Chapter 1
Abelian Invertible Automata

Klaus Sutner

1.1 Motivation

Historically, the idea of reversible computation had its roots in physics rather
than logic: at the fundamental level, the laws of physics are reversible. Since
computing devices can obviously be realized within the context of these laws,
it is plausible that computation itself should be amenable to reversibility:
there ought to be a way to make the requisite logical operations reversible
[4, 17, 16]. Perhaps surprisingly, this idea turns out to be of some practi-
cal importance, since reversible computation can be carried out without any
thermodynamical cost [5], at least as a matter of principle. Morita has given
many ingenious examples of reversible computation in the context of dis-
crete dynamical systems, and in particular cellular automata [21, 18, 19, 20].
As these examples show, and contrary to what was tacitly assumed till the
1960s, reversible computation is a rich and endlessly challenging area of com-
putability theory. We now even have the beginnings of a more structural
approach to reversible computation [1], following roughly Girard’s Geometry
of Interaction.

It can be argued that in the realm of algebra it is the concept of a group that
best captures the notion of reversibility: any action by a group element g can
be undone by the action associated with g~—!. It is thus natural to ask whether
reversible computation might have any direct connections with group theory.
A first step in this direction was taken by Serre, albeit in a different context:
he suggested to study subgroups of the full automorphism group Aut(2*) of
the infinite binary tree 2* [28]. The topological group Aut(2*) is profinite, and
thus Hausdorff, compact and totally disconnected. In some interesting cases,
subgroups can be described by certain finite state machines that are natu-
rally reversible. More precisely, there are Mealy automata A over a binary
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alphabet that have associated inverse automata A’ such that the composi-
tion of their respective transductions is the identity. The transductions in
question are length-preserving and thus do not admit universal computation.
Yet their associated groups are surprisingly complicated and there are many
challenging questions associated with these automata. In fact, groups defined
by invertible automata have become a standard source of examples and coun-
terexamples in group theory [22, 29]. A case in point is a 5-state automaton
due to Grigorchuk [10] that defines a subgroup of Aut(2*) with intermediate
growth, answering a question by Milnor. Grigorchuk goes so far as to describe
the discovery of very small automata associated with complicated groups as
one of the “wonderful phenomena in modern mathematics.” If one considers
semigroups rather than groups, there is even a 2-state non-invertible Mealy
automaton that exhibits intermediate growth [2].

We are here interested in a slightly different perspective: the computational
complexity of the discrete dynamical systems defined by invertible Mealy au-
tomata. Given an automorphism f defined by some automaton A, one would
like to understand the orbits x f* of words x € 2* under f. In particular, one
would like to analyze the computational complexity of the question whether
a word appears in the orbit of another (Orbit Problem) and where in the
orbit it appears (Timestamp Problem). These questions are quite difficult in
general, so it makes sense to restrict one’s attention to a scenario that is of
little interest from the group theory perspective: all the groups in question
are free Abelian. In this limited setting, one can give a description of the
automorphism f in terms of the algebraic integers in an algebraic number
field associated with the automaton. Nonetheless, it requires some amount of
effort to characterize the associated automata. The existence of numeration
systems for algebraic integers then produces a convenient normal form for
the automorphisms and is helpful in classifying the relevant automata and
tackling the orbit problems just mentioned. For example, somewhat surpris-
ingly it turns out that, in some cases, the Orbit Problem can be solved by a
finite state machine, despite the fact that the orbits have exponential length.
Alas, little is known about the general situation.

We will here refrain from giving detailed proofs and confine ourselves to
simple sketches. We refer the reader to the literature for details, in particular
[22, 10, 29, 30, 32, 33, 24].

1.2 Transducers and Automorphisms of the Binary Tree

For our purposes, an invertible transducer is a type of Mealy automaton
A=1(Q,2,7) where 7 : Q X 2 — 2 x @. In the customary arrow notation,

all transitions are of the form p M q; here m, is a permutation of the
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alphabet 2 depending on the source state p; for background see [27, 6, 8]. Our
automata have no initial and final states; Eilenberg referred to these devices
as output modules [7]. In order to obtain a transduction A(p) from 2* to
2* we select an arbitrary initial state p in A. To lighten notation, we write
p for this map whenever the automaton is clear from context. Note that all
our automorphisms naturally extend to maps 2% — 2“. We refer to states
such that m, = I as copy states, and as toggle states otherwise. We will write
application of our automorphisms as a right action on finite or infinite words,

xzf.

Any interesting invertible automaton must have at least one copy state and
one toggle state. Surprisingly, the 2-state machine in figure 1.1, with one
toggle and copy state each, already generates the lamplighter group, in perfect
keeping with the Grigorchuk’s observation from above.

0/0 =L 1/0
0/1

Fig. 1.1 The smallest interesting invertible automaton.

The transduction semigroup generated by all the A(p), p € Q, under com-
position will be written S(A); and G(A) the corresponding group. While
it is convenient to admit infinite automata, the situation where the Mealy
automaton has finite state set is by far the most interesting. As it turns
out, many interesting groups admit such a representation: free groups, free
Abelian groups, certain nilpotent groups, the lamplighter group, and in par-
ticular Grigorchuk’s group. Computationally, it is straightforward to con-
struct automata that represent the elements of S(A) using the standard
product construction for the composition of rational transductions described
in [8]. Of course, the size of these machines grows exponentially, so the con-
struction is only feasible in rather limited circumstances. To handle the group
G(A), one usually also needs the inverse automaton A4’ that is obtained by
interchanging the input/output bits for all toggle states. Note that we may
have S(A) = G(A), in which case there is no need for the inverse automaton;
we call A group-like in this situation. It is easy to see that S(A) is Abelian
if, and only if, G(A) is Abelian.

We will transfer standard notions from semigroup and group theory to the
corresponding automata. For example, we may refer to an automaton as being
torsion-free Abelian.
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Fig. 1.2 The successor automaton Sucy of rank 2, generating the free monoid N2,

Here is are some simple examples. The automaton Sucs in figure 1.2, the suc-
cessor automaton of rank 2, generates the monoid N2. If the loop has length
n rather than 2 as in figure 1.2 we obtain the general successor automaton of
rank n, see below for an algebraic definition. In the case where n = 1 these
machines are also referred to as adding machines or odometers; regrettably,
for n > 2 the notion of sausage automaton appears in the literature. It is not
hard to see that all orbits of our invertible binary automata have length a
power of 2. For Sucy, the orbit of a word = of length 2k under transduction
1 has length 2%. To see why, let u,v € 2¥ and write shf for the perfect shuffle
operation. Then
shf(u,v) 1 = shf(u f,v)

where f is the truncated successor function in reverse binary (another auto-
morphism of 2*, defined by the analogous successor automaton where state
1 has a self-loop under 1/0).

By contrast, the machine A in figure 1.3 generates Z? as a semigroup. To see
why, note that 1 ~! = 2, and similarly 3 ' = 4. This is an example of an

. L. a/b .
automaton that admits a skew-symmetry ¢: a transition p — ¢ is mapped
to o(p) A ©(q). Thus, state ¢(p) defines the inverse function of state p and
the automaton is obviously group-like. As in the previous example, the orbit
of a word of length 2k under 1 has length 2 and has a similar description
in terms of shuffle. Alas, this time there is no simple description for the
associated map f. Note that 1% similarly produces orbits of length 2 for
odd k, whereas even powers of 1 produce shorter orbits.

The example also shows that full edge labels in the diagrams lead to visual
clutter. It is preferable to relabel transitions as follows; this convention will

0/1
also be useful in section 1.4. Henceforth, a toggle transition p 4 q will be
. - 1/0 1 s
written as p BN q, a toggle transition p L) qasp SN q and a copy transition

P a—/a> qasp LN q or even simply as p — ¢. The labels 2, = {T, 0, 1} will be
referred to as trits to emphasize similarity to balanced ternary numeration
systems. Numerically we will interpret 1 as —1.

Here is our last example of an automaton, using this convention. The 3-
state machine is group-like and indeed generates Z?2, but this time there is
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ala

0/1

Fig. 1.3 An automaton that uses a successor-like function to generate the free Abelian
group of rank 2.

Fig. 1.4 Another automaton generating the free Abelian group of rank 2, albeit it in a
less obvious manner.

no obvious reason for this. As it turns out, the identity 02122 = I holds,
from which observation our claim can easily be derived (to avoid confusion,
we always write I for the identity automorphism of 2*). Again, the orbit of
words of length 2k under 0 has length 2, but this time the situation is a
bit more complicated: one can show that for any fixed orbit under 0 and any
u € 2F there is precisely one v € 2% such that shf(u, v) lies in the orbit. Hence
the orbits of even length words under 0 have the form {shf(u,v f) | u € 2F}
for some function finite transduction f.

The description of automorphisms of 2* in terms of Mealy automata is con-
venient since standard algorithms from automata theory can be exploited in
the study of these automorphisms. For example, we may safely assume that
the Mealy automata are minimal in the sense that no two states have the
same behavior, if we consider them as acceptors over 2 X 2 in the obvious
manner. All the sample automata we have seen so far are indeed minimal.
Thus we may safely assume that all the basic maps k, k € @, are distinct.

Of course, it is also important to have a more algebraic description available.
To begin with, note that any automorphism f of 2* can be written in the
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recursive form f = (fo, f1)s where s € &j, the symmetric group on two
letters: s describes the action of f on 2, construed as the first level of 2*,
and fo and f; are the automorphisms induced by f on the two subtrees
of the root (which are naturally isomorphic to the whole tree). Thus there
are residuation maps 9, : Aut(2*) — Aut(2*), a € 2, and a parity map
par : Aut(2*) — S5 that produce the corresponding decomposition. Here we
write o for the transposition in G, and suppress the identity in this context.
We refer to an automorphism of the form f = (fy, f1)o as odd, all others
f = (fo, f1) as even. In other words, f is even if a f = a for a € 2, and odd
otherwise. Clearly, p is odd if, and only if, p is a toggle state. We can describe
the full automorphism group as a wreath product:

Aut(2*) = (Aut(2*) x Aut(2)) x Ga.
The group operation in the wreath product has the form

(fos f1)5 (90, 91)t = (fogs(0)> f19s(1)) st

In the context of sequential functions, residuals were first introduced by
Raney [26] and correspond exactly to the recursive components in the wreath
decomposition. Note that a subgroup G of Aut(2*) may not be closed un-
der residuation; if it is, we call G self-similar or state-closed. In this case,
the wreath characterization of the full automorphism group carries over:

G~ (G xG)x6,.

For legibility, we will occasionally write k= rather than k — 1, and k™ rather
than k 4+ 1. As an example, using wreath notation, the successor automaton
Suc,, of rank n, with a loop of length n rather than just 2 as in figure 1.2,
has the form

0 =1(0,0) 1=0,n)o k=((",k"), 2<k<n.

Using the shuffle characterization from above, it is not hard to show that
Suc,, generates the free Abelian monoid N, but not a group. The automaton
in figure 1.3 can be generalized like so. A cycle-cum-chord transducer is given
by

0=(_,m )o k=((k_,k"), 1<k<n.

where 1 < m < n. We will write CC]), for this transducer. The diagram of
CC§ is shown in figure 1.5. One can show that CC}, generates the free Abelian
group of rank n — ged(n,m). As we will see, these are in a sense the most
basic invertible automata generating free Abelian groups.

Self-similar subgroups of Aut(2*) can always be translated into Mealy au-
tomata, though not necessarily finite ones. For suppose G is self-similar. We
can construct the complete group automaton for G, in symbols €q, as fol-

lows: the automaton has G as state set and the transitions f a/—af> Ouf.
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Fig. 1.5 A cycle-cum-chord automaton that generates the free Abelian group of rank 4.

In general, this invertible transducer will be infinite, but certainly S(€q)
is a group and isomorphic to G. Note that the complete automaton always
admits the skew-symmetry mentioned above. As already mentioned, more
interesting is a representation of G in terms of a finite automaton. To this
end, call G is finite-state if for all f € G the number of residuals J, f is finite.
If G is self-similar, finite-state and finitely generated, we can construct the
group automaton 2lg, a subautomaton of €¢, just like the complete group
automaton, but with state set restricted to the collection of all residuals of
the generators of G. The group generated by 2 is isomorphic to G, but the
semigroup may be different as is the case for successor automata. Note that
A is minimal by construction. To recover parts of €(.A) computationally
from 20 we can use the standard product machine construction combined
with minimization to obtain a machine for each automorphism f € G. Unless
g is group-like, some of the components in these products will be copies of
the inverse automaton 4. The complete automaton is then the limit of these
automata. Note that the product machine construction combined with min-
imization is directly related to questions of growth, so one should in general
expect no simple descriptions of the resulting automata [3].

1.3 Abelian Automata

Given a nontrivial, state-closed group G acting on 2*, it is clear that the col-
lection of even elements forms a subgroup H of index 2. Moreover, restricted
to H, the residuation maps are group homomorphisms. Correspondingly, one
can define an action of a group G on 2*, given a subgroup H < G of index
2 and a homomorphism @ : H — G . Fix coset representatives hg = 1 and
hy € G — H and define the action via

az | = b(x B(h; " ha))
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where b is determined by the condition that hb_1 fhe € H. Unfortunately, this
action may fail to be faithful and the conditions under which it is are slightly
complicated, see [22, 23]. In the Abelian case, no problems arise and one can
rewrite this characterization using additive notation in the form

ar f = a(x®@(f)) if feH,
a(zo(f+(-1)%)) iff¢H

where g is a suitably chosen coset representative, g € G — H. As an example,
consider G' = Z? with generators e; and ey and H = (2e1,e; ). We can set
®(2a,b) = (b,a) and let g = e;. Then, for example, 0¥(4,3) = 01001 and
14(4,3) = 101001%.

It is fairly easy to check whether a given invertible Mealy automaton gen-
erates an Abelian group. Suppose G < Aut(2*) is self-similar. For any au-
tomorphism f € G define its gap to be v = (9o f)(01f)~! € G, so that
Oof = v¢ 01 f. An easy induction using wreath representation shows the fol-
lowing.

Lemma 1. A self-similar group G < Aut(2*) is Abelian if, and only if, all
even elements of G have gap value I, and all odd elements have the same gap
value.

The conditions of the lemma naturally carry over to an automaton generating
the group G. So suppose A is an invertible automaton that satisfies the gap
conditions so that S(A) is Abelian. To avoid tedious special cases, let us note
that the transduction monoid and group are Boolean precisely when every
toggle state has gap I. By minimality, this means that every such state has
out-degree 1 (we consider the transition diagram to be a simple graph rather
than a multi-graph). In the other case we obtain a free Abelian monoid and
group. From now on, we will always assume that the we are in the second
case. We refer to y(p) for any toggle state p as the gap value of A. It follows
easily from minimality that any state p has at most one predecessor copy

state. For toggle predecessors note that for any a € 2 there can be at most

one ¢q such that ¢ a—/a> p. However, it may well happen that there are distinct

predecessors qo and ¢; such that g, a_/6> p. Thus, every state has indegree at
most 3 in a minimal invertible automaton, and it is not hard to show that
this bound is tight.

So suppose A is a minimal invertible automaton with n states and ng toggle
states. We may safely assume ng < n. It is clear that one can test whether
A is Abelian in polynomial time by checking directly that all the maps p
commute. This requires a product machine construction A, ® A, as described
in [8] and a test that A, ® A, and A, ® A, are behaviorally equivalent. The
latter property can be handled in time 5(n2) using the standard algorithm
in [11]. Using the gap characterization, we can instead check that all the copy
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states have out-degree 1 and check that all product automata A, ® A}, where
p is a toggle state have the same behavior.

Lemma 2. Given_a minimal invertible automaton on n states, one can test
commutativity in O(ngn?) steps.

Note that the test is trivial for an invertible automaton that contains just
a single toggle state p. In this case, the automaton will be Abelian if, and
only if, it consists of a copy chain, a directed path of copy states, ending in
a toggle state of the form

0 0 0 0
QG —> G- ——> ... —>q1 —>qo

plus two back transitions starting at the toggle state. We refer to this part of
the complete automaton as the copy chain at ¢o of length k. As an example,
consider the cycle-cum-chord automaton in figure 1.5. Note that copy chains
of arbitrary length always exist; in fact, we can construct an infinite copy
chain at any toggle state, see section 1.5 for an application of this idea.

For the two transitions emanating from the toggle state qg, there are two
possibilities. First, they may both end at two copy states in the chain. We may
safely assume that one of the transitions leads back to gx, so we are dealing
with a cycle-cum-chord transducer. The other possibility is that one of these
transitions leads to the identity state (recall that we assume minimality). In
this case we obtain a successor automaton Suc,, see [22].

Consider a group G < Aut(2*). Following Nekrashevych and Sidki [23], we
will refer to G as an m-lattice if G is state-closed and free Abelian of finite
rank m. Suppose A generates an m-lattice. As we have seen, the complete
automaton associated with A is a computable structure. In particular, we can
effectively construct a finite subautomaton for any automorphism f € G(A).
The reference shows that a computationally preferable representation of the
complete automaton can be obtained by using Z™ directly as state set. Call
u € Z™ even if its first component u; is even, and odd otherwise. Then the
transition function 7 of the complete automaton can be described in terms
of a residuation matrix A € 1/2Z™*™ and an odd residuation vector e € Z™
by

T(u,d) = A(u + de) (1.1)

where d = 0 whenever u is even, and d = +1 otherwise (recall our labeling
convention from above). Writing ¢; for the ith column of A, we have e =
A~1(c; +v) where v is integral. The matrices A in question are non-singular
and 1/2-integral: A=1(Z™)NZ™ is a sublattice of Z™ of index 2. As a matter
of fact, using similarity with respect to GL,,(Z), we can safely assume that
the matrix A has the form
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]
=
-

- @12 ... G1m
a
%GQQ...agm
A= T . (1.2)
Am
L g - G

where all the coefficients a;; are integral. One can verify that the character-
istic polynomials of these matrices have the form

X(2) = 2™+ 1/2(gm-12"""+ ...+ g1z + g0) (1.3)

where all the coefficients g; are integral; in particular gy = 1. In the case
of interest to us when the action induced by A is faithful, it is shown in
the reference that x(z) is irreducible, a property we will tacitly assume from
now on. Computational evidence suggests that most matrices A have but one
GL,(Z) class [24, 23]. In this case we can further assume that the matrix
A has the form of a companion matrix with fractional components again
only appearing in the first column, and all other columns being unit vectors.
One property of these characteristic polynomials x(z) that is crucial for our
purposes is the fact that all their roots have modulus strictly less than 1.
Thus any residuation matrix A has spectral radius strictly less than 1, and
A is a contraction. As elements of the corresponding algebraic number field,
all roots have denominator 2.

The complete automaton €(A,e) now takes the following simple form and
is obviously computable: the state set is Z™ and the transition function is
given by equation (1.3). Unlike the product automata mentioned earlier, this
infinite Mealy automaton is always reduced in the sense that any two distinct
states have distinct behavior. In the following we will always interpret the
complete automaton in this manner.

1.3.1 Canonical and Principal Automata

As in the last section, consider the complete automaton €(A, e) for some m-
lattice G. We are interested in finite subautomata of €(A,e) that generate
the same lattice. Following [22], define the nucleus N of the action as the
following subset of G:

N=J N{o:g]|lz| =n}

geG neN

Thus, N consists of all states of the complete automaton that are reachable
from a cycle. Note that A" naturally defines a subautomaton of €(A, e) and it
is shown in [22] that this automaton generates the lattice. The action is called
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Fig. 1.6 The nucleus automaton associated with the sausage automaton of rank 2.

contracting if A/ is finite and one can show that all m-lattices are contracting
in this sense. As a consequence, it is decidable whether two Abelian automata
generate the same lattice. The algorithm given in the reference relies on the
claim that the nucleus can be effectively generated; see below for a plausible
method. An image of the nucleus of the successor automaton Sucy of rank 2 is
shown in figure 1.6. Note the extraneous strongly connected components that
could be removed without changing the generated group (the subautomaton
colored red already generates the group).

Select some anchor point u € Z™, u # 0, and form the closure under the
transition function defined by equation (1.3). The elements of the closure
will have the form

AF su -+ (akAk +ak_1Ak71 + ...—|—a1A) -e (14)

where all the coefficients a; are trits, a; € 2,. Since A is a contraction, the
closure is always finite. We will refer to the resulting automaton as a canonical
automaton (for A) and write 2A(A,e,u). We may safely assume that u is
odd, otherwise 2A(A, e, u) has the form A(A, e, ug) plus a copy chain ending
at ug, the first toggle state obtained by repeated residuation from w. The
description of points in the closure becomes somewhat simpler if the anchor
point u is equal to e; correspondingly we write 20(A,e) and even A(A) if in
addition e = e;. The latter automaton will be called the principal automaton
(for A) and is entirely determined by the residuation matrix A. In either
case, we are dealing with subautomata of the finite nucleus. Note that the
principal automaton always contains the sink 0 since there is a transition
e L 0. Computational evidence suggests that the principal automaton
almost always contains —e; and is skew-symmetric. The only exception to
this rule appears to be the successor automata based on the characteristic
polynomial x(z) = 2™ — 1/2 as in figure 1.2: here the principal automaton
has three strongly connected components, the sink plus two parts that are
skew-symmetric to each other. In this case, either one of these components
alone produces just a monoid, not a group. To avoid special cases, in this
situation we will here refer to the automaton comprised of all three strongly
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Fig. 1.7 The principal automaton associated with x(z) = 22 + z + 1/2. States are labeled
by algebraic integers. Note the skew-symmetry.

connected components as the principal automaton. Note that the nucleus
automaton is strictly larger than the principal one for all m > 2.

Now consider the condensation graph of €(A,e), i.e., the graph whose nodes
are the strongly connected components of €(A, e) and whose edges are inher-
ited. Then remove all nodes that fail to be both reachable and co-reachable
from non-trivial strongly connected components; call this the strict conden-
sation graph. It is easy to see from equation (1.4) that there are only finitely
many non-trivial strongly connected components, and they are all finite. A
component induces a subautomaton if it is terminal in the strict condensation
graph: it has no out-edges. Again, we will think of the terminal component
0 as being part of the principal automaton.

An algorithm to compute the nucleus is implicit in Okano [24]. Let V' by the
Vandermonde matrix given by the m roots of the characteristic polynomial

X(2), define the vector norm ||z|| = ||V - |/, in terms of the Chebyshev
norm and let A < 1 be the spectral radius of A. Then ||¢1]] = A™ and, for the
induced matrix norm, we have ||A|| = A. For any point u on a cycle one can

then show that |jul| < A™/(1 — \). Thus the search for strongly connected
components can be limited to a finite region of the complete automaton.
Note, though, that the region becomes quite large when A is close to 1.

As an example, consider the residuation matrix
_(-11 o
A—(1/20> x(2) =2"4+2+1/2

This is the matrix associated with the cycle-cum-chord transducer CCj in
figure 1.4 and has spectral radius A = 1/v/2. The roots of x(z) have absolute
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Fig. 1.8 The integral self-affine tile associated with x(z) = 22+2+41/2, using the standard
digit (1,0). The tile has Lebesgue measure 1 and lattice tiles R? with tiling set Z2. Tt is
known as the twin-dragon.

norm 2. The corresponding principal automaton, a 7 state machine, is shown
in figure 1.7; the state labels will be explained in section 1.4. In this case,
the strongly connected component of the anchor point e; admits a skew-
symmetry. The principal automaton here coincides with the nucleus. On the
other hand, if we select the residuation vector to be e = (3,2), the canonical
automaton A(A, e) has but 3 states and is isomorphic to CCj. Clearly (A, e)
fails to admit any skew-symmetry, yet it still generates the free Abelian group
of rank 2 [33]. In this case, the nucleus has 5 subautomata: the principal
automaton, plus two pairs of skew-symmetric ones. These automata are gen-
erated by the powers of the transduction CC3(0).

Consider some subautomaton A of €(A,e) and a transition p 4, q whose
target ¢ lies in A, but whose source p does not. Let A, denote the smallest
subautomaton of €(A,e) that contains A and p.

Lemma 3. A, generates the same group as A.

To see why, first assume that p is a copy state and consider the copy chain at
q = qo of length m~. As a consequence of equation (1.3) and using additive
notation we have

2q0 + Gm-1q1 + ... £ qu- =1. (1.5)

By repeated residuation it follows that p = g1 € Z[Q] where @ is the state
set of A. If p is a toggle state, we may safely assume that the new transition
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has the form p LN q. Let p LN ¢, so that ¢’ = g + v € Z|Q] where ~ is the
gap value from above. Hence we can apply the same residuation argument as
in the first case to show that p € Z[Q)].

Reading the lemma in the opposite direction, we see that there are two types
of interesting subautomata of the nucleus of €(A, e)

e the principal automaton 2A(A), and

e terminal strongly connected automata.

To see why, consider a terminal strongly connected component S in a subau-
tomaton A of the complete automaton. If S consists only of 0 we are dealing
with the principal automaton; otherwise S itself defines a subautomaton that
generates the same group as A. The principal automata all seem to have a
non-trivial skew automorphism, all the others do not (but recall our conven-
tion regarding successor automata as in figure 1.2).

1.3.2 Self-Affine Tiles

Let us digress briefly to comment on the connection between Abelian invert-
ible automata and questions related to tilings and iterated function systems.
Since A is a contraction, the representation of the elements of a subautomaton
of €(A,e) in equation (1.4) naturally gives rise to a so-called tile, a compact
subset of R™ of positive Lebesgue measure. More precisely, fix a set D C R™
of generalized digits. We are only interested in the case |D| = 2; moreover,
we may assume without loss of generality that one of the digits is 0 so that
D = {0,d}. We can think of the tile as being determined by an iterated func-
tion system given by A and D: we are interested in the compact set T'C R™
such that

T=A(T+D) (1.6)
It is easy to see that T has the explicit representation

T = { iA*idi

i=1

d; GD} CR™ (1.7)

The tile T is called self-affine if it has positive Lebesgue measure, a property
that is somewhat rare. To develop a test for positive measure, consider all
real vectors that admit a description in terms of a k-digit expansion of the

form
k—1 .
Dy = { > AT

=0
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It was shown by Lagarias and Wang [14, 15] that T has positive measure if,
and only if, the cardinality of Dy is 2% for all k. It follows from the results
in section 1.5 that this condition is satisfied for our residuation matrices and
digit sets described below.

Now define the containment lattice of A~ and D to be the Z-module gener-
ated by the pre-images of D under A~!:

ZIATY D] = Z[D,A™' D, ..., A""TID] (1.9)

Clearly, the containment lattice contains the symmetric digit set AD =
{—d,0,+d} and is closed under A~!'. A digit set is said to be primitive if
Z[A~1, D] = Z™. Now consider the digit d = A~ (¢; + v). The containment
lattice is none other than the Z-linear closure of the set of points co-reachable
from the origin in €(A, d). Indeed, in conjugation with the conjecture in sec-
tion 1.6, it consists precisely of these points; to wit, the collection of all tame
automorphisms, see section 1.6 for definitions. At any rate, in particular for
d = e; we obtain a primitive digit set. A primitive digit set is standard if
the digits form a complete residue system of Z" /A=1Z". In other words, for
a non-zero digit d we must have A d non-integral. This is, of course, precisely
the choice of the residuation vector. Hence we obtain self-affine tiles, and for
d = e; the tiling set can be chosen to be the full lattice Z™. Figure 1.8 shows
an example of such a tile. Note that the origin is the only integral point in
the tile.

1.4 Path Polynomials

We will now develop yet another representation of the complete automaton
that is helpful in studying path existence problems. As a starting point,
consider the question of how the nuclei of €(A,e) and their subautomata
compare for different values of the residuation vector e. Fix some residuation
matrix A and vector e = A~1(¢; + v) where ¢; is the first column of A and
v is integral. Our first result shows that as far as the gap value is concerned,
only the residuation matrix matters.

Theorem 1. The principal automaton is isomorphic to a subautomaton of
C(A,e) for all e. As a consequence, the gap value of €(A,e) depends only on
the residuation matriz A.

There are two ways to establish this result. The first is essentially taken from
[24] and directly constructs a linear map that defines the embedding. To this
end, define an m x m integral matrix with column vectors

E=(e,A7e,..., AT ¢) (1.10)
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One can check that E is non-singular and it commutes with A. As a con-
sequence, E induces a monomorphism from €(A) to €(A,e), so that €(A) is
always (isomorphic to) a subautomaton of €(A,e). In particular, E shows
that A(A, e, e) is an isomorphic copy of the principal automaton 2((A).

A rather different approach to theorem 1 focuses on a description of paths in
the complete automaton €(A, e), and in particular in the principal automaton.

Consider a path
do dy di—p dy—

Tie—2q — ... — Q- — Qk (1.11)
Only paths such that ¢; # 0 for i < k are of interest. We will interpret
the label lab(7) = d = dod; ...di- as a word over the three-letter alphabet
2, = {—1,0,1}. For reasons of legibility, we will often write 1 instead of —1
in this context. Define the path polynomial P$(z) € Z[z], for any word d over
2;, as follows: P¢(z) =1 and

P(2) = z- (P§(2) + 0) (1.12)

Then PJ(A) is a linear map from Q™ to Q™ and Pj(A)(e) is the state of
A(A, e, e) after scanning d € 2,*, starting at initial state e. We write P,(A)
for the path polynomial for the principal automaton 2A(A), in which case the
initial state is e; = A~'¢;. Note that all coefficients of a path polynomial
encode the corresponding path in an entirely straightforward manner.

The extension d0 is valid if, and only if, P§(A)(e) is even; otherwise the valid
extensions are d1 and d1. An induction on the length of a path then shows
that P, is defined whenever P§ is and that P,(A) = P$(A). This provides
another proof of the claim that the principal automaton 2A(A) is embedded
in all complete automata €(A, e).

As will see shortly, path polynomials define algebraic integers in a natural
way. To see why, consider the algebraic number field F = Q[z]/x(z) of degree
m. We write « for the representative of 1/z of the inverse of a root of x(z),
and x*(z) for the minimal polynomial of «, the reciprocal of x. We have
F = Q(«), but « is an algebraic integer and more useful for our purposes.
Now suppose we have two directed paths e; — p, with corresponding path
polynomials P; and P,. Then P, = P, (mod x(z)). The see this, observe
that Pi(A)(e;) = P2(A)(e1) implies that e; is in the null space of P =
Py — P5. By Cayley-Hamilton, the remainder operation with respect to x(z)
does not affect the corresponding linear operators. Hence the null space of
P (mod x(z)) is non-zero. If P is not zero, it has degree less than m and
is thus coprime with x(z). Hence there are cofactors (1 and @2 such that
Q1P+ Q2x(z) = 1. But then Q) is the inverse of P, contradiction. By slight
abuse of notation, we will refer to P mod x(z) € F also as the path polynomial
for p. Hence we can label states p in the principal automaton by algebraic
integers. Figure 1.7 shows an example of such a labeling.
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Path polynomials suggest a generalization where we label a node p in €(A)
by an algebraic integer ¢(p) € Zy subject to the constraint

p-L g < B(p) = ad(q) - dp (1.13)

where 3 = e o (a');<,. An easy induction shows the analogue of equation
(1.4):

Lemma 4. A
a*P(qr) = P(qo) + B Zdiaz-
i<k

Considering the self-loop at 0 it follows that #(0) = 0. In particular for e = e;
we have 8 = 1. In this case for source gy = e; and target g = 0 we have

1+ dia’ =0.
i<k
Similarly, if there is a cycle of length k at a point g we have
(@ = 1)d(q) =D dia.
i<k

The string d is nothing but the reverse base a expansion of the algebraic
integer ), _, d;a’ on the right hand side. It is easy to check that

P,y(z) = 2* <1 + z; dizl).

Thus, path polynomials and labels are closely connected:
Lemma 5. For any path from e to q labeled d: P,(1/a) = $(q).

The polynomial representation is useful because it allows us to use polynomial
arithmetic to search for paths. As an example, consider again the characteris-
tic polynomial x(z) = 22 + z + 1/2 with principal automaton shown in figure
1.7. There is a trivial path from 0 to e; labeled 1, corresponding to p = —1.
This is obviously the shortest path, but we can try to find others by writing

p=0Bx"+o a:Zsiai (1.14)

where the digits s; are again trits. We have 2 + 2a + a2 = 0 in Zp. Hence we
can rewrite the digits string —1 as follows:
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1 a o o ot
-1
2 2 1
2 -2 -1
2 2 1

1 0 1 1 1

Thus B =1—-a+a?and 0 = 1+ a? + o® + a?. One can easily check in
figure 1.7 that this corresponds indeed to the shortest path from 0 to e; that
passes through —e;. This approach is similar in spirit to Gilbert’s clearing
algorithm [9].

Now consider a copy chain of the form
0 0 0 0
Qe —> qx- —> -~ 41— qo

where ¢o belongs to some subautomaton A with state set (), while some
or all of the other states in the chain lie outside of A. As we have seen in
lemma 3, adjoining these states does not change the group generated by .A.
In the special case where gy = e; is the generator of the principal automaton,
and there are at least m — 1 copy states in the chain, we even have equality:
Z{qm-- - -, qo0] = Z[Q]. This follows easily by induction on the length of a path
from the generator to a state in the automaton. In this case, the label of ¢;
is simply . To generalize lemma 5 one needs to admit Laurent polynomials
as path polynomials. Since A is invertible this causes no difficulties. At any
rate, the transduction group generated by A can thus be represented by a
lattice of algebraic integers.

Lemma 6. Let A be a canonical automaton generating an m-lattice G. The
G is isomorphic to a lattice of algebraic integers of the form ), a;a",
a; € 7.

For example, in a cycle-cum-chord automaton the length of the backbone
copy chain is always larger than the rank of the lattice. Thus the group is
generated by the first m states on the chain.

1.5 Knuth Normal Form

The last lemma suggests that one consider numeration systems for the alge-
braic integers in an algebraic number field, a subject first breached by Knuth
in 1960 [13] in the case of the Gaussian integers Z[i]. As it turns out, ev-
ery Gaussian integer p can be written uniquely in the form p = Y. _, bt
where @« = —1 + i using only binary digits 0 and 1. Since « is a root of
x(2) = 22 4+ 2+ 1/2, we can translate this result into the world of subau-
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Fig. 1.9 Adding an infinite copy chain to a strongly connected canonical automaton.

tomata as follows [12]. Attach an infinite copy chain to the generator e; of
ch and refer to the resulting automaton as A, , see figure 1.9. By slight
abuse of notation, let us refer to these states by their labels as o, with
a® = 1 representing the generator e;. As we have seen, A, still generates the
same group. More importantly, every element of the associated 2-lattice can
be written uniquely in Knuth normal form (KNF) >"._, b;a’, where b; € 2,
according to [34, 13].

i<k

As an example, consider f = 1° in the automaton from figure 1.7. Written as
a bit-vector, the Knuth normal form of f is 100010111. The next table shows
the corresponding rewrite process.

1 a o o ot a® af a7 af
5
-4 -4 -2
4 4 2
-2 -2 -1
2 2 1
-2 -2 -1
2 2 1

1 0 0 0 1 0 1 1 1

Knuth normal form is extremely helpful in exploring properties of the au-
tomorphisms generated by A, rather than just their group structure. For
example, one can show that lQM has normal form of* a map that copies
the first 8% input bits and then behaves like the odd transduction 1 on the
remainder of the input. This can be used to show that Knuth normal form for
this particular automaton can be computed by a suitable finite state trans-
ducer [31]. Similarly one can show that the group of automorphisms acts
transitively on each level set 2¥ and a little more work makes it possible
to identify the levels where the group acts simply transitively. To construct
Schreier graphs like the one in figure for 2¥ one can use the fact that in Knuth
normal form the generators look like 0°107 € 2.
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Fig. 1.10 A Schreier graph associated with CC% and the subtree 24,

Uniqueness of Knuth normal form is not hard to see: assume >, _, b’ =
> i Uit for digits b;,b; € 2. Then b; = b; for all i < £, but, say, 0 = by #
b, =1 and we have Y, , bia' = o’ + Y, , bia’. But the first automorphism
copies at least ¢ bits, whereas the second changes the bit in position £.

Existence is much harder to deal with. For example, it is known that for
m = 2 there are only six characteristic polynomials that give rise to residua-
tion matrices; all of these are unique up to GL,,(Z) similarity. The matrices
together with the corresponding « values and their minimal polynomials are
shown below. The first matrix, which gives rise to the successor automaton,
is the only one that produces a real field. The forth matrix is associated with
the automaton in figure 1.3. As the table shows, only 4 out of the 6 admit a
Knuth normal form.

A a min. pol.  KNF
(L) va 92 o
(_ij20) 1+ 2-224+2% no
(fl//Qzé) (1+1iV7) /2 2—2z+2%2  yes
(_La0) V2 2+ 22 yes
(T1a0) (F14+iV7) /2 242422 yes
(_71}2(1)) -1+ 2422422 yes

In the case where all coefficients of the minimal polynomial of « are nonneg-
ative, one can show that the Gilbert-style rewrite process always terminates.
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More precisely, we can interpret equation (1.5) as a cancellation rule that
simplifies some expressions. Applying equation (1.5) twice we obtain the shift
rule

20 (2= gm-1)0" + (gm-1 — gm-2)a” + ... + goa™*? (1.15)

that can be used to eliminate coefficients other than 0 and 1. Given an alge-
braic integer p = >, . a;af, we may assume that all coefficients are nonneg-
ative. Let us refer to ), _, a; as the weight of the integer. Clearly, application
of the cancellation rule reduces weight. But note that the sum of exponents
in the shift rule is telescoping, so that its application does not affect weight.
Now consider a rewrite system that tries to remove all coefficients other than
0 and 1 by first applying the cancellation rule, and then the shift rule. As-
sume that the rewrite process fails to terminate on some input p. By deleting
an initial segment, we may safely assume that the weight of the expression
remains constant throughout the process, i.e., we only apply the shift rule.
Using the notation from equation (1.14) we see that after a transient phase,
only the last m + 1 coefficients of o will be non-zero. Since the weight does
not change, this block of coefficients must ultimately repeat in some later
term o’. But that means that ¢’ = o*o, a contradiction.

The copy chain extension to the principal automaton is perhaps the most
natural way to define Knuth normal form, but there are other options. For
example, we can use the generator of one of the strongly connected automata
in €(A, e) that generate the lattice as an anchor for the chain. For CCj this
is indicated in figure 1.9. The Knuth normal forms of the automorphisms 1*
for 0 < k < 2'0 are shown in figure 1.11. The height of each column indicates
the number of terms, and the actual terms are color coded.

Fig. 1.11 The Knuth normal forms for some automorphisms defined by a cycle-cum-chord
transducer.
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In cases where Knuth normal form fails to exist one can try allow for larger
digits set, and in particular for trits {—1,0,1}. Define the weak Knuth nor-
mal form to be an expansion of the form Zz <k d;o where d; € 2,. This
generalization corresponds to the step from canonical numeration systems
for algebraic number fields, where the digit set is of the form {0,1,..., N~}
to symmetric canonical number systems where the digits are chosen from
{0,41,...,£N"}. Here N is typically the absolute value of the absolute
norm of the generator a and thus N~ = 1 in our case, There is large body of
literature on these numeration systems, see [25] and the references therein.
Call an algebraic integer expanding if all its conjugates have modulus larger
than 1. The following result follows from the work in [14, 15].

Theorem 2 (Lagarias, Wang 1997). Let a be an expanding algebraic in-
teger of norm 2. Then all algebraic integers p in F = Q(«) have an expansion
p=>pdia" where d € {—1,0,1}.

Corollary 1. All m-lattices admit a weak Knuth normal form.

Of course, we no longer have uniqueness. For example, for the 2-lattice as-
sociated with @ = 1 + i the non-trivial weak normal forms of 1 = —1 are
1011...1111. Another possibility is to move to the completion of the group
and consider infinite normal forms ", d;a': the automorphism corresponding
to digit dj, leaves the first k input bits unchanged, so this formal infinite sum
indeed defines an automorphism of 2* [22]. For example, for the successor
automaton from figure 1.2 with characteristic polynomial x(z) = 2% + 1/2,
the automorphism 1 ~! produces the infinite digit sequence (1,0,1,0,1,...).

1.6 Open Problems

It is shown in [22] that the nucleus automaton is a natural finite subau-
tomaton of the complete automaton €(A,e). Alas, from the perspective of
automata theory, the nucleus hides a lot of interesting fine structure. As we
have seen, there may be smaller subautomata that also generate the same
m-lattice; the cycle-cum-chord transducer CC; being a case in point.

Question: Is there a reasonable description of the smallest subautomaton of
€(A,e) that generates the full lattice? Is its state complexity computable in
polynomial time?

Note that the algorithm to compute the nucleus outlined above is clearly
not polynomial in A. On the other hand, the principal automaton might be
computable in polynomial time.

The question arises at to what the essential differences between the principal
automaton and strongly connected subautomata of the nucleus might be. Let
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us call an automorphism f tame if there is some word w such that 9,,f = I,
and strongly tame if all its residuals are tame. Thus f is tame if, and only
if, the corresponding state p in €(A, e) is co-reachable from 0. Similarly, f
is strongly tame if, and only if, every state reachable from the correspond-
ing state p in €(A, e) is co-reachable from 0. If a principal automaton A has
the two component structure just described, then all its basic transductions
are obviously strongly tame. But the same holds true for the whole group
generated by A: any composition of basic transductions can be residuated to
I by systematic removal of components in the representation of f. By con-
trast, all the basic transductions defined by canonical automata of the single
component type such as CC}, fail to be tame. Note, though, that this classi-
fication depends crucially on the fact that there are final strongly connected
components in the principal automaton other than the trivial one. Other-
wise, an automorphism defined by a state in such a putative final component
obviously fails to be tame. Computational evidence supports the following
conjecture.

Conjecture: Every principal automaton 2(A) other than a successor au-
tomaton is skew-symmetric and consists of exactly two strongly connected
components, one of them being the sink 0. For successor automata, the prin-
cipal automaton has 3 strongly connected components.

Note that it suffices to show that in all these principal automata there is a
path from e; to —ej: this would suffice to rewrite any improper path poly-
nomial as a proper one. Equivalently, one needs to rewrite the trit represen-
tation of 1 to a form (1,ds,ds,...,ds, 1). In case the conjecture fails in this
strong form, one might wish to consider the situation where the underlying
residuation matrix has only one similarity type.
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