10-801 Spring 2014
Advanced Optimization and Randomized Methods

Complexity Theory for Optimization

Lecturer and scribe: Aaditya Ramdas

1 Why Study Lower Bounds?

The broad topic of discussion will be complexity theory for optimization, which essentially
means "the quest for finding matching lower and upper bounds”.

Why is this important? When designing optimization algorithms for your own application,
you often end up analyzing their ”convergence rate”. Say for some problem you designed
an algorithm and you get a function-error convergence rate of O(Ld/T). Is this the best
dependence on dimension possible and Lipschitz constant? Is this the best dependence on
time-steps possible? Such questions will always arise - can I do better, or is this somehow
optimal?

That’s where minimax lower bounds come in. Their basic aim is usually to answer such
questions precisely. They will depend on many things - the geometry of the set you are opti-
mizing over (cube? sphere? simplex?), the kind of information you have access to (function
values? gradients?), the kind of noise model for that information (noiseless/deterministic?
stochastic?), the function class you are optimizing over (convex? strongly convex?), etc.

It may not be possible to go into proof details, but it is certainly possible to understand many
of the main issues to solve, intelligent ideas, subtle construction arguments, connections to
hypothesis testing, etc and try to appreciate their usefulness and their vast limitations, and
see the road forward (and how it can help you in your research!). Out of personal choice, my
emphasis will not be on proofs (since the probability of you needing to prove a lower bound
is low), but on where to find these bounds, how to understand what they’re saying, how to
understand what they’re not saying, and how to use that to speed up your life.

2 Oracles

One can think of complexity theory as representing a game, between you and an oracle. You
get to ask the oracle certain types of questions (the nature of the oracle will determine the
kind of answers you get) and this is the only kind of information you have access to. Our
aim is to understand what’s the minimum number of questions you can ask the oracle, before
you can optimize an unknown function f. Examples of different oracles include:

1. First order deterministic oracle - each query must be a point in the space, say z, the
answer you get is f(x), g(z) where g(x) € 0f(x).

1

2. First order stochastic oracle - each query must be a point in the space, say z, the
answer you get is f(x), g(z) where E[f(x)] = f(x),E[g(x)] € f(x). (technical point:
noise must have finite variance - oracle can add gaussian noise, not cauchy noise).

3. Zeroth order deterministic/stochastic oracle - similar to first order deterministic/stochastic
oracles, without gradient information.

4. Zeroth order noisy comparision oracle - your query must be two points z,y, and the
answer you get is sign(f(z) — f(y)) with a probability that increases with how large

f(x) — fy) is.

3 Geometry (Error, Function, Set)

[terative numerical algorithms can (almost) never optimize a function exactly except for in
special cases. Given, that we can only approximately minimize functions, we need to have
some notion of approximation error, or some measure of how well we’re doing. How does
one measure accuracy? There are two main choices:

1. Function error - ep := f(x7) — f(z*)
2. Point error - pr = ||zp — z¥||

I purposely left the norm out of the second equation, since you can indeed choose to measure
your error in different norms. Function error is much more commonly studied than point
error, but there are sometimes ways to go between the two. There are two ways in which
one can state convergence rates, which are nearly equivalent:

1. Fix the time budget T' (number of oracle queries, aka iterations) and calculate the best
accuracy you can reach, like er = O(d/T).

2. Fix an accuracy e and calculate the number of time steps you need to reach that
accuracy, like T, = O(d/e).

How quickly you can optimize a function hugely depends on the geometry of the set you are
optimizing over. For example, the l5 ball, the [; ball and [, ball have different sizes - their
diameters differ by v/d or d factors depending on which norm you measure the diameter in.

Of course, different functions can be optimized at different rates. The way one studies bounds
is to define a class of functions, and ask what the convergence rate is if the oracle chose some
unknown function from that class. For example, some common classes are Lipschitz non-
smooth convex functions, Lipschitz non-smooth strongly convex functions, etc. Importantly,
Lipschitzness and strong-convexity heavily depend on the choice of norm in which they are
Lipschitz/strongly-convex.

All these details about geometry matter only to determine the exact dependence on dimen-
sion, Lipschitz constant and strong-convexity constant (measures of conditioning). Some-
times, you'll just hear people saying subgradient methods have a 1/ VT convergence.

2

4 Eg: Smooth or nonsmooth f, FO Stochastic

This example is adapted from Information-theoretic lower bounds on the oracle complexity
of convex optimizatinon by Agarwal-Bartlett-Ravikumar-Wainwright, IEEE Transactions on
Information Theory 2011 (generalization of their easier to read NIPS paper).

Let S be a convex set in R? that contains an [, ball of radius 7. Let S5 be the class of
all such sets.

Let f be a convex function that is L-Lipschitz with respect to the ||.||.o on this set S, i.e.
|f(2) = f(W)] € Lol — ylloo for all z,y € S. Let 2} € argminges f(z). Let Fz°(S) be the
class of all such functions.

Let O be a function from R? to R? such that when queried at = € S, it returns (f(z), §(z))

such that E[f(z)] = f(z),E[g(x)] € f(x) (and these estimates have bounded variance). If
x ¢ S it can return garbage. Let O be the set of all such oracles.

Let A be a first-order algorithm (generates sequences in x4+) . span(g(z;)) that (knowing
S) queries the oracle T' times, and returns a guess for optimum as z7. Let A7(S) be the set
of all such algorithms, possibly randomized.

Then, for some universal constant c,

sup sup inf sup E[f(wr)] — f(2}) > CLooToo\/g

0€0 Sesx ACAT(S) feFse(s)

where the expectation is over the oracle noise or any internal randomness of the algorithm.

5 Exercising Caution

Intuitively, it should get worse with a larger sized set, a larger Lipschitz constant, larger
dimension (or at least not improve with dimension, it could be independent of dimension),
and it should get better with 7. An alternative way to read it in English is

There exists a stochastic first order oracle, there exists a bounded convex set, such that
for all algorithms that query the oracle at points in this set, there exists some Lipschitz
convex function on which they will fail to get closer than “insert rate here” to the optimum.

This means that you will never be able to prove an upper bound of the form

There exists an algorithm (your favourite new one that you invented), such that for all
Lipschitz convex functions, I will get closer than “insert faster rate here” to the optimum
(with only access to stochastic gradients on any bounded convex set).

HOWEVER, in many situations, you may have much more control over the problem. The
convex function may have structure that you can exploit (like decomposability), the set
may have some particular form (probability simplex), or the stochasticity is very specific
(subsampling points). These could help you get faster rates!

3

6 Eg: Smooth vs Nonsmooth f, FO Deterministic

The following bounds are from Nesterov’s Introductory Lectures on Convex Optimization.
In short - smoothness buys you a lot, non-stochasticity buys you a lot.

Nonsmooth Let A be any first order method starting from z, € R that has access to a
first order non-stochastic oracle. Assume that the solution x* to the minimization problem
min, f(x) exists and ||zg — 2*||s < D5 and that f is Lo-Lipschitz on {z : ||xg — z||2 < Dy}
- let the class of such functions be P(xq, Dy, Ls). Then for any class P(zg, D2, Ly), and any
0 <t <d-—1, there exists a function f € P(xq, Do, Ly) such that

. LoDs
f(xt)_f($)21—i——\/7f—b——l

(for any A that generates a sequence {x;} satisfying x;,1 = x¢ + span(g(zo), ..., g(x))).

Smooth Similar setup. For any 0 < t < (d — 1)/2 and any xo, there exists a function
f in the class of functions which is infinitely differentiable with an L-Lipschitz gradient
(IVf(y) = Vf(x)|l2 < L|ly — z||) such that any first order method satisfies
3L||xg — x*|?

32(t +1)2

*]' *
lve — 2"|I* > gllwo—= I* (2)

fla) = fa) = (1)

7 Example Upper Bounds

Stochastic subgradient descent (SGD) has the upper bound

LD,
VT

(the subscript represents the norm in which we measure the diameter or Lipschitz constant
of the set - note that ., was not the diameter). This may or may not be optimal in different
settings. For example, exponentiated gradient descent achieves

Blf ()] - fa") < ZEICEE

If we were minimizing over the simplex, with constant diameter in ||.||; or [.||2, and if the
function was such that each coordinate of its gradient was bounded by a constant say 1
(equivalently it is 1-Lipschitz w.r.t. ||.||1). Since Ly < VdL, and Dy < Dy, this could lead
to an exponentially better rate in dimension (v/Iogd vs v/d) over SGD.

E[f(zr)] = f(27) <

4

8 Enter Conditioning, Acceleration

An interesting dependence that arises for strongly convex functions is the dependence on
condition number, which is the ratio of largest and smallest eigenvalues of the positive definite
hessian of f.

Interestingly, (I've heard that) in the 1980s, it was known that if the function is smooth and
strongly convex, vanilla gradient descent can achieve a function error of € in % log(1/€) steps.

However, the best lower bound that could be proven was only \/g log(1/€). Similarly, for

smooth functions vanilla gradient descent achieves 1/T rate but the best lower bound was
1/T? (both those lower bounds were possibly his, or in a textbook by Nemirovski-Yudin).

This motivated Nesterov to find a better method, and he then came up with the amazing
accelerated gradient descent algorithm which matches the lower bound in both settings. Bot-
tom line: for smooth functions, I see no reason to ever use GD when one can use accelerated
GD - it is a pity that this is neither taught enough nor emphasized enough. Amazingly,
acceleration has carried forward to a hoard of other settings that we have seen in this course
and last sem’s optimization course, including coordinate descent, proximal gradient methods,
ete (for vectors or matrices).

9 Eg: SC f, smooth-deterministic and general-stochastic

(Nesterov’s book) Let f be p strongly convex and have L-Lipschitz gradient, and be infinitely
differentiable (given p, L, let F' be class of all such functions), then for any first order method
A, we have

* \/E_l # *
o=l 2 (Y7) dea-af ®)

fe) = 1) = 5 (YE) -l (@)

where k = L/p is the condition number.

(ABRW’11) However, for stochastic oracles, if f is L-Lipschitz and strongly convex, the

minimax lower bound is)
K

Elf(er) — /(7)) 2

10 Important “Exceptions” to Lower Bounds

As mentioned earlier, the lower bounds are worst case and black-bor meaning you know
nothing about the function and can only access it through oracle queries. This study has
led to huge advances in theory and practice, and in our understanding of the fundamental
difficulty of convex optimization. However, in many circumstances we have more structure
that we can take advantage of - here are two examples.

Accelerated Proximal Gradient Descent As a first example, consider the lasso loss
function ming ||y — X B]|3+ Al|S]]1- In the black box setting this is just a non-smooth function
and subgradient methods will get you 1/ VT convergence (1/T if the first term is strongly
convex). However, accelerated proximal gradient descent can get you 1/T? (exponentially
small if the first term is strongly convex). This argument applies to almost any smooth +
nonsmooth function where we can calculate a prox for the nonsmooth term. You cannot
do better than this of course, since if A = 0, we cannot beat the lower bounds for smooth
convex or strongly convex optimization (of 1/7 or e~? without conditioning terms).

Smooth Empirical Risk Minimization min,, + "' ;(w) where ;(w) is a smooth loss
function that represents the regression or classification loss of the weight vector w on the i-th
example (z;,y;) - logistic/squared loss for example (not the nonsmooth hinge). If there is
regularization, this can also be included in the sum: £ 3% [;(w) + A|w||? = L 3% (I;(w) +
Mwl]?) = £33 li(w). A common way to minimize such losses is SGD, where instead of
calculating the entire gradient %Z?:l Vi;(w;) at each step, we pick a random data point
and calculate just VI;(w;). Note that this subsampled gradient is unbiased, i.e. its expected
value is the full gradient. Hence, SGD will get you a 1/ VT rate for such functions. If they’re
strongly convex, say due to regularization, then SGD can get you a 1/T rate. However, we
can actually exploit the fact that this is not just any unbiased gradient - the function has a
particular form as an average of losses, and the unbiased gradient specifically picks one out
of these n possible losses and returns you the exact gradient on that point. A method called
SAG (Minimizing Finite Sums with the Stochastic Average Gradient - Schmidt-LeRoux-
Bach 2012) indeed achieves a 1/T rate for convex objectives and exponentially fast (also

called linear rate) for strongly convex objectives.

Future Directions Lower bounds and upper bounds for structured objectives. Recent
algorithms include Pegasos (for hinge loss), Stochastic Dual Coordinate Ascent (SDCA),
Stochastic Variance Reduced Gradient (SVRG), etc. For lower bounds, we don’t know
what’s the best we can do in the above setting min,, £ Y% | I;(w) where [;(w) is smooth. For
example, can we accelerate these methods to get 1/7? or make the exponentially fast rate
better conditioned? Will these methods work with non-smooth functions if the nonsmooth-
ness is in a term that has a prox function? (a conversation with Mark Schmidt suggests
Proximal-SAG works well in practice)

