.45	5398	54.65	44.14	98.79
DIx1c	3	46473	368.12	11.45	379.57	11445	350.48	8.88	359.36
Elf	5	43374	473.32	28.99	502.31	24033	467.95	28.18	496.13
000	6	20205	78.27	29.08	107.35	16068	79.5	24.35	103.85
Pipeline	1	96	0.17	46.57	46.74	24	0.18	46.64	46.82
q2	1	3531	30.32	46.33	76.65	855	32.19	35.57	67.76
Total	29	222807	2466.02	210.24	2676.26	67769	2370.56	188.45	2559.01

Example: Circuit Transformations



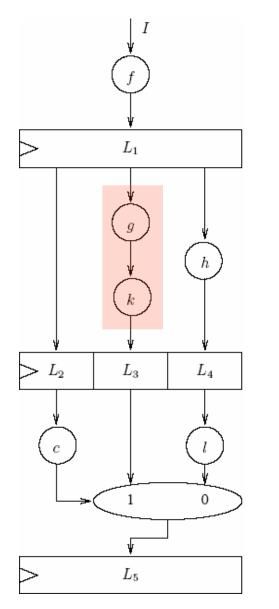
- A pipeline processes data in stages
- Data is processed in parallel as in an assembly line
- Formal Model:

$$L_1 = f(I)$$

 $L_2 = L_1$
 $L_3 = k(g(L_1))$
 $L_4 = h(L_1)$
 $L_5 = c(L_2)?L_3 : l(L_4)$

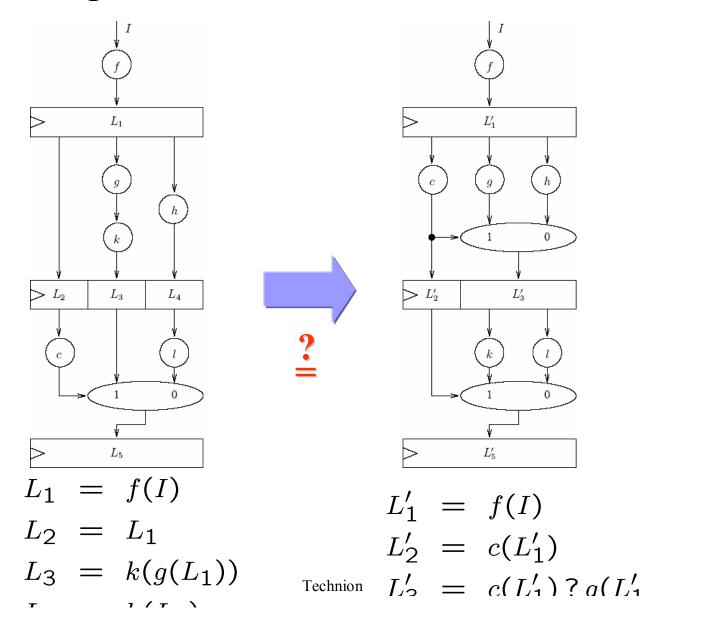
Technion

Example: Circuit Transformations



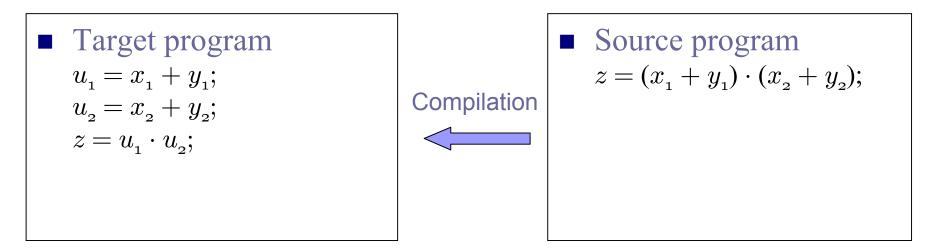
- The maximum clock frequency depends on the longest path between two latches
- Note that the output of g is used as input to k
- We want to speed up the design by postponing k to the third stage

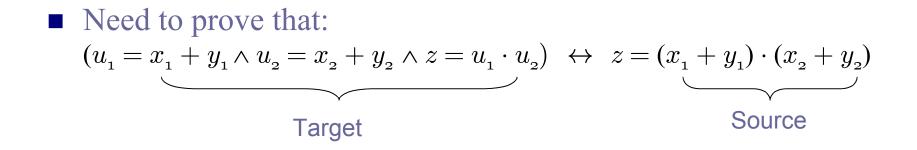
Validating Circuit Transformations



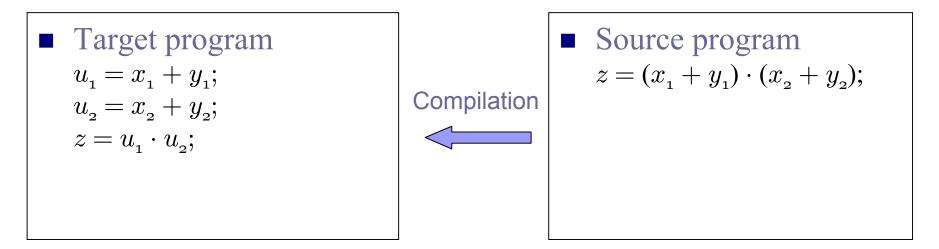
42

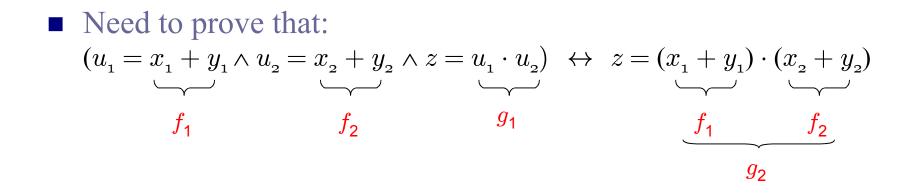
Validating a compilation process





Validating a compilation process





Validating a compilation process

■ Instead, prove:

$$_{\perp}UF$$
 _ (... _ $_{\bullet}$ ^ ... _