Flipping Pebbles

K. Sutner
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We study a simple, 3-state Mealy automaton and analyze the group of transductions
defined by this automaton. In particular it is demonstrated that iterating the trans-
ductions produces rational equivalence relations. A critical ingredient in this study is
a special type of normal form for transductions suggested by Knuth.

1 A Pebble Game

Suppose you have a sequence of pebbles, blue on one side and white on the other. Starting
at the leftmost pebble, flip (some of) them over according to the following rule:

Flip the current pebble. If it is now white-side up, skip over the next one.
Otherwise, skip over the next two pebbles. Repeat till you fall off the end.

Let us call this the toggle operation. Thus, the toggle operation turns the following pebble

Seoeeew | [1| |

into

DS S O & _

Admittedly, it is a bit of a stretch to refer to this operation as a game. But, as in Conway’s
Game-of-Life [5], interesting questions arise when we iterate. Figure 1 shows the result of
applying our rule repeatedly to a sequence of 20 pebbles. Note that the behavior of the first
few pebbles is simply periodic, but more complicated patterns emerge further down the line.

We are trying to understand exactly how complicated these orbits are. A moment’s thought
reveals that the toggle operation is reversible, so the orbit of any sequence must be a cycle.
A few computational experiments suggest that the length of the cycle associated with a

Figure 1: Repeatedly flipping a sequence of 20 pebbles.

sequence of length n is about 27/ and thus has exponential length. This leads to a natural
computational question that we will refer to as the Orbit Problem: given two sequences
of pebbles, how does one check whether one appears in the orbit of the other? Clearly
this question can be answered by brute-force enumeration, but we are interested in better
solutions, preferably ones whose running times are polynomial in the length of the sequences
in question.

A closely related question is the Timestamp Problem: given two sequences in the same orbit,
how many applications of the toggle operation are needed to get from one to the other? Going
in the opposite direction we can ask which sequence is generated by applying our operation
t times to a given sequence; we refer to this question as the Iteration Problem. Again, we do
not wish to resort to brute-force enumeration, we are looking for fast algorithms.

First, let us formalize the problem slightly. The toggle operation is best described in terms
of a Mealy automaton, a finite state machine that translates input words over the binary
alphabet into output words. The machine A has 3 states and is shown in figure 2.

Here a € 2 = {0,1}. There is no fixed initial state; we can define three maps 0, 1 and 2
on binary words, the basic transductions, by selecting the corresponding state to be initial.
These devices are called output modules in Eilenberg [3]. See also [13, 1] and the classic [4]
for background. Thus, in state 0 the transducer outputs the complement of the next input
bit, in states 1 and 2 it simply copies the next input bit to output. Naming the states 0, 1
and 2 may seem a bit uninspired, but will turn out to be very helpful in a moment. Note
that our transductions are length-preserving bijections on finite words.

We write orb(u; f) for the orbit of word w under transduction f. As a first step towards
understanding the structure of these orbits, consider an arbitrary cycle ug, uq, ..., u,_1 un-
der some transduction f. Extending ug by one bit on the right either yields two dis-
joint cycles w0, uiby, ..., up_1b,_1 and wugl, ulb_l, vy Up_1b,_1, or a single cycle of the form
g0, u1by . .. ,un,lbn,l,uol,ula. oy Up_1by 1. We will call ug splitting or doubling, respec-

Figure 2: A 3-state invertible transducer.

tively. The next observation follows immediately.
Proposition 1.1 For any transduction f, all orbits under f have length a power of 2.

The collection of all orbits can be nicely represented by a tree. To this end, define the
root of an orbit to be the lexicographically least element of the orbit, which element we
will denote root(u). Just like our transductions, the root function is length-preserving and
prefix-preserving: root(z) is a prefix of root(zy) for all words = and y. In the terminology of
[8], root is the first canonical form of the equivalence relation f*. We refer to root(2*) as the
root language of f. We can organize all cycles under f into an ordered binary tree 7; whose
nodes are the words of the root language. It is convenient to start at the fixed point ¢, the
empty word. Node u has a left child u0 and a right child u1 whenever u splits, and a single
child u0 otherwise. The initial part of the orbit tree for 0 is shown in figure 3.

Figure 3: The first 12 levels of the orbit tree of transduction 0.

The picture immediately suggests that the orbit tree is homogeneous in the sense that all
nodes at level n either double or split, for all n. All homogeneous trees can be represented
by the type of the tree, an infinite sequence over {1,2} that indicates the out-degree at all
levels. In this case, the sequence appears to be periodic.

Conjecture 1.1 The orbit tree of 0 is homogeneous and has type (12)%.

It is a good exercise to determine the orbit trees for the transductions 1 and 2. If true, our
conjecture has lots of consequences for the orbits of 0. All words of length 2n and 2n — 1
will have orbits of length 2". The root language will consist of all prefixes of (02)*. Recall
that for two words a = ay,...,a, and b = by, ... b, the shuffle product a || b is defined to
be the word abiasbs . .. a,b, obtained by interleaving the letters from a and b in a strictly
alternating fashion. Then the root of any orbit of an even length word will be the uniquely
determined word of the form 0" || b in that orbit. In fact, for every word a of length n
there will be exactly one word b of length n such that a || b lies in any chosen orbit in 22".
In other words, every orbit of transduction 0 of an even-length word would have the form
{u] s(u) | we€ 2™} for some word map s.

Since we are interested in iteration, it seems natural to consider the semigroup S generated
by 0, 1 and 2. We will refer to the elements of this semigroup as (composite) transductions.
Naturally, there are generalized versions of the decision problems we mentioned previously,
where 0 is replaced by an arbitrary composite transduction f € S. Note that we can build
transducers for all the elements of S using a standard product construction. As we will see
shortly, S turns out to be a commutative group. This can be proven in a purely computational
fashion by constructing the corresponding machines and checking for isomorphisms.

A more attractive alternative is to use algebra: we can think of our transductions as auto-
morphisms of the rooted, infinite, binary tree 2*: this tree has all binary words as nodes,
the empty word ¢ is the root, and there are edges x — x0 and x — z1 for every word =z.
It is easy to see that our transductions are indeed automorphisms of this tree and we can
think of S as being contained in the full automorphism group Aut(2*), see [14] for a detailed
discussion.

Note that an automorphism of 2* can be represented by labeling the nodes of the tree
with permutations from &, the symmetric group on two letters. Hence we can write a
transduction f in the form f = (fo, f1)s where s € Gy: s acts on the two subtrees of the
root of the tree, and fy, and f; are automorphisms on these subtrees. The group operation is
given by
(fo, f1)s (90, 1)t = (fogs(0), [19s(1)) st

We write function composition in diagrammatic order, (fg)(z) = g(f(x)) to be compatible
wit relational composition. The components f; arise naturally as the residuals of f. More
precisely, for any word z, define the function 0, f by f(x) 0, f(z) = f(xz). Note that 0, fg =
Oy f Op(z)g- It follows that the transduction semigroup S is closed under residuals. We write o
for the transposition in &, and omit the identity. Call f even if f(a) = a and odd otherwise.
Then any odd transduction has the wreath form f = (fo, f1)o and f(az) = @ f,(x). For
even f we have f = (fo, f1) and f(ax) = a fo(x). In terms of wreath products, the full
automorphism group of 2* can be written as

Aut(2*) ~ Aut(2) 1 Sy = (Aut(2%) x Aut(2%)) x G,

see [11] for details. We are particularly interested in the sub-semigroup generated by the
basic transductions in A:

0=21)c 1=(00 2=(11)

=)=

4

Lemma 1.1 The transduction semigroup of A is a commutative group.

Proof. We have

so that 02122 is the identity. Thus the inverses of the elements of S are already contained in
S, there is no need to change the transducer. It follows that S is a commutative subgroup
of Aut(2*). O

2 Knuth Normal Form

The collection of all even transductions forms a subgroup H of index 2. From the identity
02122 = I it follows that S must be a quotient of Z?2, the free Abelian group of rank 2. It
seems difficult to find other identities, so one is lead to conjecture that S is in fact isomorphic
to Z2. Here is a proof suggested by D. Knuth [10] that uses a clever infinite extension of A.
The wreath forms 0 = (2,1) o, 1 = (0,0), 2 = (1, 1) of our transductions make it tempting to
continue the list with 3 = (2,2). Of course, there is no state 3 in the transducer-but there is
a corresponding group element 3 = (2,2) in the ambient group Aut(2*). To wit, in S we have
02271 = 0%1% = (2,2). More generally, define A : H — S by H(f) = 0of. For all f € H
we have 0, f = 0pf = A(f); moreover, 3 = A71(2). It is easy to check that A is a group
isomorphism that can be used to continue this extension process indefinitely and we obtain
the extended machine K shown in figure 4.

ala 0/1
1/0

O SN ¢ S ¢ o —G
; afa 2 aja = aja 2 aja
a/a

Figure 4: The infinite Knuth extension IC of the transducer A.

It follows from the construction that k(ajas . ..axz) = a; ...a; 0(x) for all £ > 0. Hence there
is a useful “lifting principle” for identities: in particular, 0 122 = I implies the cancellation
identities k* k + 12 k + 2 = I. Here is another group of identities obtained from the extension.

5

Proposition 2.1 (Shift Identities) For allk >0: k> =k+2k+3,

While K and A generate the same transduction group, the former automaton affords a better
notation system. For any vector we refer to the sum of its components as its weight.

Theorem 2.1 (Knuth Normal Form [10]) Every transduction f in S has a unique nor-
mal form f = ki ks ...k, where k; < k; 1.

Proof. Using K, we can think of a transduction f as an element (e;);>o in the coproduct
[IxN. If e; <1 for all ¢ we have the desired normal form. Let us say that position i requires
attention if e; > 2. So assume there is at least one position requiring attention and apply
the following rewrite operation. Let k be the minimal position that requires attention. If
in addition eg,q > 2 and ex,o > 1, apply a cancellation identity; otherwise, apply a shift
identity. Note that this guarantees that ultimately k& will not require attention; moreover, k
can never require attention again.

We claim that this rewrite operation must terminate. Assume otherwise. Application of a
cancellation identity reduces weight, so we may safely assume that only shift operations are
used. Furthermore, we may assume that e, = 0 when k ceases to require attention. Let ¢ be
minimal such that in the original presentation of f we have ¢ > ¢ implies e; = 0. From our
preceding observation, at some point none of the positions less than ¢ will require attention.
At that moment, only positions ¢, £ + 1 and ¢ + 2 can require attention. Indeed, from then
on, there is a window of size 3 that contains all positions that require attention. Since we
assume non-termination, the rewrite operation on this length 3 vector can now be described
by the the rational matrix

010
%01
100

The dominant eigenvalue of this matrix is 1, with corresponding eigenvector (2,2,1) and we
have a contradiction. O

As a consequence of Knuth’s theorem we can see that the map Z* — S, (a,b) — 0°1° is a
group isomorphism.

Corollary 2.1 S, the transduction semigroup of A, is isomorphic to Z2.

We will write KNF(f) for the Knuth normal form of a transduction f. As Knuth points
out, there is an elegant description of the group isomorphism from the corollary in terms
of a numeration system with base (i — 1) € Z[i] and digits {0,1}. More precisely, there
is a group isomorphism ® : § — Z[i] from S to the Gaussian integers defined as follows.
Let KNF(f) = kika ...k, and set ®(f) = > .(i — 1)%. Incidentally, letting (i — 1)¥ =
ay, + iby, € Z[i] we have KNF(0%**+%1%) = k. To see this, note the linear recurrence (ay, by,) =
—2(ag_1,bk_1) — 2(ag_2, bx_2). Hence, by induction,

ok bk — (O(ak—1+bk—1)1bk—l>_2 (O(ak—2+bk—2)1bk—2)—2
Zk—1_2/{:—2_2:E

where the last step follows from our cancellation identities.

The rewrite system in the proof of theorem 2.1 provides an algorithm to compute KNF(f).

height of the column indicates the number of terms and the actual terms are color coded.
There are obvious patterns, but it seems difficult to give a simple description of this sequence.

Figure 5: KNF of 0% for 0 < a < 219,

Things become even more interesting if we plot the KNF for transductions 0% 1°. Figure 6
shows the number of terms in the KNF of all transductions of this form when |a|, [b|] < 2.

Knuth normal form has a number of interesting properties that will be useful later. We need
a bit more notation: let KNF;(f) denote the first term in the normal form of f # I; for
any transduction f, write shifts(f) for the transduction obtained by replacing any term k
in the KNF of f by k4 s. Lastly, let 79 = 0, 71 = 01, 72 = 07" and 5 = 07'1~! and set
’7; = Shiftl (’7@)

Lemma 2.1 Let 0 < k and 0 <i < 4. Then KNF(QWH) = shiftgg2:(7i)-
More generally, for f = 0°1°, we have KNF(f2""") = shiftgj,0:(KNF(72(71)?)).

Proof. A straightforward computation shows that KNF(0'%) = 8 and it follows by induction
that KNF(02") = 8k for all k£ > 0. But then KNF(02""") = KNF(8%2) = 8k + 28k +3 =
shiftgi42(71). The cases i = 2,3 are entirely similar. The second claim follows immediately
from the first. O

Observe that the first term in the Knuth normal form of QQIc is 2k. But then Q2k (uab) = uab
for all words u of length 2k and we can verify our conjecture 1.1: all even levels in the orbit
tree of 0 double, all odd levels split.

Figure 6: The weight of the KNF of group elements in the range —2% < a,b < 2%. The origin
is the red dot in the middle. The color patch corresponds to counts from 0 to 20.

Corollary 2.2 For every transduction f in § other than the identity, the orbit tree of f is
homogeneous and has type 22...2(12)%.

Proof. Let ki ks ...k, be the normal form of f. We claim that the type of the orbit tree
of fis 2F1(12)*. Clearly, the first k; levels in the tree split. For longer words write z = uv
where u has length k; and let g = Oy, f. Then f(uv) = ug(v) and it suffices to show that
all odd transductions have orbit tree of type (12)“. But g has normal form 045 ... ¢, and all
the transductions ¢; have orbit lengths dividing the orbit lengths of 0; our claim follows. O

One might wonder how hard it is to compute KNF. Somewhat surprisingly, a finite state
machine suffices. To see why, first pre-compute the KNFs of 0* for 0 < a < 16, written as
bit-vectors and padded out to 8 bits when necessary:

00000000 10000000 00110000 1011000 000010111 100010111
001110111 101110111 000000111 100000111 001100111 101100111
000010001 100010001 001110001 101110001

All but the first 4 entries have length 9 and require a “carry” to the next block. Let T" be a
0-indexed table whose entries are the 16 KNFs, right-padded or truncated to form blocks of
length 8. If there is no carry, on input hexdigit d the correct output is Ty, but with a carry
it’s T3+ 1 moa 16- Here is a sketch of the appropriate transducer; input is hexadecimal, output
is binary.

dSB/Td d>2/Td+1

' d>3/Ty
e/l
—"—®

nc is the no-carry state, ¢ is carry, and h takes care of pending carries after the last input
digit. For example, for a = 3921 = (15F)4. we get three blocks plus one 1 because of the
carry:

T T5Ty'Ty = 10000000 10001011 00000000 1

Note that the KNF transducer can be converted into a recurrence equation for the length of
KNF(f), but it seems difficult to obtain a closed form solution. Also, a similar construction
works for general group elements, but the machinery becomes a bit more complicated.

3 Iteration and Orbit Equivalence

In order to evaluate a transduction f on a particular word, we can use the obvious recursive
approach: f(ax) = f(a) 0y f(x). We can describe this computation by a transition system G,
much the way A describes the basic transductions 0, 1, 2: the states are all transductions in
the group and the transitions are f S/L(SQ 0sf. Of course, this system is infinite; it is referred
to as the complete automaton in [11]. Using the group representation u € Z?* to denote the

elements in S, we can compute residuals as follows.

A-u if w is even,
O, u =

A-u—(—1)°a otherwise.

where

A:(__JQ é) and a = (1,3/2)

A has complex eigenvalues of norm 1/v/2 < 1. As a consequence, the set { d,u | x € 2%} is

bounded and thus finite. In fact, G has exactly 8 nontrivial strongly connected components.

Note that G admits an involution that sends f S—/t> gto f7t §—/t> ¢~ !. Omitting the component

of the identity, the strong components modulo this involution are listed in figure 7. Note that
the operations ds preserve weight modulo 5; thus, for example, all transitions of weight 2
modulo 5 are bound to wind up in the component on the top right in figure 7 under repeated
application of 0.

GD_ (2D (2-D_ (0
e
N\
23

DG

ala 0/1 \ _— /
DG
aja

Figure 7: Strong components in the complete automaton G. The last component is invariant
under the involution.

10

Thus evaluating f(x) comes down to tracing a path in the complete automaton G and it
follows that the residuals along this path stay bounded in norm. If the input word is long
enough, we ultimately wind up in one of the strongly connected components. Hence we can
calculate f quickly.

Proposition 3.1 The Iteration Problem for any transduction f in & of norm w can be
solved in time O(|z|log®w).

Proof. Because of the contraction property of residuals it takes O(logw) steps before one of
the strongly connected components is reached. Beyond this point, the computation is linear
in the length of x and our claim follows. a

The decision problems from section 1 clearly generalize to the whole group S. For example,
the general Orbit Problem can be phrased as follows: given a transduction f € S and two
words x and y, determine whether y lies in the orbit of x under f. Correspondingly, let us
say that two words = and y are orbit equivalent (wrto. transduction f) if they lie on the
same orbit under f. How hard is it to check orbit equivalence for, say, 0?7 Clearly, we may
assume that 2 and y have the same length n, so a brute-force approach will take O(n 2"/2)
steps. As a first step towards a better algorithm, we will provide a geometric description of
our orbits. To this end, let Sy be the semigroup generated by 0 and 1. For any k, let Hy be
the quotient group of Sy obtained by factoring with respect to the congruence 22 =1 Ttis
customary to refer to 2" as a subset of the full binary tree as the nth level set.

Lemma 3.1 The semigroup Sy acts transitively on all level sets 2". The group Hj acts
simply transitively on 22,

Proof. As we have seen, KNF;(02") = 2k and KNF;(12") = 2k 4 1. But then the semigroup
Sy must act transitively on 2". To see this, consider two words x = xgz;...7r,_ 1 and
Y = YoU1 - - - Yn—1 of length n. Assume by induction that for some f € Sy we have f(x;) = y;.
If f(z<;) = y<i there is nothing to do. If i = 2k is even then f’' = 702" maps T<; to y<;; for
odd i, f' = 1% works. Clearly [’ € S,.

If we take the quotient of S, with respect to the congruence induced by 0% = 12 = I we
obtain a group. Closer inspection of the previous argument shows that this group still acts
transitively on 22*. Since the cardinality of Hj, is 22 is must in fact act simply transitively.

(I

To obtain a more geometric interpretation of the last lemma let us say that two transductions
f and g in S are orthogonal if their orbits overlap as little as possible: orb(u; f) Norb(u; g) =
{u} for all words u. Then the lemma shows that 0 and 1 are orthogonal. Hence there is a
natural, two-dimensional coordinate system for words based on the transducer A rather than
some external ordering principle such as lexicographic order given by the bijection

22 5 Z/(2") x Z/(2")

that associates a word w of length 2n with the unique coordinates 0 < wy, w; < 2" such that
w = 0"01*1(0?"). We will write (w) for the coordinates of w. Not that this observation gives

11

rise to yet another computational problem, the Coordinate Problem: given a word x € 2",
determine its coordinates. Surprisingly, we will show that this problem can be solved by a
finite state machine in section 4.

At any rate, we can express transductions in terms of coordinates: let f = (u1,us) € Z* in
group representation and let (w) = (wy,ws). By commutativity, f(w) = Qutwi]1uetwz((2n))
so that (f(w)) = (w1 + w1, us + wq). Hence

(orb(w; f)) = (wy,ws) + N+ (ug,uz) (mod 2")

Thus, in our coordinate system, orbits are affine subspaces of Z/(2") x Z/(2"); in fact, they
are all translations of the basic linear subspace orb(0*"; f). This provides another proof of
the homogeneity of the orbit tree. Since orbits have a simple structure, it should not be
difficult to determine whether two transductions have the same orbits (as sets). Let us say
that two transductions f,g € S are star equivalent, in symbols f = g, if their orbits agree:
orb(x; f) = orb(z;g) for all words z. For our decision algorithm we will need a slightly
stronger notion: define the generalized orbit of a word x under (f,h) to be

orb(x; f, h) = h(orb(; f)) = {A(fi(x)) |i > 0}.

By a star pair we mean any pair (f,h) of transductions; two star pairs are star equivalent
if their generalized orbits coincide, in symbols (f,h) = (g,h’). Note the following simple
sufficient condition for star equivalence.

Proposition 3.2 For any odd integer k and any integer { we have (f,h) = (f*, f‘h).
Lastly, we write v»(n) for the dyadic valuation of n, so that n = ng2*2(™ with ny odd.
Theorem 3.1 Star equivalence in S is decidable in polynomial time.

Proof. First consider two transductions f = (u1,us) and g = (v1,v2). We claim that f = g
if, and only if, v5(u;) = va(v;) and uyvy = ugvy. To see this, note that as in the preceding
paragraph, one can show that f and ¢ are star equivalent if, and only if, for each n > 1 there
is a unit z = z, such that

u; =z-v; (mod 2")

for i = 1,2. The sequence (z,) defines a dyadic rational, essentially the slope of the line
representing the orbit. Our claim follows.

Now consider two star pairs (f, h;) and (g, hy). Letting b = hy*hy we have (f, h1) = (g, hy) if,
and only if, orb(x; f) = orb(x; g; h) for all words x. The last condition means that the linear
subspace N(uy, us) (mod 2") coincides with the affine subspace N(vy, va) + (¢1,¢2) (mod 27),
for all n > 1, where h = (¢1,¢y). If follows that f and g must be star equivalent and that
(c1,¢9) lies in the linear subspace. Hence we have to check the solvability of the equations
¢; = z-u; (mod 2"), 1 =1,2, for all n > 1. It is easy to see that these equations are solvable
if, and only if, v5(u;) < 15(¢;) and uicy = uscy.

It is clear from our discussion that the arithmetic operations required to test star equivalence
are all polynomial in the size of the input. O

12

The position of point (c1, ¢2) in the orbit of f may be fractional in the sense that the solutions
z, define a dyadic rational. For example, for (¢1,¢2) = (1,3) and f = (3,9) the positions
are given by 1,3,3,11,11,43,43,171,171,683,683,2731, ... which is the standard sequence
representation of 1/3 in Z,. In a similar vein, given odd integers r and s, we can define the
fractional power fr/* of f = (a1, ay), written in terms of coordinates, as follows:

<fr/5((w1,w2))> = (wy,wsg) + 78, (a1,a2) (mod 2")

where (s,) is the standard sequence representation of 1/s in the dyadic numbers Zo, see [6].

We can now pin down the computational complexity of orbit equivalence. For the time being,
let us only consider f = 0 . The orbit of x has length exponential in the length of z, so
the question arises whether there is a polynomial time shortcut. As we will see, there is a
linear time algorithm; in fact, orbit equivalence can be decided by a finite state machine.
The appropriate type of machine in this context uses two input tapes and reads the given
words in a synchronous fashion, one symbol from each word at a time. We can think of these
machines as being ordinary language acceptors. To this end, define the the convolution x:y
of two words x and y of the same length to be the word

T1 | X2 | ... | Tp
Yi Y2 | ---|Un

Ty =

over the alphabet 2 x 2. Then a finite state machine over 2 x 2 defines a relation R C (2 x 2)*
by setting (z,y) € R iff z:y is accepted by the machine. These relations are known as
automatic or synchronous, and we can think of our transducer as establishing automaticity
of the relations 0, 1 and 2. Automatic relations are important since they form a Boolean
algebra, which fact can be exploited to decide first-order logic over structures consisting of
automatic relations, see [13, 9] for background.

In order to construct a finite state machine that decides orbit equivalence for 0, we use
Brzozowski’s quotient method [2]. Since orbit equivalence is length-preserving, we can think
of this relation as a formal language R C (2 x 2)*. Regularity of R as a language is equivalent
to having finitely many (left) quotients

u'R={z€(2x2) |ure€R}.

To calculate these quotients we use the generalized orbits from above. Define the generalized
orbit relation R(f, h) as follows: R(f,h) holds on uw and v if v € orb(u; f, h). When h is the
identity then R(f,) is simply the orbit relation of f. However, in general R(f,h) fails to
be an equivalence relation (and even to be reflexive). But, we still can use these relations to
compute quotients. It is easy to verify the next lemma.

Lemma 3.2 Quotient Lemma

Let f and h be two transductions and set b = h(a), h = (ho,h1) s. If f = (fo, f1) in wreath
notation, then

(a:b) " R(f, h) = R(fa, ha)

13

The quotient with a:b is empty. Otherwise, for f = (fy, f1) o we have

(a:b) ' R(f, k) = R(fafa: ha)
(a:b) " R(f, h) = R(fafa, faha)

Given any transduction f, the lemma shows how do define a transition system M, that
decides orbit equivalence for f. For let @ C &% be the closure of (f,) under the quotient
operations. Call a star pair (f,h) even if f is even, odd otherwise. We can introduce

transitions on Q in the natural way: for example, for even (f, h) we have (f,h) LN (fa, ha)

where b = h(a), and (f,h) % | where L is a special sink state corresponding to the empty
quotient. For odd (f,h) there are four transitions, none with target L. (f,) is the initial
state and all states other than the sink are final.

Of course, M might be infinite. To see why Q is actually finite let us first consider the case
f =0. Let Qg be the projection of Q onto the first components. Since we are calculating
modulo star equivalence, Qy has only four elements:

0+12—-01—-1"~1-0

During the execution of the closure algorithm we cycle through these four transductions in
the first component. Note that they are alternately odd and even, so, according to the last
equation in the quotient lemma, at all the odd stages some of the second components pick up
an additional term and it is far from clear that Q is also finite. A brute-force computation
using only proposition 3.2 to approximate star equivalence (rather than the algorithm from
theorem 3.1) produces a machine with 34 states, plus the sink. The star pairs so obtained
have the form

(0,1%, 16 <3, (12,0, |¢/ <5, (01,09, |¢ <3, (1,0, |{ < 4.
and the automaton turns out to be minimal. We will now show that this is no coincidence.
Theorem 3.2 The orbit relation f* is automatic for all transductions f in S.

Proof. By construction, M decides orbit equivalence for f and it remains to show that Q is
finite. Let us first focus on Qy, the projection of Q onto the first component. It follows from
lemma 3.2 that Qg is the orbit of f under the map m(f) = 9o f for f even, and 7(f) = 9y f?
otherwise. Except for the fixed point I, all orbits of 7 end in an 8-cycle and, modulo star
equivalence, even in a 4-cycle (we assume a is odd):

(a,b),(2b — 2a,—a), (a — 2b,a — b), (2b,2b — a), (—a, —b) = (a,b)

Thus Qy is finite.

In fact, M, consists of an acyclic part that leads to quadripartite components. Denote
the functions on one of the corresponding 4-cycle in Qg by fo, fi, fo and fs5. It suffices to
show that for any h, the closure of the star pair (fo,h) under quotients is finite. To this

14

end we will over-approximate the operations required for the second components by a map
P : Q? — P(Q?) defined by

O(u)={A-ut+cat+w|ce{0,£1},we WV}

Here A and a are from section 2 and W is a set of residuals obtained from the transductions
in the m-cycle as required by lemma 3.2. Again, A is a contraction so that the closure of h
under ® is a bounded set in Q?, containing only finitely many integral points. a

In the special case f = 0 the 7 orbit has the form (1,0),(2,1),(1,1),(0,1), up to star
equivalence. Hence we can exploit the rules for star equivalence to rewrite the translations
into a form where only one component is non-zero. We are left essentially with a one-
dimensional problem and one can show that

O(z)={—(i+a)/d]| —11<i<13}.

Hence the closure under ® starting at points |z| < 13/3 will stay in the interval [—13/3,13/3].
There are 9 integral points in the interval and, since there are 4 rounds in the quotient process,
an upper bound for the number of states in M, is 36, surprisingly close to the actual value.

Returning to our basic transduction 0, we can extract more information from the orbit
automaton M. For odd any odd state p there are transitions of the form

p=5qp =5 q.p=>q" where q#q #q"
and for even p the transitions not leading to the sink are
s:s 0:1 1.0y / "
p—q or p—q,p—>q where ¢ #q

Note that this provides another proof of conjecture 1.1 regarding the structure of the orbit
tree. It is now easy to construct a transducer that computes the root function: simply remove
all transitions p = q for all odd p from the orbit automaton. After removal of inaccessible
states and the sink we obtain a transducer over (2 x 2)* with 21 states that computes root.
The root language (02)*(e + 0) itself is much less complicated, it is accepted by a machine
with two states plus a sink.

With a little more effort one can extract more information from Mj. For example, we know
that “de-shuffling” the orbit of some x € 22" produces one component of maximal cardinality
2". The following proposition deals with the other component.

Proposition 3.3 Let u € 2%. The cardinality of even(orb(u;0)) is 3*=1/2 when k is odd
and 2 - 3%=2/2 when k > 0 is even.

We are only aware of a fairly messy computational proof and will spare the reader the mental
anguish.

15

4 Time Stamps and Coordinates

In light of the results of the last section it seems plausible that the Timestamp Problem and
the Coordinate Problem also yield to polynomial time algorithms. More surprising is the
fact that both be solved by finite state machines.

Let us first dispense with the Coordinate Problem: we are given a word x € 22", and we need
to compute two integers s and ¢, 0 < s,¢ < 2", such that 0°1*(0**) = z. Write s = _ 5,2 and
t = > t;2". Recall the from section 3 the transductions v, ...,73. We calculate the binary
digits of s and ¢ in n rounds as follows.

// coordinate algorithm

h = (0,0);

forr=0,...,n—1do
Sy = hi + x9, mod 2; // phase 1: bind s,
h = 0o(h+ s 7);
t, = hy + 29,41 mod 2; // phase 2: bind t,

h = 0(h+1t, - v);
return (s,t);

As stated, the algorithm appears to require quadratic time. However, it can be implemented
on a finite state machine because of the contraction property of residuals spelled out in section
3.

Theorem 4.1 The Coordinate Problem can be solved by a transducer that computes the
coordinates in reverse binary.

Proof. Given a word z of length 2n the algorithm determines a transduction f = 0° 1 where
0 < s,t < 2". We will show by induction on n that f(0*!) = 2 and Jy. f = h. We only
present the step from length 8n to 8n + 2 during one round of the algorithm, the other cases
are entirely similar and will be omitted. During a particular round we denote s’, f’ and b’
the new values of s, f and h after the first phase in the execution of the algorithm, and ¢”,
f" and h” for the second phase. Write 0 for 0°® and consider an extension u = x ab of x.
The following argument relies on lemma 2.1.

In phase 1, if f(00) = za then " = f and we have f’(00) = f(00) = za. Also, Jpof =
dodof = doh = K. Otherwise s' = s + 2% and f' = f0*". Then f'(00) = 0*"(f(00)) =
02" (za) = 2 0(a) = za. Furthermore, dgof’ = 8y(9of0%") = 8y(hd,0%"") = I’ by lemma 2.1.

For phase 2 first consider the case f'(000) = zab. Then t" = t and we have f”(000) =
1'(000) = xab. Also, dooof” = 0o(Doof') = Oph’ = h". In the remaining case t” = t + 2"
and f” = f'12"". Then f”(000) = 12" (f'(000)) = 1" (zab) = x1(ab) = za0(b) = zab.
Furthermore, 9goo f” = 99(0oo f’124n) = Oo(K 835@124”) = h”, again by the lemma. O

Note that one can reduce the computation of timestamps to a coordinate computation using
the description of orbits as affine subspaces in section 3. For f = (f1, fo) and z,y € 22" with

coordinates (x1,z5) and (y1,y2) we can solve the linear equations x; + tf; = y; (mod 2").

16

However, there is a more direct approach: a finite state machine can compute the appropriate
timestamp, or determine that none exists.

Theorem 4.2 The Timestamp Problem for any transduction f in § can be solved by a
transducer that computes the timestamp in reverse binary.

Proof. Consider words z,y € 22*. We need to compute an exponent ¢ = >_ t;.,2° such that
ft(x) = y, or determine that no such ¢ exists. Let KNF{(f) = k. If 2n < k then ¢t = 0
provided that x = y; otherwise y is not in the f-orbit of . So suppose 2n > k and assume
without loss of generality that the prefixes of length k& of x and y agree. Write x = uz’ and
y = uy’ accordingly where |u| = k. Since KNF; (0, f) = 0 we may safely assume that f is odd
and x,y € 22"

Let f = 0°1° where a is odd. Then by lemma 2.1
KNF(fQMH) = shiftg,.0;(KNF (' (’V;)b))

where 0 < i < 4 and 4/ = shift(+;). But then KNFS(f?') is periodic with period at most
4. Let us refer to this sequence as I';. Then the following algorithm computes the requisite
exponent ¢:

// timestamp algorithm

h = (0,0);

forr=0,...,n—1do
t, = h1 + x9, + Yo, mod 2; // phase 1: bind ¢,
h = 0y, (h+t. - Tq);
if hi+ 29,41 + Y241 = 0 mod 2 // phase 2: check

then h = 0,,, ., (h);
else return No;
return ¢;

The correctness proof is essentially the same as for the coordinate algorithm from above.
Moreover, because of the contraction property from section 3, the algorithm can be imple-
mented by a finite state machine and we are done. a

5 Some Questions

Our transducer A is based on a stride of 2 or 3, depending on whether the currently read
letter is a 0 or a 1. Of course, we could similarly consider a stride of n and m. This leads to
a simple class of transducers which generalize A: cycle-cum-chord transducers. In a cycle-
cum-chord transducer A? . 1 < m < n, the transition diagram consists of a cycle of length n
plus one chord and the source node of the chord is the only toggle state in the transducer.
More precisely, the machine has state set {0,1,...,n — 1}, and the transitions are given by
0=(n—=1m=1)o, k= (k—=1,k—1). Thus, our old transducer A is none other than A3.

17

The diagram of A3 is shown in figure 8. These devices share many of the properties of A.
For example, the transition semigroup of A” is a commutative group. In the degenerate case
n = m we get the Boolean group 2", in all other cases the group is isomorphic to Z¢ where
d =n — ged(n,m), see [15].

Figure 8: A3, an invertible transducer on 5 states that generalizes A.

More generally, cycle-cum-chord transducers are a particular example of so-called invertible

transducers over a binary alphabet, see [7]. The transitions in a binary invertible transducer

are required to be of the form p M q where o is in &5. The transductions determined by

any invertible transducer are bijections and can be represented in the wreath form of section
2. Of course, the transduction semigroup need not be commutative and it need not be a
group.

In general it is quite difficult to understand the semigroups and groups generated by invert-
ible transducers. For example, Grigorchuk’s well-known example of a group of intermediate
growth has an elegant description in terms of a 5-state invertible transducer with a single
toggle state. Even two states can already produce a transduction group of significant com-
plexity: the two-state automaton in figure 9 generates the lamplighter group 2:Z. The orbit
tree of this transducer is not regular, so the orbit relation cannot be rational. A complete
classification of all the groups associated with 2-state automata over a binary alphabet can
be found in [7] and [12] contains a detailed discussion of automata with transduction groups
that are free Abelian.

1/1
0/0 1/0
0/1

Figure 9: A 2-state transducer generating the lamplighter group.

Surprisingly, even cycle-cum-chord transducers turn out to be rather complicated. It is not
hard to show that A} and A, both have rational orbit relations, and one can identify a larger
class of such cycle-cum-chord transducers for which this holds, see [15]. One can show that in
A3 the orbit relation of 0 fails to be rational, but our proof uses field theory in combination
with symbolic computation and does not appear to generalize to any other situation.

18

References

1]

[9]

[10]
[11]

[12]

[13]
[14]

[15]

J. Berstel. Transductions and context-free languages. http://www-igm.univ-mlv.fr/
~berstel/LivreTransductions/LivreTransductions.html, 2009.

J. A. Brzozowski. Derivatives of regular expressions. Journal Assoc. for Comp. Machin-
ery, 11, 1964.

S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.

C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM
J. Res. Dev., 9:47-68, January 1965.

M. Gardner. Mathematical games: The fantastic combinations of John Conway’s new
solitaire game ‘Life’. Sci. American, 223(4):120-123, 1970.

F. Q. Gouvéa. p-Adic Numbers: An Introduction. Springer Verlag, 2nd edition, 1997.

R. R. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanski. Automata, dynamical
systems and groups. Proc. Steklov Institute of Math., 231:128-203, 2000.

J. Howard Johnson. Rational equivalence relations. Theoretical Computer Science,
47:167-176, 1986.

B. Khoussainov and A. Nerode. Automata Theory and its Applications. Birkhauser,
2001.

D. Knuth. Private communication, 2010.

V. Nekrashevych. Self-Similar Groups, volume 117 of Math. Surveys and Monographs.
AMS,; 2005.

V. Nekrashevych and S. Sidki. Automorphisms of the binary tree: state-closed subgroups
and dynamics of 1/2-endomorphisms. Cambridge University Press, 2004.

J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

J.-P. Serre. Arbres, Amalgames, SL,. Number 46 in Astérisque. Société Mathématique
de France, Paris, 1977.

K. Sutner and K. Lewi. Iterating invertible binary transducers. In M. Kutrib, N. Mor-
eira, and R. Reis, editors, Descriptional Complexity of Formal Systems, volume 7386 of
Lecture Notes in Computer Science, pages 294-306. Springer Berlin, 2012.

19

