
10-801: Advanced Optimization and Randomized Methods
Homework 5: Proximal methods, monotone operators, incremental methods

(April 9, 2014)

Instructor: Suvrit Sra Due: April 21, 2014

1. Consider the convex optimization problem

min f(x) x ∈ X ,

where X is closed and convex, while f : X → R is Lipschitz continuous and convex. Suppose further that we
have a function Dφ : X × X → R

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉,

where φ is strongly convex with parameter µ and continuously differentiable on X (as a result Dφ(x, y) ≥
µ
2 ‖x− y‖

2
2).

(a) Show that Dφ(x, y) is strongly convex as a function of x by proving that

Dφ(x, y) ≥ Dφ(z, y) + 〈∇zD(z, y), x− z〉+
µ

2
‖x− z‖22.

(b) Consider the general iterative algorithm

xk+1 = argmin
x∈X

{〈x, gk〉+
1

αk
Dφ(x, xk)}, gk ∈ ∂f(xk). (5.1)

• Write down the optimality conditions for (5.1)
• Use these optimality conditions to write the above update explicitly in terms of∇φ and∇φ∗.

Hint: You’ll need the fact: φ is strongly convex on X , so φ∗ is finite everywhere and differentiable, with
∇φ∗ ≡ (∇φ+NX )−1; then consider u ∈ ∇φ(x) +NX (x), where NX is the normal cone.

(c) Show why the projected subgradient iteration

xk+1 = PX (xk − αkgk), k = 0, 1, . . . ,

is actually a special case of iteration (5.1).

2. The Douglas-Rachford iteration for minimizing f(x) + g(x) is given by

xk = proxg(z
k)

vk = proxf (2xk − zk)

zk+1 = zk + γk(vk − xk)

Show that for γk = 1, we can rewrite the above iteration using averaged reflections as

zk+1 = [
1

2
(RfRg + I)](zk),

where the reflection operators are Rf := 2 proxf −I , and Rg := 2 proxg −I .

3. Consider the following separable convex optimization problem

min
x∈Rn

F (x) :=
∑m

i=1
fi(x),

where each fi : Rn → R ∪ {+∞} (e.g., fi(x) = δC(x) for some closed convex set C).

(a) Derive a Douglas-Rachford (DR) iteration to optimize F (x) using the “product space trick”. Justify all
your steps.
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(b) Write F (x) = f1(x) +
∑m
i=2 fi(x). Introduce variables x2, . . . , xm = x1. Now, obtain the (Lagrange) dual

problem in terms of the conjugate functions f∗i . Show how to solve this dual problem using DR.

(c) Compare (in words) the two formulations in (a) and (b) above. Are there situations where you would
prefer one over the other?

4. Let A1, . . . , AT be matrices in Rm×n, and let y1, . . . , yT ∈ R. Consider the trace-norm regularized optimization
problem

min
X∈Rm×n

∑T

j=1
(yj − tr(XTAj))

2 + λ‖X‖tr,

where the trace norm is ‖X‖tr :=
∑
i σi(X) (sum of singular values).

(a) Derive a closed-form solution for the proximity operator of the trace-norm

1

2
‖X − Y ‖2F + λ‖X‖tr,

Hint 1: If r : Rn → R is symmetric convex and absolute (r(x) = r(|x1|, |x2|, . . . , |xn|)), and σ : Rm×n → Rn+ is
the singular value map, then the conjugate of the composition r ◦ σ, i.e., (r ◦ σ)∗ is (no surprise) r∗ ◦ σ.

(b) Present pseudo-code for solving this problem via proximal-gradients. Comment on how to select the
step-size parameter.

5. Let X be a closed and bounded convex set. Let f be strongly convex with parameter µ. Assume we run the
stochastic gradient method

xk+1 = PX (xk − αkgk),

where gk is a stochastic subgradient, i.e., E[gk | ξ[k−1]] ∈ ∂f(xk), that has finite variance, i.e., E[‖gk‖2] ≤ σ2. In
this exercise, we’ll study a small modification to the simple convergence analysis from Lecture 19. In particular,
we’ll show that a weighted average of the iterates xk demonstrates O(1/k) convergence rate.

(a) Prove the following inequality (we essentially proved it in class already):

E[‖xk+1 − x∗‖2] ≤ E‖xk − x∗‖2 + α2
kE[‖gk‖2]− 2αk[f(xk)− f(x∗) + µ

2 ‖x
k − x∗‖2].

(b) Show from this inequality it follows that

E[f(xk)]− f(x∗) ≤ αkσ
2

2
+
α−1k − µ

2
E[‖xk − x∗‖2]− 1

2αk
E[‖xk+1 − x∗‖2]. (5.2)

(c) Show that choosing stepsize αk = 2
µ(k+1) , implies that

Ef(x̄k)− f∗ ≤ 2σ2

µ(k + 1)
,

where x̄k := 2
k(k+1)

∑k
t=1 tx

t.

(d) Show how x̄k can be efficiently updated from iteration k → k + 1.

6. Suppose f is a convex function on a set C. An alternative definition of strong convexity of f on C with
coefficient µ > 0 is

f(αx+ (1− α)y) + µ
2α(1− α)‖x− y‖22 ≤ αf(x) + (1− α)f(y).

Suppose f is a continuously differentiable function on int(C). Show that the following two are equivalent:

(a) f is strongly convex with strong convexity coefficient µ

(b) 〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22, ∀x, y ∈ int(C).

Hint: For part (b), it might help to define z(α) = αx+ (1− α)y and invoke the integral representation

f(z(α)) = f(x) +

∫ 1

0

〈∇f(x+ t(z(α)− x)), z(α)− x〉dt
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7. If f is not convex, we can still define a prox-operator, which is now a set-valued map:

proxλf ≡ y 7→ Argmin
x∈Rn

1

2
‖x− y‖22 + λf(x), λ > 0.

Obtain the prox-maps for the following functions

(a) f(x) = ‖x‖0, i.e., the `0-“norm”.

(b) f(x) = ‖x‖1/2 := (
∑
i |xi|1/2)2

(c) Does there exist a nonconvex f for which the prox-map is a singleton (for n > 1)?

8. Consider the convex optimization problem

min f(x) + h(Ax), (5.3)

where f and h are closed convex functions, andA has full column rank. Assume that ∂(f+h◦A) = ∂f+∂(h◦A)
(assume a similar qualification on the dual if needed).

(a) Write the Fenchel dual of this problem

(b) Show why running Douglas-Rachford on the dual yields the Alternating Direction Method of Multipliers
(ADMM) for solving (5.3). (Hint: You may need to use the full DR method, not just its averaged reflections
incarnation).
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