
Chapter 1
Convex sets

This chapter is under construction; the material in it has not been proof-read, and might contain
errors (hopefully, nothing too severe though).

We say a set C is convex if for any two points x, y ∈ C, the line segment

(1− α)x+ αy, λ ∈ [0, 1],

lies in C. The emptyset is also regarded as convex. Notice that while defining a convex set,
we used addition and multiplication with a real scalar. This is so, because the above defi-
nition of convexity is set in a vector space (finite or infinite dimensional). We will focus on
analysis and optimization problems in finite dimensional spaces, mostly in the Euclidean
space Rn (notice that this does not lose too much generality, since any n dimensional vector
space is isomorphic to Rn).

Before we go further in our study of convex sets in Rn, let us look at two alternative
(but intimately related) views of convex sets.

Means and convexity.

Convexity is very closely related to the notion of means. For example, the point (1−α)x+αy
is just the (weighted) arithmetic mean of x and y. Over the reals R one may consider a variety
of means. Let x ≤ y ∈ R, and M : R × R → R be a mean; typically, M is required to fulfill
the following axiomatic properties:

(i) x ≤M(x, y) ≤ y with equality if and only if x = y; (interiority)

(ii) M(x, x) = x for all x ∈ R;

(iii) M(λx, λy) = λM(x, y) (homogeneity);

If instead of the arithmetic mean, we consider the (weighted) geometric mean M(x, y) :=
x1−αyα for α ∈ (0, 1), we can define “geometrically convex” sets (verify!).

Means have been very extensively studied and satisfy a large number of inequalities.
Ultimately, most of these inequalities are in one way or the other, a reflection of convexity
(we will revisit this idea in Chapter ?? when we discuss convex functions).
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Figure 1.1: Lines based on arithmetic and geometric means

Lines in metric spaces

There is yet another, perhaps more natural, way to regard the concept of convexity. Con-
vexity in a vector space is defined using lines between points; in a Euclidean space (or more
generally in a Banach space), there is a line of shortest length that joins two points (the line
need not be unique), and the length of this line is the distance between its two endpoints.

Karl Menger [? ] realized that many properties of lines extend to more general metric
spaces1, where we have geodesics, i.e., paths whose length is equal to the distance between
their endpoints. Menger developed geometric properties of such metric spaces, without
appealing to local coordinates, or differentials. Instead, he relied on properties fulfilled by
the distance function.

Let X be nonempty and let d : X × X → R be a function. We say that is a distance if

(i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y (positive definiteness);

(ii) d(x, y) = d(y, x) for all x, y ∈ X (symmetry);

(iii) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X (triangle inequality).

With a distance function in hand, we are ready to describe Menger’s notion of convexity.

Definition 1.1 (Menger-convex). A metric space (X , d) is called Menger-convex if for every
pair of distinct points x, y ∈ X , there exists a third point z ∈ X (z 6= x, z 6= y) such that

d(x, y) = d(x, z) + d(y, z). (1.1)

Thus, z is not an “end point” like x and y, but makes the triangle inequality an equality.

Exercise 1.1. Verify that the usual notion of convexity on Rn with d(x,y) = ‖x− y‖ satis-
fies (1.1).

Example 1.2. Consider the set of strictly positive reals R++ = (0,∞). This set may be
endowed with the hyperbolic metric (verify!)

dh(x, y) := | log x− log y|, x, y > 0. (1.2)

1The concept of a metric space had at that time recently been put forth in a brilliant PhD thesis by Maurice
Fréchet [? ].
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CHAPTER 1. CONVEX SETS 3

With this metric (1.1) yields the so-called “multiplicative convexity” [NP06, pp. XX]. For
distinct x, y > 0, let α ∈ (0, 1). It is easy to verify that zα := x1−αyα satisfies dh(x, y) =
dh(x, zα) + dh(y, zα).

Definition 1.1 is remarkably rich, and we will return to it in Chapter ?? where we study
geometric optimization. For the rest of this chapter, we will focus on convexity in Rn only.
However, before we return to the familiar Euclidean domain, we would be remiss if we
did not highlight the fundamental theorem on Menger-convexity.

Definition 1.3. A path γ : [0, 1] 7→ X between two points x, y in a metric space (X , d) is
called a geodesic if it satisfies

d(γ(α1), γ(α2)) = |α1 − α2|d(x, y), ∀α1, α2 ∈ [0, 1]. (1.3)

In particular, d(0) = x and d(1) = y (we use the interval [0, 1] for clarity; one could also use
[0, `] for some ` > 0).

Theorem 1.4 ([Pap05, Thm. 2.6.2]). Let (X , d) be a complete, locally compact metric space. Then
the following are equivalent:

(i) (X , d) is Menger-convex.
(ii) For all x, y ∈ X , there exists a point m ∈ X , called a midpoint, such that

d(x,m) = d(y,m) = 1
2d(x, y).

(iii) Any two points x, y ∈ X are joined by a geodesic.

Notice that as suggested by this theorem, we can consider geodesically convex sets. We
say a set C ⊂ X , where (X , d) is a Menger-convex geodesic metric space, is called geodesi-
cally convex if for any pair x, y ∈ C, the entire geodesic from x to y lies inside C. Hence-
forth, we will denote this geodesic using the suggestive notation

γ(α) := (1− α)x⊕ αy, for α ∈ [0, 1].

Example 1.5. Consider again R++ with dh. It is easy to verify that for any two points
x, y ∈ R++, the geometric mean

√
xy, which is the midpoint of the geodesic (1−α)x⊕αy ≡

x1−αyα furnishes such a midpoint. ♦

Example 1.6. A fancier example is obtained by considering the space Sn+ of Hermitian
strictly positive definite matrices. We will later see (Chap. ??) that on Sn+, one has the
Riemannian distance

dR(X,Y ) := ‖log(Y −1/2XY −1/2)‖F, X, Y ∈ Sn+;

Here, log(·) denotes the matrix logarithm, and ‖M‖F =
√

tr(M∗M) denotes the Frobenius
norm. Under this distance, we have the (unique) geodesic (cf. Example 1.5)

γ(α) := X1/2(X−1/2Y X−1/2)αX1/2, t ∈ [0, 1].

The midpoint of this geodesic is γ( 1
2 ), and the reader is invited to verify that

dR(X, γ( 1
2 )) = dR(Y, γ( 1

2 )) = 1
2d(X,Y ). ♦

After this excursion into convexity in metric spaces, we will largely shift our focus to
convex sets in Rn, and return to metric space convexity in the next chapter.
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1.1 Constructing convex sets

We mention below a few standard operations that yield convex sets.

• Intersection. Let {Cj}j∈J be an arbitrary collection of convex sets. Then, their inter-
section C := ∩j∈JCj is also convex (verify!).

• Cartesian Product. Let {Cj}j∈J be an arbitrary collection of convex sets. Then, their
Cartesian product C :=

∏
j∈J Cj is also convex (verify!).

Exercise 1.2. If C1 and C2 are geodesically convex sets in a geodesic metric space, is it true that
their intersection C1 ∩C2 is also geodesically convex? What about the Cartesian product C1×C2?

Since we are studying convexity in a vector space, the following result is not surprising,
though it is of fundamental importance.

Proposition 1.7. LetA : Rn → Rm be an affine mapping and C ⊂ Rn be convex. Then the image
A(C) := {A(x) | x ∈ Rn} ⊂ Rm is also convex. Conversely, if D ⊂ Rm is convex, then the
inverse imageA−1(D) := {x ∈ Rn | A(x) ∈ D} ⊂ Rn is also convex.

Proof. Let x,y ∈ C; then A(x), A(y) ∈ A(C). Since (1 − α)x + αy ∈ C for α ∈ [0, 1], and
A is affine we see that A((1 − α)x + αy) = (1 − α)A(x) + αA(y) ∈ A(C). Similarly, if
A(x), A(y) ∈ D, then x, y ∈ A−1(D). Since D is convex, (1 − α)A(x) + αA(y) ∈ D, which
shows that (1− α)x+ αy ∈ A−1(D).

Prop. 1.7 has three immediate consequences.

Corollary 1.8. (i) If C is convex, then αC is also convex for all α ∈ R
(ii) Let C1, C2 be convex. Then, their Minkowski sum C1 +C2 := {x+ y | x ∈ C1, y ∈ C2} is

also convex (proof: apply the affine map (x, y) 7→ x+ y).

(iii) The projection of a convex set onto some of its coordinates is convex. That is, if C ⊂ Rn×Rm
is convex. Then, C1 := {x1 ∈ Rn | (x1,x2) ∈ C for some x2 ∈ Rm} is also convex.

Exercise 1.3. Let C1 ⊂ Rn1 and C2 ⊂ Rn2 be convex. Prove that if C1 × C2 is convex, then C1

and C2 must be convex.

�

Minkowski sums show up in number of areas, both pure and applied. One ex-
ample is the entire body of questions dealing with sumsets, which are nothing but
Minkowski sums of sets comprised of elements from a group—e.g., say A ⊂ Z. A
basic question on sumsets is estimating their cardinality, e.g., we easily have the
trivial bounds |A| ≤ |A + A| ≤ |A|2, but given some more information about the
structure of A, more refined bounds can be obtained. See the recent book by Tao [?
] on Arithmetic Combinatorics for a rich coverage.

An important operation that goes beyond affine transformations but still preserves con-
vexity is the so-called perspective transform.

Proposition 1.9. The perspective transform on Rn×R++ is given by the nonlinear map (x, t) 7→
x/t. If C ⊂ Rn × R++ is a convex set, then its image P (C) is also convex.

Proof. See [BV04, §2.3.3]. Alternatively, observe that the intersection of C with the hyper-
plane {(x, t) | t = 1} is a convex set. Now project this down to Rn by dropping the last
coordinate, which results in a convex set (See Corollary ??-(iii)).
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1.1.1 Convex Hulls

An important method of constructing a convex set from an arbitrary set of points is that of
taking their convex hull (see Fig. TODO). Formally, if X := {xi ∈ Rn | 1 ≤ i ≤ m} is an
arbitrary set of points, then its convex hull is the set obtained by taking all possible convex
combinations of the points in X . That is,

coX :=
{∑m

i=1
αixi | αi ≥ 0,

∑
i
αi = 1

}
. (1.4)

More generally, we can also define convex hulls of sets containing an infinite number
of points. In this case the following three equivalent definitions of coX may be used:

(a) the (unique) minimal convex set containing X ;

(b) the intersection of all convex sets containing X ;

(c) the set of all convex combinations of points in X .

The last definition is a generalization of (1.4).

Remark 1.10. The term
∑
i αxi in (1.4) is called a convex combination. The vector α of

“convex coefficients” may also be interchangeably called a probability vector.

We warn the computationally oriented reader that it is computing the convex hull of a
given set of points is in general very difficult.

1. lower bound via sorting reduction

2. list of methods used for convex hulls on plane

3. potential troubles in higher-D; link to methods, papers

4. remarks about vertices to faces—polymake etc—difficult

5. also notice that convex combinations involve real numbers, standard computational
complexity is set in integers (or rational) arithmetic

There is a geometric property worth noting. Even ifX ⊂ Rn contains an infinite number
of points, each point in coX can be represented as a convex combination of at most n + 1
points from X . This connection is formally described by a famous result of Carathéodory.

Theorem 1.11 (Carathéodory).

It is important to note that a different set of n + 1 points may be needed to encode each
point, that is, Carathéodory’s theorem does not provide us a “basis.”

1.1.2 Basic convex sets

We briefly mention some of the most important convex sets. We do not dwell on the details,
and refer the reader to [Roc70, BV04, HUL01] for a more detailed treatment.

(i) Subspace. A set S ⊂ Rn is a subspace if for any x, y ∈ S, any linear combination
αx+ βy ∈ S. We know from linear algebra that any subspace in Rn may be identified
with the set of solutions to a homogenous system of linear equations, i.e., the set {x ∈
Rn | Ax = 0}. Observe that subspaces contain the origin.
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(ii) Affine Manifold. A translated subspace, i.e., a set of the form M = x + S where S is a
subspace. Note that dim(M) = dim(S).

(iii) Affine hull. For a nonempty set S, we define its affine hull aff S as the intersection of
all affine manifolds containing S. The dimension of a convex set C is the dimension
of aff C (since an affine manifold is just a translated subspace).

(iv) Hyperplane. A special affine manifold, parameterized by a linear functional aT and a
scalar γ ∈ R, given by the set {x ∈ Rn | aTx = γ}. Observe that the “row-vector” aT

is better viewed as an element of (Rn)∗ (called the dual space of Rn), which is the set
of all linear functionals on Rn. Henceforth, we write 〈a, x〉 ≡ aTx.

(v) Halfspace. The set {x ∈ Rn | 〈a, x〉 ≤ γ}. Observe that any hyperplane divides Rn
into two parts, those lying to the left {x ∈ Rn | 〈a, x〉 ≤ γ} and those to the right
{x ∈ Rn | 〈a, x〉 ≥ γ}.

(vi) Polyhedra. Solution sets to finite system of linear equations and inequalities, e.g., {x ∈
Rn | Ax ≤ b, Cx = d} (the finiteness is crucial in the definition). One of the most
important polyhedra is the unit simplex ∆n := {x ∈ Rn | xi ≥ 0,

∑
i xi = 1}.

(vii) Norm ball. Let ‖·‖ be any norm on Rn. The norm-ball of radius r ≥ 0 centered at x0

is the set Br(x0) := {x ∈ R | ‖x− x0‖ ≤ r}. From the triangle inequality for norms,
convexity of Br(x0) follows. More generally, let d(·, ·) be any metric on Rn. Then the
metric-ball Bdr (x0) := {x ∈ Rn | d(x0,x) ≤ r} is convex.

(viii) Convex cones. A set K ⊂ Rn is called a cone if for x ∈ K, the ray αx is in K for all
α > 0. The origin may or may not be included. A few distinguished cones are Rn+
(nonnegative orthant), the Lorentz cone {(x, t) ∈ Rn × R++ | ‖x‖2 ≤ t}, the positive
semidefinite cone Sn+ := {X ∈ Rn×n | X = XT , X � 0}. We note that the Rn+ is a
polyhedral cone, while Sn+ is nonpolyhedral.

Exercise 1.4. Verify the following claims:

(i) The intersection of an arbitrary collection of convex cones is a convex cone

(ii) Let {bj}j∈J be vectors in Rn. Then,

P := {x ∈ Rn | 〈x, bj〉 ≤ 0, j ∈ J}

is a convex cone (if J is finite, then this cone is polyhedral).

(iii) A cone K is convex if and only if K +K ⊂ K.

(iv) Verify that {(x, t) ∈ Rn × R++ | ‖x‖ ≤ t} is a cone for any norm ‖·‖ on Rn.

(v) A real symmetric matrix A is called copositive if for every nonegative vector x we have
xTAx ≥ 0. Verify that the set CPn of n× n copositive matrices forms a convex cone.

(vi) Spectrahedron: the set S := {x ∈ Rn | x1A1 + . . . + xnAn � 0} is convex for symmetric
matrices A1, . . . , An ∈ Rm×m. Additionally, observe that the spectrahedron is the inverse
image of Sm+ under the affine map A(x) =

∑
i xiAi.

(vii) The convex hull of S = {xxT | x ∈ Rn} is Sn+.

The following exercise shows that in the nonlinear convex world, convex cones are
analogous to subspaces in the linear world.

Exercise 1.5. A set K ⊂ Rn is a convex cone if and only it is closed under addition and positive
scalar multiplication, i.e., if x, y ∈ K then x+ y ∈ K and αx ∈ K for all α > 0.
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Exercise 1.5 implies that K ⊂ Rn is a convex cone if and only if it contains all positive
linear combinations of its elements. Thus, if S ⊂ Rn is arbitrary, then the set of all positive
linear combinations of S is the smallest convex cone that includes S.

Hence, akin to convex hulls we can also define conic hulls. If we adjoin the origin to the
smallest convex cone containing a set S, we obtain the conic hull of S; we denote this by
con S. The following result shows that convex sets have particularly simple conic hulls.

Proposition 1.12. Let C be a convex set. Then,

conC = {αx | α ≥ 0, x ∈ C}.

Exercise 1.6. Determine the conic hulls of the following sets:

1. The unit simplex.

2. The set {ei ∈ Rn | 1 ≤ i ≤ n}, where ei denotes the ith standard basis vector.

3. TODO

4. ...

Convex cones are extremely important in both convex geometry and optimization.
They are usually simpler to handle than general convex sets, so it can be useful to turn
a question about convex sets into a question about convex cones. The following proposi-
tion suggests why—it is essentially a generalization of the fact that a circle is just a slice of
a 3D cone (Fig. TODO).

Proposition 1.13. Every convex set C ⊂ Rn can be regarded as the cross-section of some convex
cone K in Rn+1.

Proof. Let S := {(x, 1) ∈ Rn+1 | x ∈ C}, and let K be the conic hull of S. Consider the
hyperplane H = {(x, λ) | λ = 1}. Since K consists of points (λx, λ), intersecting K with H
may be then regarded as C (by dropping the extra dimension).

TODO: Make a picture here of a polyhedral 2D-set, etc.

Remark 1.14. Alternatively, we may obtain C by the perspective transform of the smallest
cone containing C, i.e., {(λx, λ) | λ > 0, x ∈ C}.

1.1.3 Polars, dual cones

We briefly introduce the notions of polars and dual cones here. We will revisit these later.
Let K be a cone. It polar K◦ is defined as

K◦ := {y | ∀x ∈ K, 〈x, y〉 ≤ 0}. (1.5)

If K is nonempty, closed and convex then K◦◦ = K. Polars are to the world of convexity
what orthogonal complements are to the linear world. Indeed, if K is a subspace (which is
a cone, albeit not a pointed one), then K◦ is nothing but the orthogonal complement K⊥.

Observe that the polar (1.5) depends on the choice of inner product. If we impose
a different inner product on the Euclidean space, then the polar also changes. From its
definition, one sees that K◦ is always a closed convex cone (closed, since inner product is
continuous). Polarity is an important involutory order reversing transform: if K1 and K2 are
closed convex cones such that K1 ⊂ K2, then K◦◦1 = K1 (K◦◦2 = K2) and K◦1 ⊃ K◦2 .
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Example 1.15. Let K = Rn+; then, K◦ = −K, the nonpositive orthant. ♦

Exercise 1.7. Prove the order reversing property of polars for closed convex cones.

Exercise 1.8. What is K ∩K◦?

Example 1.16. Let X = {x1, . . . ,xm} be m points in Rn. Then,

(conX)◦ = {y ∈ Rn | 〈y, xi〉 ≤ 0, 1 ≤ i ≤ m}.

TODO ♦

Exercise 1.9. Consider the ordered orthant. Prove that it is a convex cone. Determine its polar.
TODO

We may also define the dual cone is defined as−K◦ (this sign-flip in the definition stems
from various reasons, but those are not important for now). Thus, for a cone K, its dual
cone is

K∗ := {y | ∀x ∈ K, 〈x, y〉 ≥ 0}. (1.6)

Observe that K need not be convex in either (1.5) or (1.6) but that K◦ and K∗ are always
convex cones.

Exercise 1.10. Prove that the semidefinite cone Sn+ is self-dual under the inner-product 〈X, Y 〉 =
tr(XY ).

�

The nonnegative orthant is self-dual, and Ex. 1.10 shows that the semidefinite cone
is also self-dual. The reader may wonder which other examples of self-dual cones
are known? A deep theorem of TODO shows that the only self-dual convex cones
are:

I The nonnegative orthant Rn
+

I The Lorentz cone (second-order cone)
I The semidefinite cone Sn

+

I quaternions etc.
I Cartesian products of the above.

1.1.3.1 Polars of convex sets

The idea of polars also extends to general convex sets (one way to extend it is to use
Prop. 1.13 that identifies convex sets with cones, and then compute polars of cones). If
C is a convex set, then its polar is

C◦ := {y | ∀x ∈ C, 〈x, y〉 ≤ 1}. (1.7)

If C is closed, convex, and contains the origin, then its polar C◦ is also a closed convex set
containing the origin, and in fact C◦◦ = C.

Exercise 1.11. Determine the polars of the following closed convex sets.

1. C = {x ∈ Rn | ‖x‖1 ≤ 1}
2. C = {x ∈ R2 | x1 ≤

√
1 + x22}
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1.11 (i) C◦ = {x ∈ Rn | |xi| ≤ 1, 1 ≤ i ≤ n}
(ii) C◦ = co(D ∪ {0}), where D = {x ∈ R2 | 2x1 ≥ (1 + x22)}

Exercise 1.12. Describe the dual cones to the following:

1. The copositive cone CPn

2. A matrix A is called doubly nonnegative (DNN) if it can be written as S + N , where
S ∈ Sn+ andN ∈ Rn×n+ . What is the dual cone?

�

Convex bodies, Polars, Mahler conjecture
Let C ⊂ Rn be a symmetric convex body, thus C is closed, convex, bounded, and
symmetric about the origin. The volume of C is given by the (Lebesgue) integral

Vn(C) :=

∫
C⊂Rn

dx.

The polar C◦ is also closed, convex, contains the origin, and is also a convex body
with volume Vn(C

◦). The Mahler volume is the product M(C) := Vn(C)Vn(C
◦).

One may easily verify that the Mahler volume is affine invariant, i.e., if A is any
invertible linear transformation, then M(AC) =M(C).

Exercise 1.13. If C1 ⊂ Rn1 and C2 ⊂ Rn2 are convex bodies, then M(C1 × C2) =
M(C1)M(C2)/

(
n1+n2

n1

)
Exercise 1.14. What is the Mahler volume of (i) the unit Euclidean ball; (ii) the unit cube?

The upper-bound on M(C) was established by Santaló, who showed that the max-
imum is achieved at the Euclidean ball Bn

2 . The corresponding inequality is known
as the Blasckhe-Santaló inequality [? ? ? ]

M(C) ≤M(Bn
2 ),

with equality if and only if C is an ellipsoid. Mahler conjectured in 1939 [? ] that
M(C) is minimized at the cube Bn

∞ (unit ball of the `∞-norm), i.e.,

M(C) ≥ 4n

n!
.

There has been a lot of work on this problem ever since it was posed, and we refer
the reader to [Kim12]. There are reasons [? ] to believe that the minimum has to
be achieved at a polytope. The lower-bound has eluded proof, because unlike the
upper bound, there seems to be no “essentially unique” class of convex bodies that
minimizes the Mahler volume.

1.1.4 Relative interiors

For convex sets, standard topological operations such as interior, closure, etc. again yield
convex sets. Frequently, convex sets have empty interior—e.g., a 2D-rectangle in R3 has
empty interior, which is nonempty when the convex set is regarded as a subset of R2. This
suggests that when the dimension of the affine hull of a convex set S is not full, then it has
an empty interior, so it is more useful to consider interiors relative to the affine manifold
within which the set actually lies.
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Definition 1.17. The relative interior riC of a convex set C ⊂ Rn is the interior of C relative
to the affine hull of C. That is,

x ∈ riC iff x ∈ aff C, and ∃δ > 0 s.t. (aff C) ∩Bδ(x) ⊂ C.

Example 1.18. Say C = {x}, then riC = x. If C = (1−α)x+αy for x, y ∈ Rn and α ∈ [0, 1]
(a line-segment), then riC = (1− α)x+ αy with α ∈ (0, 1). ♦

Exercise 1.15. Determine the relative interiors of the following sets:

1. The unit simplex

Exercise 1.16. Is it true that if C1 ⊂ C2 then riC1 ⊂ riC2?

We have the following theorem showing the usefulness of relative interiors.

Theorem 1.19. Let C 6= ∅ be a convex set. Then, riC 6= ∅. Moreover, dim(riC) = dimC.

Proof. dim(riC) = dim(aff C), because the relative interior is formed by intersecting full-
dimensional balls Bδ(x) with the affine hull of C.

For optimization, a very important result on relative interiors is the following.

Proposition 1.20. Let C1, C2 be convex sets for which riC1 ∩ riC2 6= ∅. Then,

ri(C1 ∩ C2) = riC1 ∩ riC2.

Proof. See [HUL01, Prop. 2.1.10].

Two other basic properties of relative interiors are presented below.

Proposition 1.21. Relative interiors are preserved under Cartesian products, and also under affine
and inverse affine maps. That is,

ri(C1 × · · ·Ck) = (riC1)× · · · × (riCk)

ri(A(C)) = A(riC)

ri(A−1(D)) = A−1(riD).

Proof. TODO

1.2 Projection onto a convex set

We have now arrived at one of the most important optimization problems: projection onto
a convex set. To begin, recall from linear-algebra that projection onto a subspace S was
defined (say u1, . . . , uk is an orthonormal basis for S; let S = [u1, . . . , uk] be the n × k
matrix with u1, . . . , uk as its columns, then PS ≡ SST ). The key properties of the projection
operator x 7→ PS(x) are: linearity, symmetry, semidefiniteness, idempotency (PS ◦ PS =
PS), and nonexpansivitity ‖PS(x)‖2 ≤ ‖x‖2. Moreover, any x ∈ Rn can be decomposed as
x = PS(x) + PS⊥(x).

We will see below that an operator with similar properties may be associated with pro-
jection onto convex sets, not just subspaces.
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Definition 1.22. Consider the metric space (Rn, ‖·‖). Let C ⊂ X be a closed convex set.
Then, the (norm) projection of any point y ∈ Rn onto the set C is the solution to the opti-
mization problem

inf
x∈C
{‖x− y‖}. (1.8)

If the norm is Euclidean, we call this orthogonal projection (or simply projection for short).

Before proceeding further, let us recall a basic result from real analysis.

Theorem 1.23 (Weierstraß). A continuous function on a compact set in Rn attains its minimum
and maximum.

SupposeC is a compact set in Rn. Then, from Theorem 1.23 it follows that the projection
problem (1.8) has a solution (since the function x 7→ ‖x− y‖ is continuous). That is, there
exists a point x‘ ∈ C such that ‖x∗ − y‖ = minx∈C ‖x− y‖. Notice that this existence result
does not depend on convexity of C. However, for uniqueness of x∗ convexity plays a
crucial role. Let us investigate this a little further.

Definition 1.24. A subset S ⊂ Rn is said to be a Chebyshev set if for each point y ∈ Rn,
there is a unique point PS(y) ∈ S such that ‖PS(y)− y‖2 = infx∈S ‖x− y‖2 (thus, the ‘inf’
is attained and is actually a ‘min’).

Theorem 1.25. A set S ⊂ Rn is Chebyshev if and only if it is convex.

Proof. Let us proof the sufficiency part. The necessity is more involved, and we refer the
reader to [Bor07] for an illuminating proof.

Let x1 6= x2 be two solutions to (1.8). Then, consider x = 1
2 (x1 + x2). We have

‖x− y‖22 = ‖
(
x1−y

2

)
+
(
x2−y

2

)
‖22 = 1

4‖x1 − y + x2 − y‖22
= 1

2‖x1 − y‖
2
2 + 1

2‖x2 − y‖
2
2 − 1

4‖x1 − x2‖
2
2.

This implies the desired uniqueness.

�

The sufficiency part of Theorem 1.25 can be extended to certain infinite-dimensional
Banach spaces. We say a Banach space X is uniformly convex if for every ε > 0 there
exists a δ(ε) > 0 such that for any two unit norm vectors x, y ∈ X that satisfy
‖x− y‖ ≥ ε, we have ‖

(
x+y
2

)
‖ ≤ 1− δ(ε). Roughly speaking, this means that if two

unit norm points in a uniformly convex space X are far apart, then their midpoint
must be deep inside the space. It can be shown that every closed convex subset of
a uniformly convex Banach space is Chebyshev. See Exercise ?? outlines a proof.
TODO.
Theorem 1.25 shows that a subset of a finite-dimensional Hilbert space is Chebyshev
if and only if it is convex. For infinite-dimensional Hilbert spaces it is a famous open
problem to determine whether every Chebysev set in a Hilbert space is convex.

Theorem 1.25 establishes the projection operator

PS(y) ≡ y 7→ argmin
x∈S

‖x− y‖2, (1.9)

which associates to each vector y ∈ Rn the unique point in PS(y) ∈ S that is called the
(orthogonal) projection of y onto S.

Some basic characterizations of the projection operator are summarized below.
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1.2. PROJECTION ONTO A CONVEX SET 12

Theorem 1.26. Let C be a closed convex set in Rn, y ∈ Rn arbitrary, z ∈ C an arbitrary but fixed
point, and PC the projection operator. Then, the following are equivalent:

(i) x∗ = PC(y)

(ii) For each x ∈ C, the map t 7→ ‖(1− t)x+ tx∗ − y‖2 is decreasing on [0, 1].

(iii) 〈x− x∗, y − x∗〉 ≤ 0 for all x ∈ C

(iv) For each x ∈ C, ‖x∗ − y‖2 = min{‖(1− t)x+ tx∗ − y‖2 | 0 ≤ t ≤ 1}.

(v) For each x ∈ C, ‖x− (2x∗ − y)‖2 ≤ ‖x− y‖2.

Proof. In (v), the operator RC := 2PC − Id is called the reflection operator. Thus, (v) states
that ‖RCy − x‖ ≤ ‖y − x‖ for all x ∈ C.

Corollary 1.27. The projection operator is nonexpansive and monotone.

Proof.

1.2.1 Projection onto a cone

• Projection characterization

• Moreau’s decomposition

1.2.2 Separation

Theorem 1.28. Let C ⊂ Rn be a nonempty closed convex set. Any point x 6∈ C can be separated
from C. That is, there exists an a ∈ Rn such that

〈a, x〉 > sup{〈a, y〉 | y ∈ C}. (1.10)

Proof. Use choice a = x− PC(x). Since x 6∈ C, a 6= 0. Theorem 1.26-(iii) tells us that

∀y ∈ C, 〈y − PC(x), a〉 ≤ 0↔ 〈a, x− a− y〉 ≥ 0

〈a, x〉 − 〈a, y〉 ≥ ‖a‖2 > 0 =⇒ 〈a, x〉 − ‖a‖2 ≥ 〈a, y〉.

This shows that s separates x from y. Notice, we may choose ‖a‖ = 1 if we wish.

Corollary 1.29. Strict separation of convex sets.

Mention: proper separation.
Note: The complexity of optimization over a given convex set depends crucially on the

cost to detect membership in the convex set and / or to find a separating hyperplane. There
exist convex sets, where testing membership can be NP-Hard.

There are several consequences of this important separation property. We refer the
reader to [? HUL01] for more details. We will appeal to the separation property in one of
our examples below.
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1.3 Some important convex sets

1.3.1 Löwner-John ellipsoid, John ellipsoid

TODO

Remark 1.30. Inner approximation and outer approximation.

1.3.2 Doubly-stochastic matrices

We now come to a very important convex set, the set of doubly stochastic matrices.

Definition 1.31. An n× n matrixA = [aij ] is called doubly stochastic if

aij ≥ 0 for all i, j, (1.11)∑n

j=1
aij = 1 for all i (1.12)∑n

i=1
aij = 1 for all j. (1.13)

That is, A is nonnegative, row-stochastic and column-stochastic.

Exercise 1.17. Verify the following:

(i) The set Dn of all n× n doubly stochastic matrices is a convex set.

(ii) Dn is closed under multiplication (and the adjoint operation). However, Dn is not a group (or
semigroup).

(iii) Every permutation matrix is doubly stochastic, and is an extreme point of Dn.

We prove below now the famous theorem of Birkhoff that says that every extreme point
of Dn is a permutation matrix, which implies in particular that Dn is a polytope.

Theorem 1.32 (Birkhoff). The extreme points of Dn are the permutation matrices.

Proof. From Minkowski’s theorem (Theorem ??) we know that TODO

�

Volume of Dn

Open problem. However, state of the art is TODO.
Application of knowing the volume of this polytope: can sample uniformly from Dn.

Proposition 1.33. Let P := {x | Ax = b, x ≥ 0} be a closed convex polyhedron. Prove that a
nonzero x ∈ P is extremal in P if and only if the columns of A corresponding to xi > 0 are linearly
independent.

1.3.3 Numerical range

Given a complex matrix A ∈ Cn×n the quadratic form z∗Az
z∗z yields a complex number

(Rayleigh quotient) that is reminiscent of an eigenvalue. ? ] introduced the notion of field
of values

W (A) := {z∗Az | ‖z‖ = 1}. (1.14)
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Clearly, W (A) is compact and connected. ? ] showed that W (A) has a convex outer bound-
ary and shortly thereafter (author?) [Hau19] showed that W (A) itself is convex. This result
is called the Toeplitz-Hausdorff theorem in their honor. We present a few related results
below.

We begin with a simple exercise.

Exercise 1.18. Let A ∈ Hn be an n× n Hermitian matrix. Prove that the set

SA := {〈Az, z〉 | z ∈ Cn},

is a convex cone.

1.18 Clearly, SA is a cone, for if a complex number w ∈ SA, then αw for α > 0 also lies in SA.
Now notice that SA ⊂ R. Depending on A, SA is either a ray or the entire real line, in any case, a
convex cone.

Theorem 1.34 (Dines). Let A,B ∈ Sn (n× n symmetric matrices). Then,

K := {(xTAx, xTBx) | x ∈ Rn} ⊂ R2,

is a convex cone.

Theorem 1.35 (Brickman). Let A,B ∈ Sn (n× n symmetric matrices). Then, the set

R(A,B) := {(xTAx, xTBx) | ‖x‖2 = 1} ⊂ R2,

is a compact convex set for n ≥ 3.

Exercise 1.19. Show that Theorem 1.35 implies Theorem 1.34.

Exercise 1.20. Let A1, . . . , Am ∈ Cn×n. Is the following set (which is a subset of Cm) convex?

W (A1, . . . , Am) := {(〈A1z, z〉, . . . , 〈Amz, z〉) | z ∈ Cn, ‖z‖2 = 1}.

? ] actually shows equivalence of his result with the Toeplitz-Hausdorff theorem.

�

Numerical ranges are fascinating objects. There are several open problems concern-
ing their geometry; we mention one of them below.

Open problem
Develop necessary and sufficient conditions for the origin to be a point of W (A)

1.4 Miscellaneous topics?

1.4.1 Volumes and areas of convex bodies?

Volumes of simplices: More generally, integrals over simplices can be nicely computed.
Summarize here the contents of the two papers of Jesus Loera.

Version of: January 23, 2014 c© Suvrit Sra suvrit@gmail.com



CHAPTER 1. CONVEX SETS 15

Notes
1. Brief history (Arichmedes times, then Minkowski)

2. See the software polymake for polyhedra; going between vertex and facet representation

3. Software for generating convex hulls

4. Computational complexity of Euclidean convex hulls; higher-dimensional convex hulls

5. Recovering a convex body from its support measurements

6. Material in convex geometry; basic results like Caratheodory, Helly’s theorem, Radon’s theo-
rem, and other key material from Rockafellar, Gruenbaum, etc.; give a brief summary of several
of these books.

7. Somewhere have to weave in Minkowski’s theorem, Krein-Milman, Examples of extreme points
of certain norms balls

8. See [Fan57] for the doubly stochastic matrix based proof of the HLP result

9. See [Bor07] for updated information about Chebyshev sets.

10. Concept of uniform convexity in Banach spaces was introduced by J. A. Clarkson in 1936.

11. Klee sets (then in next chapter discuss Wangs paper on Chebyshev and Klee functions)

12. Summarize Helton’s paper on possible shapes of numerical ranges; mention both the results
of that paper.
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