Advanced Optimization (10-801: CMU)

Lecture 6
Duality, Optimality
03 Feb, 2014

Suvrit Sra

Let $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(1 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & h_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
x \in & \left\{\operatorname{dom} f \cap \operatorname{dom} h_{1} \cdots \cap \operatorname{dom} h_{m}\right\} .
\end{align*}
$$

Primal problem

Let $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(1 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & h_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
x & \in\left\{\operatorname{dom} f \cap \operatorname{dom} h_{1} \cdots \cap \operatorname{dom} h_{m}\right\} .
\end{align*}
$$

Domain: The set $\mathcal{X}:=\left\{\operatorname{dom} f \cap \operatorname{dom} h_{1} \cdots \cap \operatorname{dom} h_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable

The reader will find no figures in this work. The methods which I set forth do not require either constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.
-Joseph-Louis Lagrange
Preface to Mécanique Analytique

Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x) .
$$

Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}_{+}^{m}$ called Lagrange multipliers

Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}_{+}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

A In other words,

$$
\sup _{\lambda \in \mathbb{R}_{+}^{m}} \mathcal{L}(x, \lambda)= \begin{cases}f(x), & \text { if } x \text { feasible } \\ +\infty & \text { otherwise }\end{cases}
$$

Lagrangian

Since, $f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Lagrangian

Since, $f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Proof:

- If x is not feasible, then some $h_{i}(x)>0$

Lagrangian

Since, $f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

- If x is not feasible, then some $h_{i}(x)>0$
- In this case, inner sup is $+\infty$, so claim true by definition

Lagrangian

Since, $f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

- If x is not feasible, then some $h_{i}(x)>0$
- In this case, inner sup is $+\infty$, so claim true by definition
- If x is feasible, each $h_{i}(x) \leq 0$, so $\sup _{\lambda} \sum_{i} \lambda_{i} h_{i}(x)=0$

Dual value

Primal value $\in[-\infty,+\infty]$

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Dual value

Primal value $\in[-\infty,+\infty]$

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Dual value $\in[-\infty,+\infty]$

$$
d^{*}=\sup _{\lambda \geq 0} \inf _{x \in \mathcal{X}} \quad \mathcal{L}(x, \lambda)
$$

Dual value

Primal value $\in[-\infty,+\infty]$

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Dual value $\in[-\infty,+\infty]$

$$
d^{*}=\sup _{\lambda \geq 0} \inf _{x \in \mathcal{X}} \quad \mathcal{L}(x, \lambda)
$$

Dual function

$$
g(\lambda):=\inf _{x \in \mathcal{X}} \mathcal{L}(x, \lambda) .
$$

Weak duality

- g is pointwise infimum of affine functions of λ
- Thus, g is concave (and may also take value $-\infty$)
- Maximizing concave \Longrightarrow minimizing convex \Longrightarrow

Theorem (Weak duality.) $p^{*} \geq d^{*}$.

Proof:

1. $f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$
2. $\forall x \in \mathcal{X}, \quad f(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$
3. Minimize over x on Ihs to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda)
$$

4. Thus, taking sup over $\lambda \in \mathbb{R}_{+}^{m}$ we obtain $p^{*} \geq d^{*}$.

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & h_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& k_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

Show that we get the Lagrangian dual

$$
g: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}:(\lambda, \nu) \mapsto \inf _{x} \quad \mathcal{L}(x, \lambda, \nu)
$$

Lagrange variable ν corresponds to the equality constraints. Prove that $p^{*} \geq \sup _{\lambda \geq 0, \nu \in \mathbb{R}^{p}} g(\lambda, \nu)=d^{*}$.

Strong duality

Duality gap

$$
p^{*}-d^{*}
$$

Duality gap

$$
p^{*}-d^{*}
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$

Duality gap

$$
p^{*}-d^{*}
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$
Several sufficient conditions known!

$$
p^{*}-d^{*}
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$

Several sufficient conditions known!

"Easy" necessary and sufficient conditions: unknown

General duality gap theorem

Theorem Let $v: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the primal value function

$$
v(u):=\inf \left\{f(x) \mid h_{i}(x) \leq u_{i}, 1 \leq i \leq m\right\}
$$

The following relations hold:

$$
\begin{aligned}
& 1 p^{*}=v(0) \\
& \text { 2 } v^{*}(-\lambda)= \begin{cases}-g(\lambda) & \lambda \geq 0 \\
+\infty & \text { otherwise. }\end{cases} \\
& \text { 3 } d^{*}=v^{* *}(0)
\end{aligned}
$$

So if $v(0)=v^{* *}(0)$ we have strong duality
Conditions such as Slater's ensure $\partial v(0) \neq \emptyset$, which ensures v is finite and Isc at 0 , whereby $v(0)=v^{* *}(0)$ holds.

Slater's sufficient conditions

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & h_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & h_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri \mathcal{X} s.t.

$$
h_{i}(x)<0, \quad A x=b
$$

That is, there is a strictly feasible point.

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & h_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri \mathcal{X} s.t.

$$
h_{i}(x)<0, \quad A x=b
$$

That is, there is a strictly feasible point.
Theorem Let the primal problem be convex. If there is a feasible point such that is strictly feasible for the non-affine constraints (and merely feasible for affine, linear ones), then strong duality holds. Moreover, in this case, the dual optimal is attained (i.e., $\partial v(0) \neq \emptyset$).

See $\mathrm{BV} \S 5.3 .2$ for a proof; (above, v is the primal value function)

Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.

Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
\begin{aligned}
& g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\
-\infty & \lambda<0\end{cases}
\end{aligned}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$.

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$.
Here, we had no strictly feasible solution.

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x .
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x .
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

- Associated dual function

$$
g(u):=\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} L(x, z ; u)
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
g(y)=\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\}
\end{aligned}
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y}
\end{aligned}
$$

Fenchel and Lagrangian duality

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y}
\end{aligned}
$$

Dual problem computes $\sup _{u \in \mathcal{Y}} g(u)$; so equivalently,

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:

1. $\exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$
$2 \exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:
$1 \exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$
$2 \exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$
1 Condition 1 ensures 'sup' attained at some y
2 Condition 2 ensures 'inf' attained at some x

Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

$$
\min \quad f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} \quad f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

$$
\min \quad f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality-for instance if $0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

Example: variable splitting

$$
\min \quad f(x)+h(x)
$$

Exercise: Fill in the details for the following steps

$$
\min _{x, z} \quad f(x)+h(z) \quad \text { s.t. } \quad x=z
$$

Example: variable splitting

$$
\min \quad f(x)+h(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} f(x)+h(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+h(z)+\nu^{T}(x-z)
\end{array}
$$

Example: variable splitting

$$
\min \quad f(x)+h(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} f(x)+h(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+h(z)+\nu^{T}(x-z) \\
g(\nu)=\inf _{x, z} L(x, z, \nu)
\end{array}
$$

Minimax

- Minimax theory treats problems involving a combination of minimization and maximization
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- inf over $x \in \mathcal{X}$, followed by sup over $y \in \mathcal{Y}$

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- inf over $x \in \mathcal{X}$, followed by sup over $y \in \mathcal{Y}$

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

- sup over $y \in \mathcal{Y}$, followed by inf over $x \in \mathcal{X}$

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

When are "inf sup" and "sup inf" equal?

Weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Define:

$$
f(x):=\sup _{y \in \mathcal{Y}} \phi(x, y) \quad g(y):=\inf _{x \in \mathcal{X}} \phi(x, y)
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Define:

$$
\begin{aligned}
& f(x):=\sup _{y \in \mathcal{Y}} \phi(x, y) \quad g(y):=\inf _{x \in \mathcal{X}} \phi(x, y) . \\
& f(x) \geq \phi(x, y) \geq g(y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Define:

$$
\begin{aligned}
& f(x):=\sup _{y \in \mathcal{Y}} \phi(x, y) \quad g(y):=\inf _{x \in \mathcal{X}} \phi(x, y) . \\
& f(x) \geq \phi(x, y) \geq g(y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y} \\
& \inf _{x} f(x)=\inf _{x} \sup _{y} \phi(x, y) \geq \inf _{x} \phi(x, y) \geq g(y)
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Define:

$$
\begin{aligned}
& f(x):=\sup _{y \in \mathcal{Y}} \phi(x, y) \quad g(y):=\inf _{x \in \mathcal{X}} \phi(x, y) . \\
& f(x) \geq \phi(x, y) \geq g(y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y} \\
& \inf _{x} f(x)=\inf _{x} \sup _{y} \phi(x, y) \geq \inf _{x} \phi(x, y) \geq g(y) \\
& \inf _{x} \sup _{y} \phi(x, y) \geq \sup _{y} g(y)=\sup _{y} \inf _{x} \phi(x, y) .
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Define:

$$
\begin{aligned}
& f(x):=\sup _{y \in \mathcal{Y}} \phi(x, y) \quad g(y):=\inf _{x \in \mathcal{X}} \phi(x, y) . \\
& f(x) \geq \phi(x, y) \geq g(y), \quad \forall x \in \mathcal{X}, y \in \mathcal{Y} \\
& \inf _{x} f(x)=\inf _{x} \sup _{y} \phi(x, y) \geq \inf _{x} \phi(x, y) \geq g(y) \\
& \inf _{x} \sup _{y} \phi(x, y) \geq \sup _{y} g(y)=\sup _{y} \inf _{x} \phi(x, y) .
\end{aligned}
$$

Exercise: Derive weak duality from above minimax inequality. Hint: Use $\phi=\mathcal{L}$ (Lagrangian) for suitably chosen y.

Strong minimax

- If "inf sup" equals "sup inf", common value called saddle-value
- Value exists if there is a saddle-point, i.e., pair $\left(x^{*}, y^{*}\right)$

$$
\inf _{x \in \mathcal{X}} f(x)=\sup _{y \in \mathcal{Y}} g(y)
$$

- That is

$$
f\left(x^{*}\right)=\phi\left(x^{*}, y^{*}\right)=g\left(y^{*}\right)
$$

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of ϕ if and only if the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of ϕ if and only if the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \operatorname{argmax}_{y \in \mathcal{Y}} \min _{x \in \mathcal{X}} \phi(x, y)
$$

Strong minimax

A Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,

Strong minimax

A Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,
© More interesting question: Starting from the primal problem over \mathcal{X}, how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?

Strong minimax

- Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,
A More interesting question: Starting from the primal problem over \mathcal{X}, how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?

Sufficient conditions for saddle-point

- Function ϕ is continuous, and
- It is convex-concave $(\phi(\cdot, y)$ convex for every $y \in \mathcal{Y}$, and $\phi(x, \cdot)$ concave for every $x \in \mathcal{X}$), and
- Both \mathcal{X} and \mathcal{Y} are convex; one of them is compact.

Example: Lasso-like problem

$$
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} .
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
p^{*}=\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\}
\end{aligned}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda
\end{aligned}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda \\
& =\max _{u} u^{T} b \quad\|u\|_{2} \leq 1, \quad\left\|A^{T} v\right\|_{\infty} \leq \lambda .
\end{aligned}
$$

Optimality via minimax

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \operatorname{argmax}_{y \in \mathcal{Y}} \min _{x \in \mathcal{X}} \phi(x, y)
$$

Point $\left(x^{*}, y^{*}\right)$ is a saddle-point if and only if

$$
0 \in \partial \phi\left(x^{*}, y^{*}\right)=\partial_{x} \phi\left(x^{*}, y^{*}\right) \times \partial_{y} \phi\left(x^{*}, y^{*}\right)
$$

Optimality via minimax

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \operatorname{argmax}_{y \in \mathcal{Y}} \min _{x \in \mathcal{X}} \phi(x, y)
$$

Point $\left(x^{*}, y^{*}\right)$ is a saddle-point if and only if

$$
0 \in \partial \phi\left(x^{*}, y^{*}\right)=\partial_{x} \phi\left(x^{*}, y^{*}\right) \times \partial_{y} \phi\left(x^{*}, y^{*}\right)
$$

When ϕ is of "convex-concave" form, yields KKT conditions.

