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Abstract

In this paper we study REβ , the lattice of the β-r.e. sets under inclusion, where β is an
arbitrary limit ordinal. The `-finite sets in REβ are a generalization of finite sets in classical
recursion theory: a β-r.e. set is `-finite iff all its β-r.e. subsets are β-recursive. A β-r.e. set
is thin iff its Σ1 cardinality is less than β?, the Σ1 projectum of β. We will show that every
thin set is β-recursive. Hence thin sets and `-finite sets coincide. Using this result we will
also show that every β-r.e. set that is not `-finite has a β-recursive subset that is not `-finite.
Furthermore, we establish Friedberg Splitting for all limit ordinals. Lastly, we obtain various
non-existence results for maximal sets in REβ .

Contents

1 Introduction 2

2 Reflection and Σ1 Normal Forms 3
2.1 Projecta, Cofinalities and β-Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Reflection for Lβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Normal form Σ1 definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Thin Sets are β-Recursive 12
3.1 Characterization of `-finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Proof of the main lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Applications: Recursive Subsets, Friedberg Splitting, and Maximal Sets 21
4.1 Recursive Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Friedberg Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Maximal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



1 Introduction

In this paper we study some basic properties of the collection of β-r.e. sets construed as a distributive
lattice under set theoretic inclusion. We denote this lattice by REβ . In classical recursion theory
the collection of finite sets forms a definable ideal: a recursively enumerable set X ⊆ ω is finite
iff the principal ideal generated by X consists entirely of recursive sets (and thus forms a boolean
lattice). It was suggested by Maass to adopt this as a definition of generalized finite sets in β-
recursion theory, see [7]. Thus a β-r.e. set X is called `-finite iff its principal ideal consists entirely
of β-recursive sets. It is easy to see that the `-finite sets form an ideal in REβ . We write =β for
this ideal.
For admissible ordinals α Lerman has given ample evidence that =α is the appropriate generalization
of the notion of “finite” from REω to REα, see [Le1,Le2]. In particular, Lerman has shown that for
admissible ordinals α the `-finite sets are exactly the α∗-finite sets, i.e., those elements of Lα that
have α-cardinality less than α∗. He also proves that the elementary theory of the quotient lattice
RE∗α := REα/=α is equidecidable with the elementary theory of REα. It is not hard to see that
Lerman’s proof also covers the inadmissible case and shows the following:

• =β is the only ideal of REβ that is definable over REβ , consists only of β-recursive sets and
contains all the really finite sets of REβ .

• The elementary theories of REβ and RE?β are equidecidable.

The ideal =β is therefore a natural starting point for the investigation of the lattice REβ . In the
weakly admissible case the `-finite sets are exactly those β-finite sets that have Σ1-cardinality
less than β?. So Lerman’s characterization carries over to these ordinals. However, for strongly
inadmissible ordinals there always are `-finite sets that fail to be β-finite; thus β-cardinality is no
longer sufficient to distinguish the `-finite sets. We therefore use the Σ1-cardinality of a β-r.e. set to
measure its size, in particular we call a β-r.e. set thin if it has Σ1-cardinality less than β?. It is easy
to see that a β-r.e. set is `-finite iff it is thin and β-recursive. But for weakly admissible β every thin
set is actually β-finite and therefore trivially β-recursive. Thus, for weakly admissible ordinals, the
`-finite and the thin sets coincide. This is not at all obvious in the strongly inadmissible situation,
in particular if β? has no regularity properties. So the question arises whether there exists any
thin β-r.e. set that fails to be β-recursive. In our main lemma we will answer this question in the
negative. Thus the thin sets and the `-finite sets coincide for arbitrary limit ordinals.
Thin sets play a natural role as nullsets of REβ . In addition they also crop up in recursion theoretic
arguments. Consider for example the Friedberg Splitting theorem. The standard construction can
easily be lifted to weakly admissible ordinals. For strongly inadmissible ordinals, however, a new
difficulty occurs: the injury sets in the construction are no longer β-finite. They are, however,
easily seen to be thin. By our main lemma, the injury sets are `-finite and one can show that the
construction succeeds even in the strongly inadmissible case. As another application we will show
that every β-r.e. set that fails to be `-finite has a β-recursive subset that also fails to be `-finite (this
is non-trivial for strongly inadmissible β). Thin sets can also be used to derive various non-existence
results for maximal sets in REβ .

This paper is organized as follows. In section 2 we review the basic definitions and a couple of
useful facts about the constructible hierarchy. We will use the classical Gödel hierarchy rather than
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the Jensen hierarchy since we feel it to be more natural. Our results can easily be transferred to
the J-hierarchy. In particular we will prove a reflection principle for Lβ and list several properties
of β-pseudo stable ordinals. Section 3 contains characterizations of `-finite and thin sets and the
somewhat lengthy proof of our main lemma: every thin β-r.e. set is β-recursive. Section 4 is
devoted to applications of this result to the lattice of β-r.e. sets. In particular we will show that
Friedberg splitting holds for all limit ordinals and derive various non-existence results for maximal
sets.

2 Reflection and Σ1 Normal Forms

In this section we establish two technical results that will be helpful later. First we show that the
following reflection principle holds for arbitrary limit ordinals β.

Reflection principle for Lβ
Let δ < η < β, η a β-cardinal, and p ⊆ δ. If p ∈ Lβ then p ∈ Lη.

Furthermore we introduce a special normal for Σ1 definitions in Lβ . This normal form will be
crucial in showing that thin sets are β-recursive. We begin with a brief review of terminology and
list a few standard results about the constructible hierarchy that will be used in the sequel without
reference.

To keep notation manageable we assume V = L throughout this paper. Background material on
the constructible hierarchy and the Levy hierarchy can be found for example in [1, 2]. Occasionally
we will slightly abuse notation and not differentiate between various language levels. As a typical
example, suppose X is a Σ1 substructure of Lβ (in symbols X ≺1 Lβ), γ ∈ X ∩ β, φ(u, v) is a
parameterless ∆0 formula and p ∈ Lγ ∩X = (Lγ)X a parameter in X. To express the fact that X
“believes” that Lγ is a model of ∃xφ(x, p) we will simply write X |= (Lγ |= ∃xφ(x, p)). Now consider
the Mostowski collapse π : X → Lδ. Set γ̄ := π(γ) and p̄ := π(p). Then Lδ |= (Lγ |= ∃xφ(x, p)).
To see this note that the satisfaction relation |= is primitive recursive and π is compatible with
Σ1 substructures: X ≺1 Lβ implies that X is closed under the primitive recursive definition of |=.
Hence we may infer that φ(x0, p̄) holds for some x0 ∈ Lγ since Lγ is a transitive substructure of Lβ
and thus absolute for ∆0 formulae. Arguments of this kind will be used frequently in what follows.

(x, y) will denote set-theoretical pairing, for emphasis we will sometimes write (x, y)s. Pa(X) will
be the closure of X under pairs. For a function f the notation f : X ↔ Y indicates that f is a
bijection with domain X and range Y . The symbol 2 denotes the end of a proof.

2.1 Projecta, Cofinalities and β-Cardinality

Let γ ≤ β and let n > 0 be a natural number. The Σn-Lβ projectum respectively the Σn-Lβ
cofinality of γ are defined as follows:

σnprjβ(γ) := min(δ
∣∣ ∃ f Σn-Lβ(f : γ → δ ∧ f injective)

σncofβ(γ) := min(δ
∣∣ ∃ f Σn-Lβ(f : δ → γ ∧ rg(f) ⊆ γ is cofinal ).
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As usual we write β? for σ1pβ(β) and κ for σ1cofβ(β). Let further β̂ = max(β?, κ). β is admissible
iff β = κ, weakly admissible iff κ ≥ β?, and strongly inadmissible otherwise. Note that β is
admissible iff β = β̂, weakly admissible iff β̂ = κ, and strongly inadmissible iff β̂ = β? > κ. Also
let cofβ(γ) := min(δ

∣∣ ∃f ∈ Lβ(f : δ → γ ∧ rg(f) ⊆ γ is cofinal ) and set σ0 cofβ(γ) := cofβ(γ). γ
is called Σn-Lβ regular, n ≥ 0, if σncofβ(γ) = γ.
The Σn-Lβ cardinality |X|β,n of a Σn-Lβ set X is defined by

|X|β,n := min
(
δ ≤ β? | ∃ fΣn-Lβ (f : δ ↔ γ)

)
We will be mostly interested in the case n = 0 and n = 1. Define the β-cardinality of X ∈ Lβ
by |X|β := |X|β,0. It will be shown shortly that this yields the same result as the somewhat more
traditional definition |X|β = min

(
δ | ∃ f ∈ Lβ(f : δ ↔ γ)

)
. An ordinal η < β is a β-cardinal if

|η|β = η. gc(β) will denote the largest β-cardinal if it exists and β otherwise. Limit, successor and
regular β-cardinal have their obvious meaning. Clearly for n > 0 and γ ≤ β we have: σnprjβ(γ) is
a β-cardinal (or β) and σncofβ(γ) is a regular β-cardinal (or β). Lastly, X ∈ Lβ is called η-finite
where η is a β-cardinal if |X|β < η.

As a general notational convention we will usually omit the superscript β in a context like σnprjβ(γ)
if no confusion is possible.

The following definitions are due to Friedman and Sacks and are rather straightforward general-
izations from α-recursion theory. A subset X ⊆ Lβ is β-recursively enumerable (β-r.e. ) iff X is
Σ1−Lβ . X is β-recursive (β-rec) iff X is ∆1−Lβ . Most importantly X is β-finite iff X ∈ Lβ . A
function f such that both its domain and range are subsets of Lβ is partial β-recursive iff its graph
is β-r.e. The function f is β-recursive iff in addition its domain is β-recursive.
Suppose X is β-r.e. ; we will sometimes abuse X to denote a corresponding Σ1 formula that defines
X over Lβ . Thus we may write Lβ |= a ∈ X.

The following facts are well known.

• Σn Separation
According to Jensen the Σn projecta have the following alternative characterizations:

σnprj(β) = min(δ
∣∣ ∃ f Σn-Lβ(dom(f) ⊆ δ ∧ rg(f) = Lβ)

= min(δ
∣∣ ∃X Σn-Lβ(X ⊆ δ ∧X /∈ Lβ).

Therefore Σ1 separation is available below β?.

• ∆1 Separation
∆1 separation holds below β̂: β̂ = min(δ

∣∣ ∃X β-rec(X ⊆ δ ∧X /∈ Lβ)) = |Lβ |β,1.

• Σ Recursion
β-recursive functions are closed under recursion up to κ. To be more explicit, let G : κ×Lβ →
Lβ be β-recursive and define by recursion a new function f : κ→ Lβ where f(ν) := G(ν, f � ν).
Then f is also β-recursive and dom(f) = κ. As an application of this principle one can show
that there is a strictly increasing, continuous β-recursive function q : κ → β that has range
cofinal in β. We shall reserve q as a name for such a function.
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• Enumerations
Maass has shown that X ⊆ Lβ is β-r.e. iff there is a β-recursive function f such that
f : δ ↔ X where δ ≤ β; see [8] for a proof. It follows that for any β-r.e. set X we have
|X|β,1 < β and, as a matter of fact, |X|β,1 ≤ β̂. f is frequently called an enumeration of
X; however, we will sometimes use the term enumeration with a slightly different meaning.
Let Φ(v) be a Σ1 formula with parameters from Lβ that defines X over Lβ , so that x ∈ X
iff Lβ |= Φ(x) for any x ∈ Lβ . Let q be the special cofinality function. For σ < κ set
Xσ := {x ∈ Lβ | Lq(σ) |= Φ(x) }. Clearly Xσ is β-finite and the map σ 7→ Xσ is β-recursive.
The sequence (Xσ

∣∣ σ < κ) will be referred to as an enumeration of X.

• Universal Predicates
There is a universal Σn−Lβ predicate Uβn (u, v) uniformly for all β. In particular for n = 1
there is a simultaneous enumeration of all β-r.e. sets using only indices less than β?. To see
this let P : Lβ → β? be a β-recursive projection (i.e. an injective function). For e < β? set
We := {x ∈ Lβ | ∃ē(P (ē) ' e ∧ Uβ1 (ē, x)) }. Note, however, that there is a hidden parameter:
P is in general not Σβ

1−∅.

• Σn Uniformization
This is one of the celebrated results of fine structure theory due to Jensen. Let R ⊆ Lβ ×Lβ
be a Σn-Lβ relation. Then there is a Σn-Lβ function r that uniformizes R: dom(r) = dom(R)
and ∀x ∈ dom(R)

(
R(x, r(x))

)
. In the special case n = 1 one can easily see that Lβ is actually

uniformly Σ1 uniformizable for all β.

• Σn Definitions
Suppose a ∈ Lβ , X ⊆ Lβ . a is called Σn definable over Lβ with parameters from X,
n ≥ 1, iff there is parameterless Σn formula Φ(u, v1, . . . , vn) and x1, . . . , xn ∈ X such that
Lβ |= ∃!uΦ(u, x1, . . . , xn) ∧ Φ(a, x1, . . . , xn). There is a parameter p ∈ Lβ such that every
a ∈ Lβ is Σ1 definable over Lβ with parameters from β? ∪ {p}. Let p(β) be the <β-minimal
such p.

• Σ1 Cardinality
Let a ∈ Lβ and set η := |a|β and η̄ := |a|β,1. Then η ≤ β̂ or η̄ < β̂ implies that η = η̄. Hence
the β-cardinality and the Σ1 cardinality of a ∈ Lβ almost always coincide. (Of curse, if η is
a β-cardinal such that β̂ < η < β then |η|β,1 < |η|β).
Proof. Clearly η ≥ η̄, so assume for the sake of a contradiction that η > η̄. Now η̄ = |a|β,1 =
|η|β,1, so there is a β-recursive bijection g : η̄ ↔ η. g cannot be β-finite as η̄ < η and both η̄
and η are β-cardinals. Hence η̄ ≥ κ for otherwise one could use Σ collection to show that g
is β-finite. Together with our hypothesis η̄ ≤ β̂ this implies κ ≤ η̄ < β̂. Hence β̂ = β? and
it follows from the definition of β? that η = rg(g) < β?. But then g ⊆ η̄ × η ⊆ Lη ⊆ L?β is
β-finite by Σ separation and we have the desired contradiction.

2.2 Reflection for Lβ

We will now show that reflection holds for arbitrary limit ordinals. So suppose p ⊆ δ is a β-finite
set where δ < η < β and η a β-cardinal. We have to show that p ∈ Lη. To this end we introduce a
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special type of Skolem function for successor levels of the constructible hierarchy to deal with the
pathological case β = λ+ ω and p /∈ Lλ
First a few facts concerning Skolem functions at limit levels. A more thorough treatment including
proofs can again be found in [1]. Let f be a partial Σn-Lβ function with dom(f) ⊆ ω × Lβ and
rg(f) ⊆ Lβ . f is called a Σn Skolem function for Lβ iff for all x ∈ Lβ and every Σβ

n−{x} relation R
we have: R 6= ∅ implies ∃i < ωR(f(i, x)). The existence of Σn Skolem functions follows from the Σn
uniformization theorem of Jensen, the proof being elementary in the case n = 1. In particular there
exists a Σ1 Skolem function hβ for Lβ that is uniformly definable for all β > ω by a parameterless Σ1
formula. We will refer to hβ as the standard Skolem function and frequently omit the superscript.
Also let ha(i, x) := h(i, (a, x)s) for a ∈ Lβ . We use ha to build Σ1 Skolem hulls of subsets of Lβ :

SH1(X, a;Lβ) := hβa [ω × Pa(X)].

Proposition 2.1 Let X ⊆ Lβ be closed under pairs, a ∈ Lβ . Then SH1(X,a;Lβ) is a Σ1 sub-
structure of Lβ .

The crucial property of Σ1 substructures is for our purposes is condensation: Let π : X ↔ Y be
the Mostowski collapse of X ≺1 Lβ . Then there exists γ ≤ β such that Y = Lγ .

An Example
As a typical application of Skolem hulls and condensation we will show how to construct a weakly
admissible ordinal β whose Σ1 cofinality lies strictly between β? and β. A moments reflection shows
that this is a rather rare situation. So define X := SH1(Lω,ℵ1;Lℵ2) and let π : X ↔ Lβ be the
Mostowski collapse. Note that there are exactly two β-cardinals, namely ω = π(ω) and η := π(ℵ1).
We claim that β? = ω < ρ = κ.
To see this let f := hℵ2 � ω × Lω and f̄ := π[f ]. X is a Σ1 substructure of Lβ , so f is Σ1−X
and f̄ is Σ1−Lβ . But dom(f̄) ⊆ ω × Lω and rg(f̄) = Lβ , so f̄ really is a projection and we
are through. It follows that β > η = gc(β) > β?, whence β is inadmissible. Now κ is a β-
cardinal, therefore κ ∈ {ω, η} and we only have to show that κ 6= ω. So assume for the sake of a
contradiction that κ = ω. Let q̄ : ω → β be a corresponding Σ1−Lβ cofinality function and set
q := π−1[q̄] : ω → X ∩ ℵ2. ℵ2 is regular, so Lℵ2 |= ∃λ(Lλ |= ∀x < ω∃y(q(x) ' y)). But X is a Σ1
substructure of Lℵ2 , so for some λ ∈ X ∩ ℵ2 we have X |= (Lλ |= ∀x < ω∃y(q(x) ' y)). Letting
λ̄ := π(λ) we get Lβ |= (Lλ̄ |= ∀x < ω∃y(q̄(x) ' y)). But then rg(q̄) ⊆ λ̄ < β, a contradiction. 2

Let us now return to our proof of the reflection principle for Lβ . Since η is a β-cardinal we may
assume without loss of generality that δ < η is a limit ordinal. As long as β is the limit of limit
ordinals we can adopt an argument similar to Gödel’s proof of the generalized continuum hypothesis
in L: let λ < β be a limit ordinal such that p ∈ Lλ. Set X := SH1(Lδ, p;Lλ) and let π : X ↔ Lγ
be the Mostowski collapse where γ ≤ λ. Lδ is transitive, so p = π(p) ∈ Lγ . As in the preceding
example it follows that σ1pγ(γ) ≤ δ. But γ ≤ λ < β, so |γ|β ≤ δ < η and thus p ∈ Lγ ⊆ Lη.

If β fails to be the limit of limit ordinals a more subtle approach is needed. We define Skolem
functions for successor levels Lλ+n, 0 ≤ n < ω. To this end we use of a “flat” pairing function
rather than the usual Kuratowski pair. For 1 ≤ n < ω let

[a1, . . . , an] := {(a1, 1)s, . . . , (an, n)s}.
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Note that for ai ∈ Lγ , ω ≤ γ, [a1, . . . , an] ∈ Lγ+3. Further let

Seq(a) := { [a1, . . . , an] | ai ∈ a, i ≤ n < ω }.

For the decoding function we use the convention

[b]i :=
{
bi if b = [b1, . . . , bn],
∅ otherwise.

Lastly, let ◦ denote concatenation of these sequences. So [a1, . . . , an]◦[b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm].
Now fix a recursive listing (Ψi

∣∣ i < ω) of the ∆0-ZF formulae using some standard arithmetization
of the language of set theory. For an arbitrary limit ordinal ν and a natural number n define a
partial function Hν+n from ω × Lν+n into Lν+n by

Hν+n(i, x) ' y iff
there is a w ∈ Seq(Lν+n) such that w = [w1, . . . , wn] is
<L-minimal with Lν+n |= Ψi(x,w1, . . . , wn) and y = w1.

We will refer to w as a witness for y. To keep notation reasonable, we will write Ψi(x,w) from
now on. Given an element a of Lν+n one can correspondingly define Hν+n

a like Hν+n but with a
as additional parameter. The definition of Hν+n just given could clearly be written uniformly as
a Σ1−∅ formula Φ(i, x, y). Similarly Hν+n

a can be defined by a Σ1−{a} formula Φa(i, x, y). The
relations <L and |= used in Φ (or rather their defining formulae) are absolute for transitive initial
segments of the constructible hierarchy, therefore Φ is upward persistent: Lν+n |= Φ(i, x, y) implies
Lν+m |= Φ(i, x, y) for all m ≥ n.
Note that for n = 0 there is a recursive function r such that hν(i, x) ' Hν(r(i), x). By way of
contrast, Hν+n is not even first order definable over Lν+n for n > 0. However, the syntactical
machinery necessary to define Hν+n will crop up in the constructible hierarchy after finitely many
steps: for some m, n < m < ω, Φ defines Hν+n over Lν+m.

We can now prove the following generalization of proposition 2.1 to successor levels.

Lemma 2.1 Let X ⊆ Lλ be closed under pairs, a ∈ Lλ+n where 0 ≤ n < ω. Set Y := Hλ+n
a [ω×X]

and Y0 := Y ∩ Lλ. Then Y0 is a Σ1 substructure of Lλ.

Proof. Using the Tarski criterion for Σ1 substructures it suffices to show the following: Let b =
b1, . . . , bk be an k-tuple of elements of Y0 and Ψ a ∆0−∅ formula such that Lβ |= ∃zΨ(b, z). Then
there exists z0 ∈ Y0 such that Lβ |= Ψ(b, z0). For the sake of simplicity we assume that k = 2, so
Lβ |= ∃zΨ(b1, b2, z). X is closed under pairs, so for some p ∈ X and some natural numbers i1, i2
we have bµ = Hλ+n

a (iµ, p) for µ = 1, 2.
Let w1, w2 be corresponding witnesses, say Lβ |= Ψiν (p, a, wµ). Define a ∆0−{a} formula Φ by

Φ(x, a, z,u,v) := Ψi0(x, a,u) ∧ Ψi1(x, a,v) ∧ Ψ(u1, v0, z).

Let j be the Gödel number of Φ and let c ∈ Lλ be <β-minimal such that Lβ |= Ψ(b1, b2, c). Lastly
define w := [c] ◦ w1 ◦ w2.
Then w is a witness for c: Hλ+n

a (j, p) ' c since Lλ+n |= Φ(p, a, w) and [w]1 = c. Thus c ∈ Y0 and
we are done. 2
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Lemma 2.2 (The Reflection Principle) Reflection holds for arbitrary limit ordinals β: δ <
η < β, η a β-cardinal, p ⊆ δ and p ∈ Lβ implies p ∈ Lη.

Proof. We may assume without loss of generality that we are in the difficult case β = λ + ω,
p ∈ Lλ+n − Lλ for some natural number n. Let Φp and m > n be as in the remark preceding the
last lemma. Define a partial function f from ω × Lδ to Lλ+n by f(i, x) ' y iff Lλ+m |= Φp(i, x, y)
where i < ω, x ∈ Lδ and y ∈ Lλ+n. Then f is Σ1 definable over Lλ+m with parameters p and
δ; indeed f = Hλ+n

p � ω × Lδ. Now set Y := rg(f), Y0 := Y ∩ Lλ. Y is extensional, so we may
use the Mostowski collapse π : Y ↔ Z where Z is transitive. Then P [Y0] = Lγ for some γ ≤ λ.
Hence Z ⊆ Lλ+n and it suffices to show that γ < η. Note that p = π[p] ∈ Lλ+n. Now define f̄
over Lλ+m in the same fashion as f over Lλ+n. Z is transitive and therefore a ∆0 substructure of
Lλ+m. Hence Lγ ⊆ rg(f̄). But clearly f̄ ∈ Lλ+m+1 ⊆ Lβ , so |γ|β < η and we are through. 2

Our first application of the reflection principle is to show that the β-cardinality of a β-finite set is
always less than β. First a technical lemma.

Lemma 2.3 Let λ and β be limit ordinals, λ < β, and n a nonnegative integer. Then there is
β-finite injective function from Lλ+n into λ.

Proof. We proceed by induction on n.
The case n = 0 follows from a result in [2]: there is an onto λ-recursive function f̄ : λ→ Lλ. Let f
be the Σ1 uniformization of f̄−1. Then f is injective by definition and β-finite because of λ < β.
For n = m + 1 let g : Lλ+m → λ be injective β-finite according to the induction hypothesis. As
before, let (Ψi

∣∣ i < ω) be a recursive listing of all ZF formulae. Define functions

N : Lλ+n → ω

N(x) := min
(
i < ω | ∃p ∈ Lλ+m(Ψi(v, p) defines x ⊆ Lλ+m over Lλ+m)

)
P : Lλ+n → Lλ+m

P (x) := min
(
p ∈ Lλ+m | ΨN(x)(v, p) defines x ⊆ Lλ+m over Lλ+m

)
.

Then we have for x ∈ Lλ+n: x = { z ∈ Lλ+m | Lλ+m |= ΨN(x)(v, P (x)) }. But N and P are clearly
β-finite. Therefore f : Lλ+n → Lλ, f(x) := (N(x), P (x))s, is also β-finite. But f is an injective
map from Lλ+n into Lλ and we are done. 2

Corollary 2.1 For all limit ordinals β every β-finite set has β-cardinality less than β.

Proof. For admissible β there is nothing to show, so assume β is inadmissible. Thus gc(β) < β. By
lemma 2.3 it is safe to assume that a ⊆ gc(β). Let f : otp(a)↔ a be the usual order isomorphism.
One can show by induction on ν < otp(a) that f � ν ∈ Lgc(β) using reflection at limit stages. Now
pick γ < β such that a ∈ Lγ and gc(β) < β. Then f is Σ1−Lγ and therefore β-finite. Hence
|a|β ≤ otp(a) ≤ γ < β. 2

A similar argument can be used to show that every β-cardinal η is β-stable, i.e., that Lη is a Σ1
substructure of Lβ . One should note that the problems in the proof of lemma 2.2 cannot be avoided
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by using the Jensen hierarchy instead of the Gödel hierarchy: here the difficulties arise at levels
Jν+1.

2.3 Normal form Σ1 definitions

We will now introduce a convenient normal for Σ1 definitions of elements in Lβ . Every set in Lβ
has a Σ1 definition over Lβ involving only parameters from β? ∪ {p(β)}, thus we may restrict our
attention to ordinals less than β?. The first step is to consider ordinals less than β? that cannot
be defined in terms of smaller ones. Friedman called these ordinals β-pseudo stable, see [4, 5]. To
be more precise, let p := p(β) be the standard parameter and γ < β?. Then γ is β-pseudo stable
iff γ /∈ SH1(γ, p;Lβ). It is clear that any element in Lβ has a Σ1 definition that uses only p and a
finite number of β-pseudo stable ordinals as parameters. This fact will be exploited below to define
a natural tuple of parameters for every ordinal less than β?.

First we have to derive a few basic properties of β-pseudo stable ordinals. Let us say that a β-pseudo
stable ordinal is limit β-pseudo stable iff it is the supremum of lesser β-pseudo stable ordinals and
successor β-pseudo stable otherwise. Let Pβ denote the set of all β-pseudo stable ordinals. Let
γ < β? be arbitrary and consider the Skolem hull X := SH1(γ, p;Lβ) and its collapse π : X ↔ Lδ,
δ < β?. Note that δ is uniquely determined by γ, so there is a collapse map C defined by

C : β? → β?,

C(γ) := δ

The collapse C(γ) can be used to characterize β-pseudo stable ordinals.

Lemma 2.4 Let γ < β?, γ not a β-cardinal. Then γ is β-pseudo stable iff LC(γ) |= (γ is a cardinal ).

Proof. First suppose γ is β-pseudo stable and consider X := SH1(γ, p;Lβ), π : X ↔ Lδ the
Mostowski collapse where δ = C(γ). Let α := min(ξ ∈ X

∣∣ ξ > γ). As γ is β-pseudo stable we
must have π(α) = γ and it suffices to show that α is a β-cardinal. So assume for a contradiction
that η := |α|β < α. X is Σ1 substructure of Lβ , so there is a bijection f ∈ X, f : η ↔ α. But
dom(f) ⊆ X, hence rg(f) ⊆ X and γ ∈ X contradicting the β-pseudo stability of γ.
For the opposite direction let X and π as above. By our assumption γ is a δ-cardinal but not a
β-cardinal. So η := π−1(γ) must be a β-cardinal since X ≺1 Lβ and the notion of being a cardinal
is Π1 and thus η > γ. But then γ cannot lie in X, for this would imply π−1(γ) = γ. Hence γ is
β-pseudo stable. 2

A few comments are in order.

• For any β-pseudo stable ordinal γ and X := SH1(γ, p;Lβ), π : X ↔ Lδ, as above we have
γ = π(ρ) where ρ := min

(
ξ ∈ X | ζ < ξ

)
is the least β-cardinal larger than γ in X.

• Using Skolem hull arguments as in the last proof it is possible to show that Pβ is almost a
closed unbounded subset of β?. To be more explicit, if β? is a successor β-cardinal then Pβ is
indeed closed unbounded in β?. On the other hand, if β? is a limit β-cardinal then Pβ is still
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unbounded in β? but no longer closed: some of the β-cardinals less than β? are not β-pseudo
stable.
To see this let us first consider the case where β? is a limit β-cardinal. Let γ0 < β? such
that β? is Σ1 definable over Lβ with parameters in γ0 ∪ {p(β)}. Pick two consecutive β-
cardinals η < η+ such that η ≤ γ0 < η+ ≤ β? ∈ SH1(γ0, p;Lβ). It clearly suffices to
show that Pβ ∩ [η, η+[ is closed unbounded in η+. So let γ be arbitrary in [γ0, η

+[. Set
X := SH1(γ + 1, p;Lβ) and ζ := X ∩ η+. Again let π : X ↔ Lδ be the Mostowski collapse
where δ = C(γ + 1).

Claim 1: ζ is an ordinal.
For let ζ0 ∈ ζ. There is a map f : η ↔ ζ0 and f is Σ1 definable over Lβ , hence there is a Σ1−X
map f̄ : η ∩X ↔ ζ0 ∩X. But η lies in the transitive part of X. So ζ0 = rg(f) = rg(f̄) ⊆ X
and ζ0 ⊆ ζ.

Claim 2: ζ < η+.
Now |X|β,1 = η, so there is a Σ1−Lδ map f from a subset of ω×η onto Lδ. As γ+1 < η+ < β?

we must have δ = C(γ+1) < β. Hence f is β-finite and a witness to |δ|β ≤ η; indeed |δ|β = η.
So ζ < δ < η+.
It follows that X = SH1(ζ, p;Lβ). Since ζ /∈ X this shows that ζ is β-pseudo stable. Hence
Pβ ∩ [η, η+[ is unbounded in η+. To see that this set is also closed let γ, η < γ < η+, be the
limit of lesser β-pseudo stable ordinals. Clearly SH1(γ, p;Lβ) =

⋃
{SH1(ζ, p;Lβ)

∣∣ ζ ∈ Pβ∩γ}
so it suffices to show that for all ζ ∈ Pβ ∩ γ : γ /∈ SH1(ζ, p;Lβ). Assume otherwise for the
sake of a contradiction, say γ ∈ SH1(ζ, p;Lβ) := X. As in claim 1 one can show that actually
γ ⊆ X ∩ η+, whence ζ ∈ γ ⊆ X contradicting the β-pseudo stability of ζ.

In the case where β? = η+ is a successor β-cardinal the argument is entirely similar.

• It is obvious from the definitions that Pβ is Π1−Lβ . As one might expect, this set fails to be
Σ1−Lβ . For assume Φ(x; a, p) is a Σ1 formula with only parameters a < β? and p = p(β) that
defines Pβ over Lβ . Pick an ordinal γ and ζ such that a < γ < ζ < β? where γ fails to be β-
pseudo stable and ζ is the least β-pseudo stable ordinal larger than γ. Set X := SH1(ζ, p;Lβ)
and consider the β-cardinal ρ := min

(
ξ ∈ X | ζ < ξ

)
.

We have just seen that Pβ is unbounded in ρ, whence Lβ |= ∃x(γ < x < ρ∧Φ(x; a, p)). Since
all parameters lie in X ≺1 Lβ we have X |= ∃x(γ < x < ξ ∧ Φ(x; a, p)). Therefore there is a
β-pseudo stable ordinal ζ ′ between γ and ρ that lies in X. However, X∩ [ζ, ρ[ = ∅, so actually
γ < ζ ′ < ζ. But there are no β-pseudo stable ordinals in the interval [γ, ζ[ and we have the
desired contradiction.

Lemma 2.4 motivates the following definition. For γ < β? let

C′ : β? → β? + 1,
C′(γ) := max

(
ξ ≤ β? | Lξ |= (γ is a cardinal)

)
It follows from the lemma that C(γ) ≤ C′(γ) for all β-pseudo stable γ. Indeed, in most cases we
have C(γ) = C′(γ). Equality holds in particular for all successor β-pseudo stable ordinals γ.
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Lemma 2.5 Let ξ < β? be β-pseudo stable and δ = C(ξ). Then ξ is successor β-pseudo stable iff
σ1pδ(ξ) < ξ.

Proof. First assume ξ is successor β-pseudo stable. Then there is a γ < ξ such that SH1(γ, p;Lβ) =
SH1(ξ, p;Lβ) =: X. As usual let π : X ↔ Lδ be the Mostowski collapse. Set f := π[hp � ω × Lγ ]
where hp is the standard Skolem function with additional parameter p = p(β). f shows that
σ1pδ(ξ) ≤ γ < ξ.
For the opposite direction it suffices to show that for every limit β-pseudo stable ξ we have σ1pδ(ξ) =
ξ. Assume for the sake of a contradiction that there is a partial surjective δ-recursive function f
with dom(f) ⊆ ξ0 and rg(f) = ξ where ξ0 < ξ. Let X and π as above and set f̄ := π−1[f ]; so f̄
is Σ1−X. Now pick ξ̄ β-pseudo stable such that ξ0 < ξ̄ < ξ and f̄ is Σ1−SH1(ξ̄, p;Lβ). But then
rg(f̄) ⊆ ξ̄ and therefore rg(f) ⊆ π(ξ̄) = ξ̄ < ξ, contradiction to f surjective. 2

We are now ready to introduce a canonical normal form for Σ1 definitions.

Definition 2.1 Let ξ < β? and ξ ≥ ξ1 > ξ2 . . . > ξn. Then ξ1, . . . , ξn is a trace of ξ iff for some
i < ω we have hp(i, ξ1, . . . , ξn ) ' ξ and ξi is β-pseudo stable for all i = 1, . . . , n .

It is easy to show by induction over ξ that every ξ < β? has a trace. For if ξ is β-pseudo stable it
is its own trace. Otherwise there are ξ1, . . . , ξk < ξ such that for some suitable Gödel number i we
have hp(i, (ξ1, . . . , ξk)) ' ξ. By our induction hypothesis each ξi has a trace and it is easy to piece
these traces together to produce a trace of ξ. Traces are not uniquely determined. However, there
is a natural way to select minimal trace for each ordinal ξ < β?. Think of all the set of all traces
of ξ as an ordered tree, where the successors of a node are sorted from left to right in increasing
order. All branches in the tree are traces and we may select the leftmost one as the minimal trace
of ξ. To be more precise, define by induction on n ≥ 1 a sequence of β-pseudo stable ordinals as
follows:

ξn := min
(
ζ
∣∣ ∃m, ζn+1, . . . , ζm ( ξ1, . . . , ξn−1, ζ, ζn+1, . . . , ζm

is a trace of ξ and ξn−1 > ζ > ζj for n < j ≤ m
)
.

Since the sequence of ordinals so defined is strictly descending we obtain a uniquely determined
trace ξ1, . . . , ξk of ξ. A Σ1 substructure contains ξ if and only if it contains the minimal trace of ξ:

Lemma 2.6 Let ξ < β? and ξ its minimal trace. Let X be a Σ1 substructure of Lβ that contains
p(β). Then ξ ∈ X iff ξ ∈ X.

Proof. Clearly ξ ∈ X implies ξ ∈ X. So assume ξ ∈ X; we have to show that the minimal
trace ξ also lies in X. To keep notation manageable we will only consider the case ξ = ξ1, ξ2
where ξ > ξ1 > ξ2; the argument in the general situation is quite similar. Let i < ω such that
hp(i, (ξ1, ξ2)) ' ξ and set ξ′ := min

(
ζ ∈ X | ∃w < ζ(hp(i, (ζ, w)) ' ξ)

)
. ξ′ exists as ξ, p ∈ X ≺1 Lβ .

We claim that ξ′ = ξ. For ξ′ < ξ0 would immediately contradict the definition of a minimal trace.
So assume ξ′ > ξ1. Then X |= ∃ζ < ξ1, w < ζ(hp(i, (ζ, w)) ' ξ) since Lβ is a model of this formula,
X ≺1 Lβ and all the parameters lie in X. But this contradicts the definition of ξ′. A similar
argument shows that ξ2 lies in X and we are done. 2
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3 Thin Sets are β-Recursive

There are numerous ways to generalize the notion of finiteness from classical recursion theory to
β recursion theory. If we consider finite sets as nullsets in REω, then the `-finite sets are the
appropriate generalization to REβ . A different aspect a recursively enumerable set being small is
captured by the following definition.

Definition 3.1 Let X ⊆ Lβ be a β-r.e. set. X is thin iff |X|β,1 < β?.

In classical recursion theory the thin sets are of course exactly the finite sets or, equivalently, the
`-finite sets. Similarly in α recursion theory the thin sets are exactly the `-finite sets. The crucial
step in showing that this characterization carries over to arbitrary limit ordinals is our main lemma:

Lemma 3.1 (Main Lemma)
Every thin β-recursively enumerable set is β-recursive.

The proof is somewhat lengthy and takes up most of this section.

3.1 Characterization of `-finite sets

Before turning to the proof of the main lemma we establish some basic properties of `-finite and
thin sets. To this end let REβ(X) := {Y ∩X | Y ∈ REβ } where X ⊆ Lβ be the principal ideal
generated by X. REβ(X) is a sublattice of REβ iff X is β-recursively enumerable. Observe that for
any β-r.e. set X the lattices REβ(X) and REβ(|X|β,1) are isomorphic.

Lemma 3.2 Let X ⊆ Lβ be β-recursively enumerable. The following are equivalent:

1. X is `-finite,

2. X is β-recursive and REβ(X) is a boolean algebra,

3. X is β-recursive and thin,

4. for some β-recursive permutation P : Lβ ↔ Lβ and some δ < β?: X = P [δ].

Proof. (1⇒ 2): This follows immediately from the fact that for X β-recursive and Y ∈ REβ(X):
Y has a complement in REβ(X) iff Y has a complement in REβ iff Y is β-recursive.

(2 ⇒ 3): Assume for the sake of a contradiction that δ := |X|β,1 ≥ β?. Choose an enumeration
f : δ ↔ X and let C ⊆ β? be an arbitrary β-r.e. set that fails to be β-recursive. SetX0 := f [C] ⊆ X.
Since REβ(X) is a boolean algebra, X0 has a complement in REβ(X). By the last remark X0 is
β-recursive. But then C is also β-recursive, contradiction.

(3⇒ 4): Let δ := |X|β,1 < β? and fix an enumeration f : δ ↔ X of X.

Claim: |Lβ − δ|β,1 = |Lβ −X|β,1 = β̂.

12



To see this let A,B ⊆ Lβ be two β-r.e. sets. Then ||A∪B|β,1 ≤ |A|β,1+|B|β,1 whence β̂ = |Lβ |β,1 ≥
|Lβ − δ|β,1 + |δ|β,1 and so indeed β̂ = |Lβ − δ|β,1 as |X|β,1 = δ < β? ≤ β̂. Analogously one shows
β̂ = |Lβ −X|β,1 and we are done. Hence there is a β-recursive permutation P0 : Lβ − δ ↔ Lβ −X
and P := P0 ∪ f is a β-recursive permutation of Lβ .

(4 ⇒ 1): Let Y ∈ REβ(X) and set d := P−1[Y ]. Then d ⊆ δ < β? is β-r.e. and therefore β-finite
by Σ1 separation. So Lβ − Y = P [Lβ − d] is β-r.e. and Y is β-recursive. 2

It follows that every β?-finite set is both `-finite (by Σ separation) and thin. The converse holds
only for weakly admissible β as demonstrated in the next lemma.

Lemma 3.3 For any limit ordinal β the following are equivalent:

1. β is weakly admissible,

2. the `-finite sets in REβ are exactly the β?-finite sets,

3. the thin sets in REβ are exactly the β?-finite sets.

Proof. First suppose β is weakly admissible. We must show that `-finite as well as thin sets are
β?-finite. By the last lemma `-finite sets are in particular thin. Thus suppose X is thin. Pick an
enumeration f : δ ↔ X where δ := |X|β,1 < β?. But β? ≤ κ, so one may use Σ collection to show
that f and therefore X is β? -finite. Thus (1 ⇒ 2) and (1 ⇒ 3). Assume on the other hand that
β is strongly inadmissible. Consider the standard Σ1 cofinality function q : κ → β as described in
the last section. Set A := rg(q) ⊆ β. A is unbounded in β and so clearly not β-finite. However, A
is thin as κ < β?. Thus (3⇒ 1). By lemma it suffices to show that A is also β-recursive, for then
A is also `-finite and not β-finite as required. Now q is continuous and monotonic, so for ξ < β?

we have ξ /∈ A iff ξ < q(0) ∨ ∃σ < κ(q(σ) < ξ < q(σ + 1)). Thus Lβ −A is β-r.e. , A is `-finite and
direction (2⇒ 1) follows. 2

An example like β := ℵ1 +ω shows that the set A defined in the last proof can actually be ∆0−Lβ ,
so it is not a particularly good example for a β-infinite set. As a matter of fact, for β = ℵ1 + ω we
have β? = ℵ1 and REβ(ℵ1) and REβ are isomorphic. But the `-finite subsets of ℵ1 are all countable
by lemma 3.2 and thus β-finite. However, for ordinals like β := ℵω + ω there is no reason why all
`-finite subsets of β? = ℵω should be β-finite. This is made explicit in the next lemma.

Lemma 3.4 Let β be strongly inadmissible. Then β? is Σ1 regular iff every `-finite subset of β?
is β-finite.

Proof. First assume β? is Σ1 regular and let X ⊆ β? `-finite. By lemma 3.4 X is thin, so we have
an enumeration f : δ ↔ X for δ := |X|β,1 < β? = σ1cof (β?). Hence X = rg(f) must be bounded
in β? and therefore is β-finite by Σ1 separation. It follows from reflection for Lβ that X is actually
β?-finite.
For the opposite direction let β? be Σ1 irregular, say λ := σ1cofβ(β?) < β?, λ̄ := cofβ(β?) and
let g : λ → β? and ḡ : λ̄ → β? be corresponding cofinality functions. So both rg(g) and rg(ḡ) are
cofinal in β?, g is β-recursive and ḡ is β-finite.
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Case 1: λ = λ̄.
Let Φ(u, v) be a universal Σ1 formula, p := p(β) and K : β? ↔ Lβ∗ a β-finite listing of Lβ∗.
Set Kδ := K(δ) and define Cσ := { 〈e, x〉 | e, x < β? ∧ Lq(σ) |= Φ(〈e, x〉, p) } and D := { 〈δ, ν, σ〉 |
δ < β?, ν < λ, σ < κ ∧Kδ = Cσ ∩ g(ν) }. Note that D is β-recursive and thin as |D|β,1 ≤ |λ ×
κ|β < β?. So D is `-finite and we only have to show that D is not β-finite. To this end let
C :=

⋃
{Cσ

∣∣ σ < κ}. C is a complete Σ1 set and so certainly not β-finite. But C =
⋃
{Kδ

∣∣ ∃ν <
λ, σ < κ(〈δ, ν, σ〉 ∈ D)} and we are done.

Case 2: λ < λ̄.
Define a map h : λ → λ̄ by h(i) := min(j < λ

∣∣ ḡ(j) > g(i)). h is β-recursive and has range
unbounded in λ̄. Thus h cannot be β-finite and it follows from Σ1 separation below β? that λ̄+β?.
Now define an approximation gσ to g as follows: gσ := { (i, x) | Lq(σ) |= g(i) ' x } ⊆ λ × β?

where σ < κ. rg(gσ) ⊆ β? must be bounded as λ̄ = β?, so we may define G : κ → β? by
G(σ) := sup(rg(gσ)). Since g =

⋃
gσ<κgσ the map G is a Σ1 cofinality function, hence λ ≤ κ. But

λ < κ would imply that g is β-finite contradicting λ < λ̄. So really λ = κ. Now define C and Cσ

as above and let D := { 〈δ, σ〉 | δ < β?, σ < κ ∧Kδ = Cσ ∩ g(σ) }. Again D is β-recursive and thin
as |D|β,1 = κ < β?. As in case 1 it follows that D is `-finite but fails to be β-finite. 2

It follows from the reflection principle that the `-finite subsets of β? are actually β?-finite whenever
β? is Σβ

1 regular.
Note that as a corollary to the proof of the last lemma we have for strongly inadmissible β such
that σ1cof (β?) < cof(β?): κ = σ1cof (β?) and β? = cof(β?). This fact will be used in the next
section.
The set D defined in the proof is a Σ1 master code in case 1 and a ∆1 master code in case 2. Thus,
from the point of view of fine structure theory, `-finite sets can be rather complicated.

Taking the main lemma 3.1 for granted for the moment we can eliminate the condition of X being
β-recursive from lemma 3.2:

Corollary 3.1 For any β-r.e. set X ⊆ Lβ the following are equivalent:

1. X is `-finite,

2. REβ(X) is a boolean algebra,

3. X is thin.

Proof. As an immediate consequence of lemmata 3.2, 3.4 and the main lemma we have the
implications (1 ⇒ 2), (1 ⇒ 3) and (3 ⇒ 1). Hence we only have to show (2 ⇒ 3). Note that both
REβ(β̂) and REβ(β?) fail to be boolean algebras. Thus it suffices to show that, for every non-thin
β-r.e. set X, the lattice REβ(X) is isomorphic to either REβ(β̂) or to REβ(β?). To this end let
δ := |X|β,1, so β? ≤ δ ≤ β̂ and REβ(X) is isomorphic to REβ(δ). Suppose β? ≤ δ < β̂. Then β

is weakly admissible, i.e., β̂ = κ. Let f : Lβ → β? be a Σ1 projection. By Σ collection f � δ is
β-finite, which shows that |δ|β = β? and we are done. 2

Yet another characterization of `-finite sets in terms of their <β order types is given in [10].
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Theorem 3.1 A β-r.e. set X ⊆ Lβ is `-finite iff X has ordertype less than β?.

3.2 Proof of the main lemma

We now turn to the proof of the main lemma. For the sake of the argument let us introduce the
following terminology.

Definition 3.2 A non-decreasing sequence I =
(
Iν
∣∣ ν < λ

)
of simultaneously β-r.e. sets is an

`-cover for β iff the following holds:

1. Iν ⊆ Lβ is `-finite for all ν < λ,

2. For every thin β-r.e. set X there exists a ν < λ such that X ⊆ Iν .

Here λ is a limit ordinal, the length of the `-cover I.

To prove the main lemma it clearly suffices to exhibit an `-cover for every limit ordinal β. For
then any thin β-r.e. set is a subset of an `-finite set and thus β-recursive by the definition of
`-finiteness. This is quite easy as long as β is weakly admissible: let I = ( Iν

∣∣ ν < β? ) be a
standard enumeration of the β?-finite sets. By corollary 3.1 the β?-finite sets, the `-finite sets and
the thin sets all coincide. Thus every thin set actually occurs in the sequence I.

Let us assume from now on that β is strongly inadmissible. Then β̂ = β? and there is a β-recursive
bijection P : Lβ ↔ β? which induces an isomorphism between REβ(β?) and REβ that preserves
thin sets.
First suppose that β? is Σ1 regular. Set Iν := P−1(Kν) where (Kν

∣∣ ν < β?) is a β-finite listing of
the β?-finite subsets of β?. Now let X ⊆ Lβ be a thin set. Then P (X) ⊆ β? is thin, thus there is
an enumeration f : δ ↔ P (X), δ := |X|β,1 < β?. As β? is Σ1 regular f must have range bounded
in β?, say, P (X) ⊆ γ < β?. But then P (X) is β-finite by Σ1 separation and β? -finite be reflection.
Thus for some ν < β? we have P (X) = Kν and X = Iν . Hence I :=

(
Iν
∣∣ ν < β?

)
is an `-cover

and we are through.
Lastly consider the case where β? is Σ1 irregular. Friedman showed in [3] that in this situation β?
must be a limit β-cardinal. Let

(
αν
∣∣ ν < λ

)
be a β-finite, strictly ascending sequence of β-cardinals

cofinal in β? where λ := cofβ(β?). Note that it is possible that β? is a regular limit β-cardinal but
Σ1 irregular; see the reference for an example. In this situation we have κ = σ1cof (β?) < λ = β?

by the remark following lemma 3.4. For the sake of simplicity let us assume that this pathology
does not occur. It is easy to see that the arguments given in the sequel can be modified to deal
with this case. To summarize, we will assume from now on that:

• β is strongly inadmissible,

• σ1cof (β?) = cofβ(β?) = λ < β?,

• (αν
∣∣ ν < λ) is a β-finite strictly ascending sequence of β-cardinals cofinal in β?.
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Let p := p(β) be the standard parameter and define for all ν < λ:

Hν := SH1(αν , p;Lβ) ⊆ Lβ .

We claim that (Hν

∣∣ ν < λ ) is an `-cover. To see this first note that the sets Hν are thin: Hν =
hp[D] where hp is the standard Skolem function andD := { (i, x) ∈ ω × αν | ∃z(hp(i, x) ' z ∧ z < αν) }.
D is β-finite by Σ1 separation and |D|β ≤ αν < β?, hence Hν is also thin. Next suppose X ⊆ Lβ
is thin. Fix an enumeration f : δ ↔ X where δ := |X|β,1 < β?. Pick ν < λ such that δ < αν
and for some parameter a < αν we have f is Σ1 definable over Lβ with parameters p and a only.
Then f is Σ1−Hν as Hν is a Σ1 substructure of Lβ and a, p ∈ Hν . Now dom(f) = δ ⊆ Hν , so
X = rg(f) ⊆ Hν .
Hence it remains to show that all the sets Hν are β-recursive. Note, however, that these sets
cannot be β-recursive uniformly in ν. For assume that some Σ1−∅ formula φ defines Lβ − Hν

with parameters a < β? and p such that for all ν < λ: x /∈ Hν iff Lβ |= φ(x, ν, a, p). Pick
ν < λ such that a, ν < αν . Then Lβ |= ∃xφ(x, ν, a, p). Since Hν is a Σ1 substructure of Lβ this
implies Hν |= ∃xφ(x, ν, a, p). Now pick a witness x̄ ∈ Hν such that Hν |= φ(x̄, ν, a, p). But then
Lβ |= φ(x̄, ν, a, p), whence x̄ /∈ Hν , and we have the desired contradiction.
Since Hν ⊆ Hν′ for ν ≤ ν′ < λ it suffices to show that Hµ is β-recursive for arbitrarily large µ < λ.
To this end pick µ̄ < λ large enough so as to guarantee that

• κ, λ < αµ̄,

• β?, (K : β? ↔ Lβ∗) and (q : κ→ β) are all in Hµ̄.

Clearly all µ larger than µ̄ inherit these properties. For the remainder of the argument let µ be
arbitrarily large but fixed, µ̄ ≤ µ < λ. In order to show that Hµ is β-recursive we will use a kind
of 1-type restricted to Σ1 formulae to pin down membership is Hµ. First, the definitions.

Definition 3.3 Let v be a special variable that we will keep fixed from now on. For x ∈ Lβ and
σ < κ define the Σ1-one-type of x at stage σ (in symbols Tσ(x)) by

Tσ(x) := {Ψ(v) | Ψ is a Σ1−(αµ ∪ {p}) formula and Lq(σ) |= Ψ(x) }.

The Σ1-one-type of x, in symbols T (x), is defined as T (x) :=
⋃
σ<κ T

σ(x).
Let x /∈ Hµ and σ < κ. x is discernible at stage σ iff for all x′ ∈ Lβ : Tσ(x) = Tσ(x′) implies
x′ /∈ Hµ. x is discernible iff x is discernible at some stage σ < κ.

The Σ1 substructure generated by x ∈ Lβ at stage σ < κ (in symbols Xσ(x)) is defined by

Xσ(x) := SH1(αµ, (x, p)s;Lq(σ)).

Xσ(x) and Xσ(x̄) are called strongly isomorphic (in symbols Xσ(x) ≡ Xσ(x̄)) iff there is an
epsilon-isomorphism f : Xσ(x)↔ Xσ(x̄) s.t. f � αµ = id, f(p) = p and f(x) = x̄.

The ordinal µ is a hidden parameter in all these definitions. We assume that Σ1-one-types are
coded in some standard fashion; so both T (x) and Tσ(x) may be construed as subsets of ω × αµ.
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Note that the Σ1-one-types are β-finite: the satisfaction relation for Σ1 formulae is Σ1−Lβ , so
T (x) ⊆ ω × αµ is β-finite by Σ1 separation. The property of Σ1-one-types crucial for our purposes
is that T (x) determines membership in Hµ:

x ∈ Hµ iff there exists i < ω, e < αµ such that
(
hp(i, e) ' v

)
∈ T (x).

In fact any element x inHµ is uniquely determined by itsΣ1-one-type, i.e., x ∈ Hµ and T (x) = T (x′)
implies x = x′. Similarly one can show that for all ν < λ the first β-pseudo stable larger than αν
is also uniquely determined by its Σ1-one-type. However, T certainly is far from being injective for
simple cardinality reasons. E.g., let β := ℵω + ω and, say, µ = 5. Then there is a stationary set
E ⊆ ℵ7 such that for all x, x′ ∈ E: T (x) = T (x′). If one interprets stationary as stationary in the
sense of Lβ this is actually true for all β under consideration here.

The following lemma describes the relationship between the types Tσ(x) and the structures Xσ(x).

Lemma 3.5 Let σ < κ, x, x̄ < β?. Then Xσ(x) and Xσ(x̄) are strictly isomorphic iff Tσ(x) =
Tσ(x̄).

Proof. If: By the definition of Xσ(x) for every a ∈ Xσ(x) there exist ea < αµ, i < ω such that
Lq(σ) |= (h(x,p)(i, ea) ' a). Pick one such ea and i and set f(a) := h(x,p)(i, ea). The Skolem
function h(x,p) converges on (i, ea) since ∃z

(
h(v,p)(i, ea) ' z

)
∈ Tσ(x) = Tσ(x̄). A similar argument

shows that f is a bijection, f : Xσ(x) ↔ Xσ(x̄). It remains to show that f respects ∈. So let a,
b ∈ Xσ(x), say a ∈ b. Then ∃u,w

(
h(v,p)(i, ea) ' u∧ h(v,p)(j, eb) ' w ∧ a ∈ b

)
is a formula in Tσ(x)

an thus in Tσ(x̄). Hence f(a) = h(x,p)(i, ea) ∈ h(x,p)(j, eb) = f(b).
Only if: Let f : Xσ(x) ↔ Xσ(x̄) be the corresponding epsilon-isomorphism. Pick an arbitrary
formula Ψ(v) in Tσ(x). Then Lq(σ) |= Ψ(x) and it follows from Xσ(x) ≺1 Lq(σ) that Xσ(x) |= Ψ(x).
Applying f we get Xσ(x̄) |= Ψ(x̄). 2

Returning to our argument, we would like to use the Σ1-one-type T (x) off x to determine member-
ship in Lβ −Hµ. To this end we may define

G := { t ∈ Lβ∗ | t ⊆ ω × αµ ∧ ∀z ∈ Lβ(T (z) = t⇒ z /∈ Hµ) }
Z := { z ∈ Lβ | T (z) ∈ G }.

Then Z is certainly the complement of Hµ in Lβ . However, T is not a β-recursive function and
so Z need not be β-recursively enumerable. To overcome this difficulty we use the approximation
Tσ(x) instead of T (x):

G# := { t ∈ Lβ∗ | t ⊆ ω × αµ ∧ ∀z ∈ Lβ , σ < κ(Tσ(z) = t⇒ z /∈ Hµ) }
Z# := { z ∈ Lβ | ∃σ < κ(Tσ(z) ∈ G#) }.

We claim that Tσ(x) is β-recursive. Note that there is a slight technical difficulty with this. As
long as q(σ) is a limit ordinal it is obvious that Tσ (and Xσ) is a β-recursive function uniformly
in σ. In the case β = β0 + ω, however, similar problems occur as in the proof of the reflection
principle. One can use the functions Hq(σ)

(x,p) defined in section 2 to overcome these problems. But
then G# is Π1−Lβ and bounded in Lβ? , hence β-finite by Σ1 separation. Therefore Z# is indeed
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β-recursively enumerable. Also, Z# ⊆ Lβ−Hµ by the definition of G#. However, the problem is
now to show that Lβ −Hµ ⊆ Z#. For suppose x /∈ Hµ. It is conceivable that for all σ < κ there
exists some x̄ in Hµ that, at stage σ, has the same Σ1-one-type as x: Tσ(x) = Tσ(x̄) (though of
course T (x) 6= T (x̄)). Hence none of the types Tσ(x) would appear in G# and x would not be in
Z#. This difficulty was addressed in the previous definition: for discernible x there exists a stage σ
such that Tσ(x) ∈ G#. Hence every discernible x lies in Z# as defined above. Thus we only have
to verify the following claim:

Claim 1: Every x ∈ Lβ −Hµ is discernible.
Using traces and lemma 2.6 we can immediately reduce claim 1 to showing that all β-pseudo stable
ordinals ξ < β? are discernible:

Claim 2: Let x ∈ Lβ − Hµ with minimal trace ξ1, . . . , ξn. If at least one of the ordinals ξi is
discernible then x is discernible as well.
Proof. Note that ξ1 cannot be in Hµ. For otherwise we would have ξ1 < αµ since ξ1 is β-pseudo
stable. But then for all i ≤ n: ξi ≤ ξ1 < αµ ⊆ Hµ and x ∈ Hµ by lemma 2.6. For the sake of
simplicity let us assume that ξ1 is discernible at some stage τ < κ. By the definition of a minimal
trace pick τ1 < κ such that for some j < ω: Lq(τ) |=

(
hp(j, ξ1, . . . , ξn) ' x

)
. Let σ be the maximum

of τ and τ1.

Subclaim: x is discernible at stage σ.
Assume for the sake of a contradiction that there is some x̄ ∈ Hµ such that Tσ(x) = Tσ(x̄). By
lemma 3.5 this implies that Xσ(x) and Xσ(x̄) are strictly isomorphic; let f be a corresponding
isomorphism. Now x ∈ Xσ(x) ≺1 Lq(σ) and it follows from the proof of lemma 2.6 that the
minimal trace of x lies in Xσ(x), in particular ξ1 ∈ Xσ(x). Let ξ̄1 := f(ξ1). f � Xσ(ξ1) shows
that Xσ(ξ1) = Xσ(ξ̄1). As τ ≤ σ we have Xτ (ξ1) ≡ Xτ (ξ̄1) and by lemma 3.5 T τ (ξ1) = T τ (ξ̄1).
But x̄ was in H, so Xσ(x̄) ⊆ Hµ and ξ1 must be in Hµ. But then ξ1 is not discernible at stage τ ,
contradiction. 2

The next step is to show that all β-pseudo stable ordinals ξ in β? − Hµ are discernible. We will
first deal with successor β-pseudo stable ordinals. Note that a successor β-pseudo stable ordinal ξ
lies in the complement of Hµ iff ξ > αµ.

Claim 3: Let ξ > αµ be successor β-pseudo stable. Then ξ is discernible at stage 0.
Proof. Let η := |ξ|β so that η < ξ < η+. Set γ := C(ξ), X := SH1(ξ, p;Lβ) and let π : X ↔ Lγ
be the Mostowski collapse. Further let Y := X0(ξ), so p ∈ Y ≺1 Lq(0). Then ξ = π(η+) and it
follows from lemma 2.4 that γ = C(ξ) = C′(ξ). We conclude that γ ∈ Y . Now set p̄ := π(p) and
let p′ := min

(
z | SH1(αµ, z;Lβ

)
= Lγ). π is compatible with <β , so we have p′ ≤β p̄. Assume for

a contradiction that p′ <β p̄. Then p has a Σ1 definition over X and therefore over Lβ involving
only parameters less than ξ and π−1(p′) <β p. This contradicts the definition of p = p(β). Hence
p̄ = p′.

Subclaim: Hµ ∩ η+ ⊆ Y ∩ ξ.
Proof. To see this let a ∈ Hµ∩η+, so hp(i, ξa) ' a for some i < ω, ξa < αµ. X is a Σ1 substructure
of Lβ , whence X |= ∃x(hp(i, ξa) ' x ∧ x < η+). By lemma 2.4 X ∩ Lη+ = Lξ, so there must be
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some ā < ξ such that X |= ∃x(hp(i, ξa) ' ā). As X ≺1 Lβ this implies Lβ |= ∃x(hp(i, ξa) ' ā).
But hp is a function, so a = ā < ξ and we can conclude that Hµ ∩ η+ ⊆ ξ. It remains to show
that a ∈ Y . Note that π � Lξ = id as X ∩ L+

η = Lξ is the transitive part of X. π : X ↔ Lγ is
an isomorphism, so we have Lγ |= (hp̄(i, ξa) ' a). Since ξ, ξa, p ∈ Y ≺1 Lq(0) we also have Y |=
∃x(Lγ |= hp̄(i, ξa) ' a ∧ x < ξ). Choose a witness a′ ∈ Y ∩ ξ such that Y |= (Lγ |= hp̄(i, ξa) ' a′).
Then Lγ |= (hp̄(i, ξa) ' a′) and thus X |= (hp(i, ξa) ' a′). But this means that hp(i, ξa) ' a′, so
a = a′ ∈ Y . This finishes the proof of the subclaim.

Let us now assume for the sake of a contradiction that ξ is not discernible at stage 0. Then there is
a ξ̄ ∈ Hµ such that T 0(ξ) = T 0(ξ̄) and, according to lemma 3.5 X0(ξ) ≡ X0(ξ̄). Set Ȳ := X0(ξ̄), so
Y ≡ Ȳ . Let (Hσ

µ

∣∣ σ < κ) be the enumeration of Hµ defined with respect to the cofinality function
q and pick τ < κ such that ξ ∈ Hτ

µ . Let ξ′ be the least q(τ)-pseudo stable ordinal larger than ξ.
An argument similar to the one used in the last claim will show that Hτ

µ ∩ η+ ⊆ ξ′. Therefore
we must have Ȳ ∩ ξ̄ ⊆ Hτ

µ ∩ ξ̄ ⊆ ξ′. Now consider the two collapse functions π : Y ↔ Lδ and
π̄ : Ȳ ↔ Lδ̄. Y ≡ Ȳ implies that δ = δ̄ and π(ξ) = π̄(ξ̄). But π̄(ξ̄) = otp(Ȳ ∩ ξ̄) ≤ otp(Hτ

µ ∩ ξ′) and
π(ξ) = otp(Y ∩ ξ) ≥ otp(Hµ ∩ η+). We are heading for a contradiction, so it would be enough to
show that ξ′ ∈ H. For then clearly otp(Hτ

µ ∩ξ′) < otp(Hµ∩η+) which cannot be the case according
to the last inequalities. Recall that x ∈ Hµ and η < x < η+ implies that η, η+ are in H. Now
consider the formula

Φ(z) := η < z < η+ ∧ Lq(τ) |=
(
z pseudo stable ∧ ∀u, η < u < z(u not pseudo stable )

)
.

Φ can be written as a Σ1 formula with parameters from αµ ∪ {p}: just replace all the objects in Φ
by a Σ1 definition with parameters from αµ∪{p} and prefix appropriate existential quantifiers. We
have Φ(ξ′) and Φ(z) implies z = ξ′. By our assumption on q we get SH1(αµ, p;Lq(τ+1)) |= ∃zΦ(z).
It follows that ξ′ is in Hτ+1

µ ⊆ Hµ and we are through. 2

Note that the only place where we have used our assumption that ξ is successor β-pseudo stable is
in the beginning of the argument to make sure that the collapse C(ξ) lies in X0(ξ). Thus the result
also holds for all limit β-pseudo stable ξ such that C(ξ) ∈ X0(ξ). However, we have been unable
to show that this is true for all β-pseudo stable ξ. In any case, the following argument shows that
every β-pseudo stable ordinal is discernible.

Claim 4: Let ξ > αµ be an arbitrary β-pseudo stable ordinal. Then ξ is discernible.
Proof. It is convenient to distinguish two cases depending on whether ξ is less than or larger
than α+

µ .

Case 1: αµ < ξ < α+
µ .

We will show that ξ is discernible at stage 0. Assume for the sake of a contradiction that for some
ξ̄ ∈ Hµ: T 0(ξ) = T 0(ξ̄). ξ̄ must be q(0)-pseudo stable, i.e., ξ̄ is not in SH1(ξ̄, z;Lq(0)). For otherwise
the Σ1 formula ∃z(hp(i, z) ' v ∧ z ∈ L(v)) would be in T 0(ξ̄) but clearly cannot be in T 0(ξ). Now
set Θ := X0(ξ) ∩ α+

µ , Θ̄ := X0(ξ̄) ∩ α+
µ and let π : X0(ξ)↔ Lδ, π̄ : X0(ξ̄)↔ Lδ̄ be the respective

collapse functions. By lemma 3.5 the structures X0(ξ) and X0(ξ̄) are strongly isomorphic, whence
δ = δ̄ and thus Θ = (α+

µ )Lδ = (α+
µ )Lδ̄ = Θ̄. Define ξ1 to be the least β-pseudo stable ordinal larger

than αµ. We have ξ1 ≤ ξ < Θ: for ξ is not a β-cardinal, so there is a β-finite bijection f : αµ ↔ ξ.
The <β-minimal such f must be in X0(ξ), so ξ ⊆ X0(ξ) as dom(f) = αµ ⊆ X0(ξ). Proceeding as
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in claim 3 we can show Θ̄ ≤ ξ1 and we have the desired contradiction.

Case 2: αµ < ξ.
Let

Θ :=
⋂
{X(η)

∣∣ η β-pseudo stable ∧ α+
µ < η} ∩ α+

µ .

Let η be the smallest β-pseudo stable larger than Θ. Then αµ < η < α+
µ and indeed Θ = X(η)∩α+

µ .
Now set X := SH1(αµ, (p, η);Lβ) = X(η) ≺1 Lβ and Y := SH1(Θ, p;Lβ) ≺1 Lβ . As before let
π : X ↔ Lδ and π̄ : Y ↔ Lδ̄ be the corresponding Mostowski collapses. We begin by deriving a
series of subclaims.

Subclaim 1: Θ is β-pseudo stable and Θ < α+
µ .

It was shown by Friedman that α+
µ is Σ1 regular. But, for any e ∈

[
αµ, α

+
µ

[
, X(e) ∩ α+

µ =
sup(Xσ(e)∩α+

µ

∣∣ σ < κ). So Θ < α+
µ . But

[
Θ,α+

µ

[
∩X = ∅ by the definition of Θ. So Θ = π(α+

µ ),
i.e., Lδ |= (Θ = α+

µ ) and we are done by lemma 2.10.

Subclaim 2: σ1cofδ(η) = κ.
X(η) =

⋃
{Xσ(η)

∣∣ σ < κ}, so κ̄ := σ1cofδ(η) ≤ κ. Let g : κ̄ → η be a corresponding Σ1−Lδ
cofinality function. Now consider the function f : κ→ Θ, f(σ) := Xσ(η) ∩ α+

µ . f(σ) is an ordinal
and as in claim 1 f(σ) < α+

µ . f is also β-recursive; to be more precise, f has a Σ1 definition over
Lβ with parameters from αµ ∪ {η, p}. Also f ⊆ κ × Θ, so f is Σ1−X. LΘ is a transitive subset
of X, hence f = π[f ] and f is also Σ1−Lδ. But then f is actually β-finite. Set f0 : κ̄ → κ,
f0(i) := min

(
σ < κ | g(i) < f(σ)

)
. f0 is β-finite and rg(f0) ⊆ κ is unbounded, so κ̄ ≥ κ.

Subclaim 3: δ = C′(Θ).
Θ is a β-cardinal and therefore C′(Θ) ≥ δ. It suffices to show that σ1pδ(Θ) = αµ. Let f be as
in claim 2. For ν ∈ [αµ, Θ[ choose a δ-finite bijection cν : αµ ↔ ν, say the <β-minimal one. Set
g : κ × αµ → Θ, g(σ, i) := cf(σ)(i). The map g is δ-recursive and obviously surjective. Our claim
follows from |κ× αµ|δ = αµ.

Subclaim 4: δ > γ.
We have Θ ⊆ X and p ∈ X, so Y ⊆ X and δ ≥ γ. Assume for a contradiction that δ = γ.
Define f : X ↔ Y by f := π̄−1 ◦ π. f is an epsilon-isomorphism and f � Θ = id. We claim
that f(p) = p. For the sake of simplicity let us only show that p <β p′ := f(p) cannot occur; the
opposite direction is entirely similar. Set p′′ := f−1(p′) and assume p′′ 6= p. By the definition of
Y , p′ has a Σ1 definition over Y involving only parameters from Θ ∪ {p}. Therefore p = f−1(p′)
has a Σ1 definition over X involving only parameters from Θ ∪ {p′′} = f−1[Θ ∪ {p}]. Butp = p(β),
so p <β p′′ which impliesp′ <β p, contradiction. Now set η̄ := f(η). η is β-pseudo stable and we
have just shown that f(p) = p, so η̄ is also β-pseudo stable. Further η̄ > α+

µ as η > α+
µ . But by

claim 1 the only β-pseudo stable ordinals that can occur in Y must be less than Θ and we have a
contradiction.

According to subclaims 1, 2 and 4 the ordinal Θ is β-pseudo stable and δ = C′(η) > γ = C(η).
So Θ is not successor β-pseudo stable by lemma 2.5. In particular Θ > η0 where η0 is the least
β-pseudo stable ordinal larger than αµ. Now let ξ > α+

µ be an arbitrary β-pseudo stable ordinal.
By our choice of Θ we have η0 < Θ ≤ X(ξ) ∩ α+

µ . A similar argument as the one used in subclaim
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2 shows that for some σ < κ: η0 < Xσ(ξ) ∩ α+
µ . It follows that η0 is in Xσ(ξ). But η0 is known

to be discernible by claim 3, as a matter of fact, η0 is discernible at stage 0. As in claim 2 one can
now show that ξ is discernible at stage σ. This concludes the proof of claim 4.

Summarizing, we have shown in claim 4 that every β-pseudo stable ordinal in the complement of
Hµ is discernible. By claim 2 this implies that every element of the complement of Hµ is discernible.
This establishes claim 1 and finishes the proof of the main lemma. 2

One can use the machinery of Σn mastercodes as developed by Jensen to expand the main lemma
to Σn-Lβ sets. For n ≥ 1 call a Σn-Lβ set X ⊆ Lβ n-thin iff |X|β,n < σnprj(β). The main lemma
then says that every 1-thin set is ∆1−Lβ . Similarly one can show that every n-thin set is ∆n−Lβ .
For a proof see [10].

4 Applications: Recursive Subsets, Friedberg Splitting, and
Maximal Sets

This section is devoted to applications of our characterization of `-finite sets. One of the main
interests of the ideal of finite sets in classical recursion theory is in its use to define notions like
simple set, maximal set or major subset. As a first example consider simple sets. An r.e. set S is
simple iff

RE∗ω |= S∗ 6= 1 ∧ ∀X(X ∩ S∗ = 0⇒ X = 0)

where S∗ stands for the equivalence class of X in RE∗ω. Accordingly, one may define a β-r.e. set S
to be `-simple iff RE?β is a model of the same formula of lattice theory. Here RE?β is the defined to
be the quotient lattice REβ/=β and =β denotes the ideal of `-finite sets in REβ . It was shown by
Friedman in [3] that for all β there exists a β-r.e. set S such that Lβ − S ⊆ β? that is simple in
the following sense: The order type of β? − S is β? and for all X ⊆ β?, β-r.e. and unbounded in
β?, X ∩ S 6= ∅.
We claim that any such set S is also `-simple. By theorem 3.1 β?−S cannot be `-finite. So suppose
that X is β-r.e. with X ∩S `-finite. Set X ′ := X− (X ∩S). X ′ is β-r.e. and trivially disjoint from
S. Hence X ′ must be bounded below β?. But then X ′ is β-finite by Σ1 separation and β?-finite
by reflection. Thus X ′ is `-finite and lastly X = X ′ ∪ (X ∩ S) is also `-finite as required. Hence
`-simple sets exist for arbitrary limit ordinals β.

4.1 Recursive Subsets

As a first application of the machinery developed in the last section we will show how to transfer the
following result of classical recursion theory: every infinite recursively enumerable set contains an
infinite recursive subset. According to the next lemma this holds for all limit ordinals β if finite is
replaced by `-finite. The proof is quite straightforward for weakly admissible β and uses Σ recursion
below κ to modify an enumeration for the r.e. set. In the strongly inadmissible case, however, this
approach fails and we have to exploit the characterization of `-finite sets developed in section 3.
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Lemma 4.1 Let β be an arbitrary limit ordinal and A ⊆ Lβ a β-r.e. set that fails to be `-finite.
Then A has a β-recursive subset B that also fails to be `-finite.

Proof. Let us first dispose of the weakly admissible case. We will lift the standard argument from
classical recursion theory. Since |Lβ |β,1 = κ we may safely assume that A is a subset of κ. Fix an
enumeration f : δ ↔ A where δ := |A|β,1. As A fails to be `-finite κ ≥ δ ≥ β?. Using Σ recursion
one may define a strictly increasing function f ′ with domain δ and range a subset of A. Lastly, set
B := rg(f ′). Then B is clearly β-recursive. Also, B cannot be `-finite since |B|β,1 = δ ≥ β?.

Now consider a strongly inadmissible ordinal β. Since |Lβ |β,1 = β? we may safely assume that A
is a subset of β?. Define Aσ := { ξ < β? | Lq(σ) |= (ξ ∈ A) } and set Θσ := |Aσ|β . If there exists
a stage σ < κ such that Θσ = β? we may simply define B := Aσ. For then B is β-finite and has
β-cardinality β?, thus B is β-recursive and fails to be `-finite as required.
So let us assume from now on that for all σ < κ: Θσ < β?.
Claim 1: β? is a Σ1 irregular β-cardinal.
Suppose for the sake of a contradiction that β? is Σ1 regular. Then Aσ ⊆ β? must be bounded
below β? for all σ < κ as Θσ < β?. But then the function κ→ β?, σ 7→ sup(Aσ) must have range
bounded below β? as β? is Σ1 regular. Then A is bounded below β? and thus β?-finite by Σ1
separation. But then A is `-finite, contradiction. By the remark following lemma 3.4 this implies
that κ = σ1cof (β?).
Fix a strictly increasing β-r.e. sequence (αν)ν<κ of β-cardinals less than β? with supremum β?.
Define two functions g, h : κ→ κ by

h(ν) := min
(
σ < κ | ∃µ < κ(|Aσ ∩ αµ|β ≥ αν

)
g(ν) := min

(
µ < κ | |Ah(ν) ∩ αµ|β ≥ αν

)
.

Both h and g are β-recursive functions and thus β-finite by Σ1 separation. Note that g(ν) ≥ αν .
Now define a β-r.e. sequence (σi)i<κ of ordinals by induction on i < κ as follows: σ0 := 0,
σi+1 := g(σi) + 1 and, for limit ordinals λ, σλ := sup(σi

∣∣ i < λ). Since κ is a regular β-cardinal
this is well defined for all i < κ and sup(σi

∣∣ i < κ) = κ. Finally define a β-r.e. set B =
⋃
i<κB

i by

Bi := Ah(σi+1) ∩
]
αg(σi), αg(σi+1)

]
.

Observe that ξ /∈ B iff ∃i < κ(αg(σi) < ξ ≤ αg(σi+1) ∧ ξ /∈ h(σi+1)). Hence B is a β-recursive subset
of A. It remains to verify the following claim.

Claim 2: B is not `-finite.
Assume otherwise. Then B has an enumeration f : δ ↔ B for some β-cardinal δ < β?. Suppose
ρ < β? is a β-cardinal such that
(1) B is Σ1 definable over Lβ with parameters a < ρ and p := p(β) only,
(2) B ∩ ρ has β-cardinality larger than δ.
The first condition is trivially satisfied for all sufficiently large ρ. For the second condition note
that by the definition of g, h and (σi)i<κ we have

|Ah(σi+1) ∩ αg(σi+1)|β ≥ ασi+1 = αg(σi+1) > αg(σi) ≥ |A
h(σi+1) ∩ αg(σi)|

β .
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Hence |Bi|β ≥ ασi+1 and the second condition is also satisfied for all sufficiently large ρ < β?.
Now let η be the least β-pseudo stable ordinal larger than ρ and set X := SH1(η, p;Lβ). Let
π : X ↔ Lγ be the Mostowski collapse where γ = C(η). Set B′ := { ξ < γ∗ | Lγ |= (ξ ∈ B) } and
f ′ := { (x, y) ∈ γ∗ × γ∗ | Lγ |= (f(x) ' y) }. Note that B′ and f ′ are β-finite and B ∩ ρ = B′ ∩ ρ.
But f ′ is a bijection, f ′ : δ ↔ B′. Hence |B′|β ≤ δ < ρ, contradiction. This finishes the proof of
the lemma. 2

4.2 Friedberg Splitting

Another one of the basic structure theorems about the lattice of r.e. sets is Friedberg Splitting:
every non-recursive set can be split into two disjoint r.e. sets that both fail to be recursive. See
for example [9] for a presentation of this result in classical recursion theory. Friedberg Splitting
was generalized by Machtey to admissible ordinals α such that α∗ = ω and finally by Lerman to
all admissible ordinals. Lerman used a short indexing of length α∗ in order to make sure that the
injuries that occur during the construction are α-finite. To lift this result to weakly admissible β
one can exploit the admissible collapse Aβ of Lβ .
The admissible collapse was originally introduced by Maass to facilitate the study of β-r.e. degrees,
see [7]. In short, the admissible collapse of Lβ is the amenable structure Aβ = 〈Lκ, D〉 where D
is a ∆1 master code. The crucial property of Aβ is that Σ1 definability over Lβ is preserved in
the collapse: a set X ⊆ Lκ is Σ1−Lβ iff X is Σ1−Aβ . Consequently, the Σ1 cofinality of κ in
Aβ is κ. Hence Aβ is an admissible structure and many arguments from α-recursion theory carry
over to Aβ . With respect to the lattice of β-r.e. sets note that REβ is isomorphic to REβ(Lκ) for
weakly admissible β: there exists a β-recursive bijection f : Lβ ↔ Lκ which clearly induces an
isomorphism as desired. But REβ(Lκ) can also be construed as the lattice of Σ1−Aβ sets. Thus in
order to establish Friedberg Splitting for all weakly admissible β it completely suffices to show that
it holds for all the structures Aβ . It is quite straightforward - though somewhat tedious - to check
that Lerman’s proof carries over to Aβ .

For strongly inadmissible β, however, a direct construction is needed. It is easy to see that the
injury sets that occur in the standard construction in general fail to be β-finite. Fortunately, they
are always thin and therefore `-finite by the main lemma. This is the key to the following argument.

Theorem 4.1 (Friedberg Splitting) Let β be an arbitrary limit ordinal and A ⊆ Lβ a β-r.e.
set that fails to be β-recursive. Then there are β-r.e. sets A0 and A1 such that A = A0 ∪ A1,
A0 ∩A1 = ∅ and both A0 and A1 fail to be β-recursive.

Proof. According to the preceding remark we may safely assume that β is strongly inadmissible.
Then β̂ = β? > κ and REβ is isomorphic to REβ(β?). So we may further assume that A ⊆ β?. We
will construct the sets A0 andA1 in κ stages, each stage consisting of at most β? steps. Recall that
we always assume q : κ→ β to be a strictly monotonic, continuous Σ1 cofinality function. Let (Aσ

∣∣
σ < κ) be an enumeration of A where Aσ := {x ∈ β? | Lq(σ) |= (x ∈ A) }. Set Θσ := otp(Aσ+1−Aσ)
and let aσ(j) :=the j-th element of Aσ+1 − Aσ for j < Θσ. Hence A = { aσ(j) | σ < κ ∧ j < Θσ }.
At stage σ < κ we will perform exactly Θσ steps j. Let A<σ,ji be the part of Ai constructed prior to
step j of stage σ, i.e., either at some stage σ′ < σ or at stage σ but during some step j′ < j. At stage
σ, step j element aσ(j) will be put either into A0 or into A1. This guarantees that A0 ∪ A1 = A
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and A0 ∩ A1 = ∅. Now let (Wξ

∣∣ ξ < β?) be a standard simultaneous enumeration of all β-r.e.
subsets of β? and set Wσ

ξ := {x ∈ β? | Lq(σ) |= (x ∈Wξ) }. In order to make sure that Ai is not
β-recursive we use the standard simplicity requirements of the form:

Ri,ξ: Wξ ∩Ai 6= ∅.

Here i = 0, 1 and ξ < β?. As usual we say that requirement Ri,ξ has higher priority than Rk,η iff
ξ < η or (ξ = η and i < k), in symbols Ri,ξ � Rk,η. Ri,ξ requires attention at stage σ, step j, iff
aσ(j) ∈Wσ

ξ and A<σ,ji ∩Wσ
ξ = ∅.

The Construction:
Initially set A<0,0

i := ∅.
Now consider stage σ < κ, step j < Θσ. Let Ri,ξ be the require-
ment of highest priority that requires attention at stage σ, step j.
Put aσ(j) into Ai. If no such requirement exists put aσ(j) into A0.

Let Ai :=
⋃
σ<κ,j<Θσ

A<σ,ji . We will say that Ri,ξ receives attention at stage σ, step j, iff aσ(j) is
put into Ai because of requirement Ri,ξ at stage σ, step j. Each requirement can receive attention
at most once throughout the whole construction. Therefore there is a partial β-recursive function
r : {0, 1}×β? → β? such that r(i, ξ) ' x iff Ri,ξ receives attention at stage σ, step j, and aσ(j) = x.
The only possible conflict between our requirements is that, at some stage σ, step j, Ri,ξ requires
attention but does not receive it because of some requirement Rk,η of higher priority. We will say
that requirement Ri,ξ is foiled at stage σ, step j. This leads to the definition of the following injury
set:

Ii,ξ := {x < β? | ∃σ < κ, j < Θσ(x = aσ(j) ∧Ri,ξ is foiled at σ, j) }.
We claim that Ii,ξ is thin. To see this let

Di,ξ := { (k, η) ∈ {0, 1} × β? | ∃σ < κ, j < Θσ(Rk,η �Ri,ξ ∧Rk,η receives attn. at σ, j) }.

Di,ξ is β-r.e. and bounded in L?β , hence β?-finite by Σ separation. But Ii,ξ clearly is a β-r.e.
subset of r[Di,ξ] and therefore also thin.
Now assume for the sake of a contradiction that Ai is β-recursive. Then for some ξ < β?: Wξ =
β? −Ai. Define a β-recursive function st : Wξ → κ by st(x) := min(σ < κ

∣∣ x ∈Wσ
ξ ).

Claim: If x ∈Wξ ∩A and x /∈ Ii,ξ then x ∈ Ast(x).

For assume otherwise, say x ∈ Aσ+1−Aσ for some σ ≥ st(x), x = aσ(j). But then x ∈W st(x)
ξ ⊆Wσ

ξ ,
so Ri,ξ requires attention at stage σ, step j. However, Ri,ξ never receives attention, so some
requirement of higher priority grabs x. Thus x lies in the injury set Ii,ξ, contradiction.

According to the claim we have for all x < β?:

x ∈ A iff x ∈ Ai ∪ (Wξ ∩ Ii,ξ) ∪ ((Wξ − Ii,ξ) ∩Ast(x)).

The sets Ai and Wξ = β? − Ai are β-recursive by our assumption and Ii,ξ is β-recursive by the
main lemma, hence A is also β-recursive. This contradicts our hypothesis and we are done. 2

Note that the sets A0 and A1 constructed in the last proof are actually recursively inseparable. For
assume that there is a β-recursive set R such that A0 ⊆ R but A1 ∩ R = ∅, say R = Wξ. Then in
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the notation from the last proof x ∈ A0 iff x ∈ (A0 ∩ I1,ξ)∪ ((Wξ− I1,ξ)∩Ast(x)). This implies that
A0 is β-recursive and we obtain a contradiction.

4.3 Maximal Sets

As in the example at the beginning of this section RE?β provides the following natural generalization
of maximal sets to β-recursion theory. The reader should consult [6] for an extensive discussion of
various notions of maximal set in α-recursion theory.

Definition 4.1 A β-r.e. set X ⊆ Lβ is called `-maximal iff X∗ is a co-atom in RE?β .

For X ⊆ Lβ let X̄ := Lβ − X denote the complement of X. Then X is `-maximal iff X̄ fails
to be `-finite but for all Y in REβ either X̄ ∩ Y or X̄ − Y is `-finite. In the remainder of this
section we will provide various existence and non-existence results for `-maximal sets. We begin
with a brief comment on the weakly admissible situation. The admissible ordinals α for which
`-maximal sets exist were characterized by Lerman in [6] in terms of Sα3 projections. A function
f : δ → γ, δ, γ ≤ α, is Sα3 iff there exists a α-rec function f : α× α× δ → γ such that for all x < δ:
f(x) = limξ→α limη→α f(ξ, η, x). Here the limits are taken with respect to the discrete topology.
The Sα3 projectum of δ is defined by

s3pα(δ) := min
(
γ | ∃ f : δ → γ Sα3 ( f injective )

)
.

Similarly one may define the S3 − A projectum for an amenable structure A. Lerman showed that
for an admissible ordinal α the lattice REα contains an `-maximal set iff s3pα(α) = ω. Again it is
quite straightforward to check that Lerman’s argument can be carried out in Aβ as well. Hence for
weakly admissible β there exist `-maximal sets iff the S3 − A projectum of κ is ω. But the S3 − A
projectum of κ is s3pβ(β), hence we have the following corollary to Lerman’s result.

Theorem 4.2 (Lerman) Let β be weakly admissible. Then `-maximal sets exist in REβ iff
s3pβ(β) = ω.

We now turn to strongly inadmissible ordinals. Note that s3pβ(β) = ω implies that β is weakly
admissible, so S3-projections are not useful in this context. However, one can modify an argument
first used by Sacks for α = ℵ1 to show that `-maximal sets fail to exist if β? is sufficiently regular.

Lemma 4.2 Let β be strongly inadmissible and assume β? is a Σβ
3 regular successor β-cardinal.

Then there are no `-maximal sets in REβ .

Proof. Assume for the sake of a contradiction that M ⊆ Lβ is `-maximal. Let F : Lβ ↔ β? be a
β-recursive bijection. Then F [M ] ∪ (Lβ − β?) is easily seen to be `-maximal: `-finite sets are the
same as thin sets and thinness is preserved by F . Thus we may assume without loss of generality
that M̄ := Lβ −M is a subset of β?. β? is a successor β-cardinal, so let β? = ρ+. Fix a β-finite
enumeration P = (Sν

∣∣ ν < β?) of the Lβ-powerset of ρ such that every β-finite subset of ρ occurs
exactly once as one of the sets Sν . Now define for all ξ < ρ: Cξ := { ν < β? | ξ ∈ Sν }. Clearly
C := (Cξ

∣∣ ξ < ρ) is again β-finite. The sets Cξ ⊆ β? are also β-finite and therefore cannot split
M̄ into two `-infinite parts: either M̄ ∩ Cξ ⊆ β? or M̄ − Cξ ⊆ β? must be `-finite. β? is assumed
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to be Σ3 regular, hence the `-finite subsets of β? are all β? -finite and in particular bounded below
β?. Therefore for all ξ < ρ there exists a γ < β? such that M̄ ∩ Cξ ⊆ γ or M̄ − Cξ ⊆ γ. The
last expression can be rewritten as a Σ3 formula, thus by Jensen’s uniformization theorem there
exists a Σ3−Lβ function f : ρ → β? such that ∀ξ < ρ(M̄ ∩ Cξ ⊆ f(ξ) ∨ M̄ − Cξ ⊆ f(ξ)). β? is
Σ3 regular, so f must have range bounded below β?, say, rg(f) ⊆ Γ < β?. The complement of
a `-maximal set M̄ fails to be `-finite, hence M̄ ⊆ β? is unbounded in β? (otherwise M̄ would be
β?-finite and thus `-finite by Σ separation). Therefore one can find two ordinals ν and µ in M̄ such
that Γ < ν < µ < β?. But then for all ξ < ρ either both ν and µ lie in Cξ or both fail to lie in Cξ.
By the definition of Cξ this means that Sν = Sµ and we have the desired contradiction. 2

We now turn to the case where β? is Σ1 irregular. Recall from the proof of the main lemma that
for any limit ordinal β there exists an `-cover I =

(
Iν
∣∣ ν < λ

)
where λ = σ1cofβ(β?). It is not

hard to see that for every set X in the boolean algebra generated by REβ we have: X is `-finite iff
there exists a ν < λ such that X ⊆ Iν . This fact can be used to rule out the existence of `-maximal
sets for strongly inadmissible β such that σ1cof (β?) < σ2p(β).

Theorem 4.3 Let β be strongly inadmissible and assume σ1cof (β?) < σ2p(β). Then there are no
`-maximal sets in REβ .

Proof. Assume for the sake of a contradiction that M ⊆ Lβ is `-maximal. We will use an `-cover
of length λ := σ1cofβ(β?) to split the complement of M . As in the proof of lemma 4.2 we may
assume that M̄ := Lβ −M is a subset of β?. Note that β? cannot be a successor β-cardinal. Thus
there exists a strictly increasing β-r.e. sequence (αν

∣∣ ν < λ) of β-cardinals with supremum β?.

Let (Iν
∣∣ ν < λ) be an `-cover. Now define a binary relation R ⊆ λ× λ by:

R(ν, µ) ⇐⇒ ∃ξ < β?
(
αµ < ξ < αµ+1 ∧ ξ /∈ (M ∪ Iν)

)
.

The sets Iν are simultaneously β-r.e. , whence R is Σ2−Lβ . By our assumption λ < σ2p(β), so
R is β-finite by Σ2 separation. Also observe that domain of R is λ. For otherwise there would be
some ordinal ν < λ such that β? ⊆ M ∪Hν , or, in other words, M̄ ⊆ Hν . But then M̄ is `-finite,
contradicting our assumption that M is `-maximal. Now define a β-finite function f : λ → λ,
f(ν) := min

(
µ < λ | R(ν, µ)

)
. Let T denote the range of f . T is β-finite and must be unbounded

in λ since for all µ < λ there exists a ν0 < λ such that for all ν ≥ ν0: αµ ⊆ Iν . But λ is a regular
β-cardinal by its very definition, hence T must have ordertype λ. Let T = {µi | i < λ } where
µi < µj for all i < j < λ. We can now define a β-r.e. set X that splits M̄ as follows:

X :=
⋃
i<λ

[
αµ2i , αµ2i+1

[
.

X is clearly β-finite.

Claim: M̄ ∩X fails to be `-finite.
Let us suppose for the sake of a contradiction that M̄ ∩ X is `-finite. Since (Iν

∣∣ ν < λ) is an
`-cover there is some ν < λ such that M̄ ∩X ⊆ Iν . Now pick ν̄ ≥ ν such that f(ν̄) = µ2i. It follows
from Iν ⊆ Iν̄ that M̄ ∩X and Iν̄ are disjoint. On the other hand by the definition of f and since
αµ2i+1 ≥ αµ2i+1 we have M̄ ∩X ∩

[
αµ2i , αµ2i+1

[
6= ∅, contradiction.
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An entirely similar argument shows that M̄ −X also fails to be `-finite. Hence M is not `-maximal
and we have the desired contradiction. 2

Corollary 4.1 Let β be a limit ordinal such that ρ = β? is an uncountable cardinal in L. There
are no `-maximal sets in REβ provided one of the following conditions is satisfied:

• ρ is a successor cardinal in L,

• ρ is Σ1 irregular in Lβ .

Proof. If β is weakly admissible then clearly s3pβ(β) ≥ ρ > ω and our claim follows from
theorem 4.2. If on the other hand β is strongly inadmissible and ρ is a successor cardinal in L we
are done by lemma 4.2. Lastly suppose β is strongly inadmissible and ρ is Σ1 irregular in Lβ . Since
ρ is a L-cardinal, σ2pβ(ρ) = ρ > σ1cof

β

(ρ) and the non-existence of `-maximal sets follows from
theorem 4.3. 2
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