
Technion 1

(Yet another) decision
procedure for Equality
Logic

Ofer Strichman and Orly Meir

Technion

Technion 2

Equality Logic

 E: (x1 = x2 Æ (x2 x3 Ç x1 x3))

 Domain: x1,x2,x3 2 N

 The satisfiability problem: is there an assignment to
x1,x2,x3 that satisfies E ?

 Q: When is Equality Logic useful ?...

0 0 0 01 1

Technion 3

Equality Logic

 E: (x1 = x2 Æ (x2 x3 Ç x1 x3))

 A: Mainly when combined with Uninterpreted
Functions f(x,y), g(z),…

 Mainly used in proving equivalences, but not only.

0 0 0 01 1

Technion 4

Basic notions

E: x = y Æ y = z Æ z x

x

y

z

(non-polar) Equality Graph:

Gives an abstract view of E

Technion 5

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

E : x1 = x2 Æ x2 = x3 Æ x1 x3

B : e1,2 Æ e2,3 Æ :e1,3

 Encode all edges with Boolean variables
 This is an abstraction

 Transitivity of equality is lost!

Must add transitivity constraints!

e 1,
3

e
1,2

e 2,3

x1

x2

x3

Technion 6

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

E : x1 = x2 Æ x2 = x3 Æ x1 x3

B : e1,2 Æ e2,3 Æ :e1,3

 Transitivity Constraints: For each cycle of size n,
forbid a true assignment to n-1 edges

T S = (e1,2 Æ e2,3 ! e1,3) Æ
(e1,2 Æ e1,3 ! e2,3) Æ
(e1,3 Æ e2,3 ! e1,2)

Check: B Æ T S

e 1,
3

e
1,2

e 2,3

x1

x2

x3

Technion 7

 Thm-1: It is sufficient to constrain simple cycles only

e1

e2 e3

e4

e5e6

T

T T

TT

F

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

Technion 8

 Thm-2: It is sufficient to constrain chord-free simple
cycles

e1

e2

e3

e4

e5

T

T

T

F

T

F

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

Technion 9

 Still, there can be an exponential number of chord-
free simple cycles…

 Solution: make the graph ‘chordal’!

….

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

Technion 10

 Dfn: A graph is chordal iff every cycle of size 4 or
more has a chord.

 How to make a graph chordal ? eliminate vertices one
at a time, and connect their neighbors.

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

Technion 11

 In a chordal graph, it is sufficient to constrain only
triangles.

 Polynomial # of edges and constraints.

 # constraints = 3 £ #triangles

T

T

TT

F

TT
Contradiction!

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

Technion 12

An improvement
Reduced Transitivity Constraints (RTC)

 So far we did not consider the polarity of the edges.

 Assuming E is in Negation Normal Form

E: x = y Æ y = z Æ z x

x

y

z

(polar) Equality Graph:

= =

Technion 13

Monotonicity of NNF

 Thm-3: NNF formulas are monotonically satisfied
(in CNF this is simply the pure literal rule)

 Let be in NNF and satisfiable. Thm-3 implies:

 Let ²

 Derive ’ from by switching the value of a ‘mis-assigned’
pure literal in

 Now ’ ²

Technion 14

 Claim: in the following graph T R = e3 Æ e2 ! e1 is
sufficient

 This is only true because of monotonicity of NNF
(an extension of the pure literal rule)

An improvement
Reduced Transitivity Constraints (RTC)

e1

e2

e3

x

z

y

=

=

Allowing e.g.
e1=e2 =T, e3= F

Technion 17

Basic notions

 Equality Path: a path made of equalities.
we write x =*z

 Disequality Path: a path made of equalities and
exactly one disequality. We write x *y

 Contradictory Cycle: two nodes x and y, s.t. x=*y
and x * y form a contradictory cycle

x

y

z

Technion 18

Basic notions

 Thm-4: Every contradictory cycle is either simple or
contains a simple contradictory cycle

Technion 19

Definitions

 Dfn: A contradictory Cycle C is constrained under T
if T does not allow this assignment

C =

F

T

T T

T

Technion 21

Main theorem

 If
T R constrains all simple contradictory cycles,

and

For every assignment S, S
² T S ! S

² T R

 then

E is satisfiable iff B Æ T R is satisfiable

The Equality
Formula

From the
Sparse method

Technion 22

Proof of the main theorem

 () E is satisfiable BÆT S is satisfiable BÆT R

is satisfiable

 () Proof strategy:
 Let R be a satisfying assignment to B Æ T R

We will construct S that satisfies B Æ T S

 From this we will conclude that E is satisfiable

Skip proof

Technion 23

Definitions for the proof…

 A Violating cycle under an assignment R

 This assignment violates T S but not necessarily T R

eF

eT2

eT1

T

T
F

Either
dashed or

solid

Technion 24

More definitions for the proof…
 An edge e = (vi,vj) is equal under an assignment iff

there is an equality path between vi and vj all assigned
T under Denote:

T

TF

TT
v1 v2

v3

Technion 25

More definitions for the proof…
 An edge e = (vi,vj) is disequal under an assignment

iff there is a disequality path between vi and vj in
which the solid edge is the only one assigned false by
Denote:

T

TF

TT
v1 v2

v3

Technion 26

Proof…

 Observation 1:
The combination
is impossible if = R

(recall: R ² T R)

 Observation 2: if (v1,v3) is solid, then

F
T

T
v1 v2

v3

Technion 27

ReConstructing S

Type 1:

It is not the case that

 Assign S (e23) = F

Type 2:

Otherwise it is not the case that

 Assign (e13) = T

F
T

T

In all other cases S = R

F
T

T

 F
 T

v1 v2

v3

v1 v2

v3

Technion 28

ReConstructing S

 Starting from R, repeat until convergence:
 (eT) := F in all Type 1 cycles

 (eF) := T in all Type 2 cycles

 All Type 1 and Type 2 triangles now satisfy T S

 B is still satisfied (monotonicity of NNF)

 Left to prove: all contradictory cycles are still
satisfied

Technion 29

Proof…

 Invariant: contradictory cycles are not violating
throughout the reconstruction.

 contradicts the precondition to make this
assignment…

F
T

T
v1 v2

v3

 F

T

T

Technion 30

Proof…

 Invariant: contradictory cycles are not violating
throughout the reconstruction.

 contradicts the precondition to make this
assignment…

F
T

T
v1 v2

v3

 T
T

F

Technion 31

Applying RTC

 How can we use the theorem without enumerating
contradictory cycles ?

 Answer:
 Consider the chordal graph.

 Constrain triangles if they are part of a (simple)
contradictory cycle

 How?

Technion 33

 Focus on Bi-connected dashed components built on
top of a solid edge
 Includes all contradictory cycles involving this edge

Technion 34

 Make the component chordal
 Chordal-ity guarantees: every cycle contains a simplicial

vertex, i.e. a vertex that its neighbors are connected.

Technion 35

The RTC algorithm

 Constraints cache:
 e2 Æ e3 ! e1

 e4 Æ e7 ! e2

 e5 Æ e8 ! e4

1

23

4

5

6

8

9

1211

7

Technion 36

Constrains all contradictory cycles
 Constraints cache:

 e2 Æ e3 ! e1

 e4 Æ e7 ! e2

 e6Æ e3 ! e4

1

23

4

5

6

8

9

1211

7

Technion 37

x0

x1

x2

x3 x6

x4

x5

The constraint e3,6 Æ e3,5 e5,6 is not added

Constraining simple contradictory cycles

cache:
…
e5,6 Æ e4,6 e4,5

Open problem: constrain simple contradictory cycles in P time

Technion 38

x0

x1

x2

x3 x6

x4

x5

the constraint e3,6 Æ e3,5 e5,6 is not added, though needed Suppose the graph has 3 more edges

Constraining simple contradictory cycles

cache:
…
e5,6 Æ e4,6 e4,5

Here we will stop, although …

Open problem: constrain simple contradictory cycles in P time

Technion 39

Results

Technion 40

Example: Circuit Transformations

 A pipeline processes data in stages

 Data is processed in parallel – as in an
assembly line

 Formal Model:

Stage 1Stage 1

Stage 3Stage 3

Stage 2Stage 2

Technion 41

Example: Circuit Transformations

 The maximum clock frequency depends
on the longest path between two latches

 Note that the output of g is used
as input to k

 We want to speed up the design by
postponing k to the third stage

Technion 42

Validating Circuit Transformations

==
??

Technion 43

Validating a compilation process

 Source program
z = (x1 + y1) (x2 + y2);

 Target program
u1 = x1 + y1;
u2 = x2 + y2;
z = u1 u2 ;

 Need to prove that:
(u1 = x1 + y1 u2 = x2 + y2 z = u1 u2) $ z = (x1 + y1) (x2 + y2)

Compilation

Target Source

Technion 44

Validating a compilation process

 Need to prove that:
(u1 = x1 + y1 u2 = x2 + y2 z = u1 u2) $ z = (x1 + y1) (x2 + y2)

f1 f2
g1

g2

f1 f2

 Source program
z = (x1 + y1) (x2 + y2);

 Target program
u1 = x1 + y1;
u2 = x2 + y2;
z = u1 u2 ;

Compilation

Technion 45

 Need to prove that:
(u1 = x1 + y1 u2 = x2 + y2 z = u1 u2) $ z = (x1 + y1) (x2 + y2)

f1 f2
g1

g2

f1 f2

 Instead, prove:

under functional consistency: for every uninterpreted function f
x = y ! f(x) = f(y)

 Which translates to (via Ackermann’s reduction):

Validating a compilation process

