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Equality Logic

 E: (x1 = x2 Æ (x2  x3 Ç x1  x3)) 

 Domain: x1,x2,x3 2 N

 The satisfiability problem: is there an assignment to
x1,x2,x3 that satisfies E ?

 Q: When is Equality Logic useful ?...
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Equality Logic

 E: (x1 = x2 Æ (x2  x3 Ç x1  x3)) 

 A: Mainly when combined with Uninterpreted 
Functions f(x,y), g(z),…

 Mainly used in proving equivalences, but not only.
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Basic notions

E: x = y Æ y = z Æ z  x

x

y

z

(non-polar) Equality Graph:

Gives an abstract view of E
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From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

E : x1 = x2 Æ x2 = x3 Æ x1  x3

B :     e1,2 Æ e2,3 Æ :e1,3

 Encode all edges with Boolean variables
 This is an abstraction

 Transitivity of equality is lost!

Must add transitivity constraints!
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From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method

E : x1 = x2 Æ x2 = x3 Æ x1  x3

B : e1,2 Æ e2,3 Æ :e1,3

 Transitivity Constraints: For each cycle of size n, 
forbid a true assignment to n-1 edges

T S = (e1,2 Æ e2,3 ! e1,3) Æ
(e1,2 Æ e1,3 ! e2,3) Æ
(e1,3 Æ e2,3 ! e1,2)

Check: B Æ T S
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 Thm-1: It is sufficient to constrain simple cycles only

e1

e2 e3

e4

e5e6

T

T T

TT

F

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method
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 Thm-2: It is sufficient to constrain chord-free simple 
cycles
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From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method
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 Still, there can be an exponential number of chord-
free simple cycles…

 Solution: make the graph ‘chordal’!

….

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method
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 Dfn: A graph is chordal iff every cycle of size 4 or 
more has a chord.

 How to make a graph chordal ? eliminate vertices one 
at a time, and connect their neighbors. 

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method
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 In a chordal graph, it is sufficient to constrain only 
triangles.

 Polynomial # of edges and constraints.

 # constraints = 3 £ #triangles
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Contradiction!

From Equality to Propositional Logic
Bryant & Velev CAV’00 – the Sparse method



Technion 12

An improvement
Reduced Transitivity Constraints (RTC)

 So far we did not consider the polarity of the edges. 

 Assuming E is in Negation Normal Form

E: x = y Æ y = z Æ z  x

x

y

z

(polar) Equality Graph:
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Monotonicity of NNF

 Thm-3: NNF formulas are monotonically satisfied
(in CNF this is simply the pure literal rule)

 Let  be in NNF and satisfiable. Thm-3 implies: 

 Let  ² 

 Derive ’ from  by switching the value of a ‘mis-assigned’
pure literal in 

 Now ’ ² 
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 Claim: in the following graph T R = e3 Æ e2 ! e1 is 
sufficient

 This is only true because of monotonicity of NNF 
(an extension of the pure literal rule)

An improvement
Reduced Transitivity Constraints (RTC)
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Allowing e.g. 
e1=e2 =T, e3= F
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Basic notions

 Equality Path: a path made of equalities. 
we write x =*z

 Disequality Path: a path made of equalities and 
exactly one disequality. We write x *y

 Contradictory Cycle: two nodes x and y, s.t. x=*y
and x * y  form a contradictory cycle
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Basic notions

 Thm-4: Every contradictory cycle is either simple or 
contains a simple contradictory cycle
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Definitions

 Dfn: A contradictory Cycle C is constrained under T
if T does not allow this assignment 

C =

F

T

T T

T



Technion 21

Main theorem

 If
T R constrains all simple contradictory cycles, 

and

For every assignment S, S
² T S ! S

² T R

 then

E is satisfiable iff B Æ T R is satisfiable

The Equality 
Formula

From the 
Sparse method
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Proof of the main theorem

 () E is satisfiable  BÆT S is satisfiable  BÆT R

is satisfiable

 () Proof strategy: 
 Let R be a satisfying assignment to B Æ T R

We will construct S that satisfies B Æ T S

 From this we will conclude that E is satisfiable

Skip proof
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Definitions for the proof…

 A Violating cycle under an assignment R

 This assignment violates T S but not necessarily T R
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More definitions for the proof…
 An edge e = (vi,vj) is equal under an assignment  iff

there is an equality path between vi and vj all assigned 
T under Denote: 
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More definitions for the proof…
 An edge e = (vi,vj) is disequal under an assignment 

iff there is a disequality path between vi and vj in 
which the solid edge is the only one assigned false by  
Denote:  
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Proof…

 Observation 1:
The combination
is impossible if = R

(recall: R ² T R)

 Observation 2: if (v1,v3) is solid, then
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ReConstructing S

Type 1:

It is not the case that

 Assign S (e23) = F

Type 2: 

Otherwise it is not the case that 

 Assign  (e13) = T

F
T

T

In all other cases S = R
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ReConstructing S

 Starting from R, repeat until convergence:
 (eT) := F in all Type 1 cycles

 (eF)  := T in all Type 2 cycles

 All Type 1 and Type 2 triangles now satisfy T S

 B is still satisfied (monotonicity of NNF)

 Left to prove: all contradictory cycles are still 
satisfied
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Proof…

 Invariant: contradictory cycles are not violating 
throughout the reconstruction.

 contradicts the precondition to make this 
assignment…
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Proof…

 Invariant: contradictory cycles are not violating 
throughout the reconstruction.

 contradicts the precondition to make this 
assignment…
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Applying RTC

 How can we use the theorem without enumerating 
contradictory cycles ? 

 Answer: 
 Consider the chordal graph. 

 Constrain triangles if they are part of a (simple) 
contradictory cycle

 How?
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 Focus on Bi-connected dashed components built on 
top of a solid edge
 Includes all contradictory cycles involving this edge
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 Make the component chordal
 Chordal-ity guarantees: every cycle contains a simplicial

vertex, i.e. a vertex that its neighbors are connected.
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The RTC algorithm

 Constraints cache:
 e2 Æ e3 ! e1

 e4 Æ e7 ! e2

 e5 Æ e8 ! e4
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Constrains all contradictory cycles
 Constraints cache:

 e2 Æ e3 ! e1

 e4 Æ e7 ! e2

 e6Æ e3 ! e4
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x0

x1

x2

x3 x6

x4

x5

The constraint e3,6 Æ e3,5  e5,6 is not added  

Constraining simple contradictory cycles

cache:
…
e5,6 Æ e4,6  e4,5

Open problem: constrain simple contradictory cycles in P time
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x0

x1

x2

x3 x6

x4

x5

the constraint e3,6 Æ e3,5  e5,6 is  not added, though needed  Suppose the graph has 3 more edges

Constraining simple contradictory cycles

cache:
…
e5,6 Æ e4,6  e4,5

Here we will stop, although …

Open problem: constrain simple contradictory cycles in P time
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Results
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Example: Circuit Transformations

 A pipeline processes data in stages

 Data is processed in parallel – as in an 
assembly line

 Formal Model:

Stage 1Stage 1

Stage 3Stage 3

Stage 2Stage 2
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Example: Circuit Transformations

 The maximum clock frequency depends 
on the longest path between two latches

 Note that the output of g is used
as input to k

 We want to speed up the design by 
postponing k to the third stage
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Validating Circuit Transformations

==
??
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Validating a compilation process

 Source program 
z = (x1 + y1)  (x2 + y2);

 Target program 
u1 = x1 + y1;
u2 = x2 + y2;
z = u1  u2 ;

 Need to prove that:
(u1 = x1 + y1 u2 = x2 + y2  z = u1  u2)  $ z = (x1 + y1)  (x2 + y2) 

Compilation

Target Source
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Validating a compilation process

 Need to prove that:
(u1 = x1 + y1 u2 = x2 + y2  z = u1  u2)  $ z = (x1 + y1)  (x2 + y2) 

f1 f2
g1

g2

f1 f2

 Source program 
z = (x1 + y1)  (x2 + y2);

 Target program 
u1 = x1 + y1;
u2 = x2 + y2;
z = u1  u2 ;

Compilation
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 Need to prove that:
(u1 = x1 + y1 u2 = x2 + y2  z = u1  u2)  $ z = (x1 + y1)  (x2 + y2)

f1 f2
g1

g2

f1 f2

 Instead, prove:

under functional consistency: for every uninterpreted function f
x = y ! f(x) = f(y)

 Which translates to (via Ackermann’s reduction):

Validating a compilation process


