The Ehrenfeucht-Mycielsky Sequence

KLAUS SUTNER
CARNEGIE MELLON UNIVERSITY
MAY 2012

The Ehrenfeucht-Mycielsky Sequence

 ${\sf Disjunctiveness}$

Complexity of ${\cal U}$

Density

Open Problems

Do not, more generally, publish your failures: I tried to prove so-and-so; I couldn't; here it is—see?!

Paul Halmos, Four Panel Talks on Publishing, 1975

UNSOLVED PROBLEMS

Edited by Richard Guy

In this department the MONTHLY presents easily stated unsolved problems dealing with notions ordinarily encountered in undergraduate mathematics. Each problem should be accompanied by relevant references (if any are known to the author) and by a brief description of known partial or related results. Typescripts should be sent to Richard Guy, Department of Mathematics and Statistics, The University of Calgary, Alberta. Canada T2N 1144.

A Pseudorandom Sequence—How Random Is It?

Andrzej Ehrenfeucht and Jan Mycielski

Let $\varepsilon_1, \varepsilon_2, \dots$ be a sequence of 0's and 1's. Suppose that we know $\varepsilon_1, \dots, \varepsilon_n$ and are asked to predict ε_{n+1} . A very simple way, which we will call the method M, is the following. Find the longest final segment $\varepsilon_1, \varepsilon_{l+1}, \dots, \varepsilon_n$ which occurs earlier in $\varepsilon_1, \dots, \varepsilon_n$. So n-j is maximal such that $(\varepsilon_j, \varepsilon_{l+1}, \dots, \varepsilon_n) = (\varepsilon_{j-1}, \varepsilon_{l+1}, \dots, \varepsilon_{n-1})$ for some i > 0. Then find the smallest i (the most recent occurrence) for which this is so and let ε_{n-l+1} be your guess for ε_{n+1} . (Note that if

Ehrenfeucht and Mycielsky construct an infinite binary sequence

$$U = u_1 u_2 u_3 \dots u_n \dots$$

based on the following simple idea:

When a situation arises that is similar to a previous one, do exactly the opposite of what you did last time.

Write

$$U_n = u_1 u_2 \dots u_{n-1} u_n$$

for the prefix of U of length n.

Definition

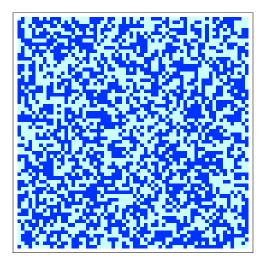
- $u_1 = 0$
- Find the longest suffix v of U_n that appears already in U_{n-1} . Let b be the bit following the last occurrence of v in U_{n-1} . Set $u_{n+1} = \bar{b}$.
- If no such suffix exists set $u_{n+1} = \overline{u}_n$.

```
010 \dots a v b \dots \overline{a} v \mid \overline{b}
```

```
010
0100
01001
010011
0100110
01001101
```

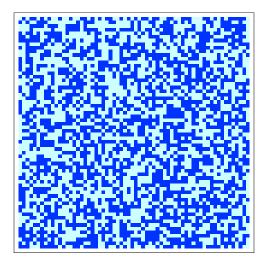
And so on ...

More Bits 7



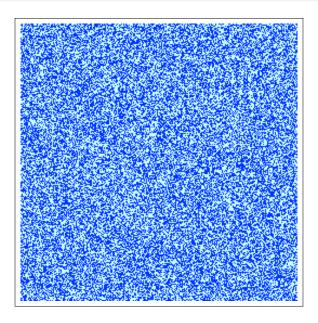
The first 2^{12} bits, in row-major order.

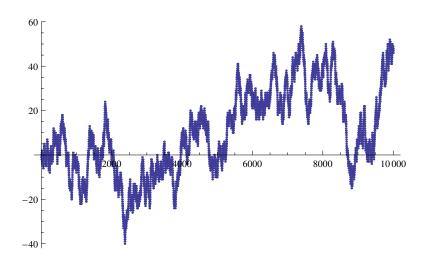
Random Bits 8



The first 2^{12} bits from a good pseudo-random source.

64K Bits 9





As an experiment one can try to compress the first million bits (actually, $2^{17}=131072$ bytes).

• Lemple-Ziv-Welch gzip: 159,410 bytes.

• Burrows-Wheeler bzip2: 165,362 bytes.

Of course, the Kolmogorov complexity of U is quite low; the sequence fails miserably as a random sequence in the sense of Martin-Löf.

Here are some classical, simple randomness criteria due to Golomb, initially used in the study of shift-register sequences.

R1: Equidistribution

The limiting density of 1's should be 1/2.

R2: Blocks

The limiting density of every block of length k should be 2^{-k} .

PearsonChiSquareTest[U, DiscreteUniformDistribution[{0, 1}]]
==> 0.931466

This uses the first 10^6 bits of U.

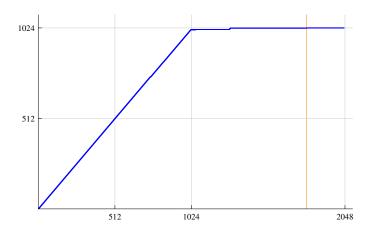
Distribution of 0's and 1's in the first $i \cdot 10^8$ bits, for $i = 1, \dots, 10$.

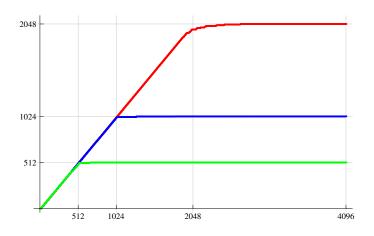
$i \cdot 10^8$	#0	Δ
1	49996379	3621
2	99993568	6432
3	149998751	1249
4	199995036	4964
5	249995563	4437
6	299992953	7047
7	349998485	1515
8	400003768	3768
9	449989561	10439
10	499988410	11590

Blocks 15

Here are the counts for all words of length 4 among the first 2^{20} bits.

Difference to $2^{16} = 65536$.





Words of lengths k=9,10,11 (green, blue, red).

This behavior is rather surprising.

Suppose one wants to construct a sequence $W \in \Sigma^{\omega}$ that maximizes the number of subwords of all lengths in its prefixes.

- For $|\Sigma| \ge 3$ one can construct an infinite de Bruijn word.
- \bullet For $|\varSigma|=2$ there is no such word, though one can produce a limit of de Bruijn words at every other level.

The analogous problem for subsequences is easy (Flaxman, Harrow, Sorkin 2004).

The Ehrenfeucht-Mycielsky Sequence

Disjunctiveness

Complexity of U

Density

Open Problems

It looks like every finite word appears somewhere in U.

Definition

An infinite sequence is disjunctive if it contains all finite words as factors.

Ehrenfeucht-Mycielsky showed in 1992 that the sequence is disjunctive, using a combinatorial argument.

Recall the construction of u_{n+1} from U_n :

$$\dots a v b \dots \overline{a} v \mid \overline{b}$$

Definition

- v is said to match at time n, $v = \mu(n)$,
- ullet |v| is the match length $\lambda(n)$ at time n,
- the match position $\pi(n)$ at time n is the location (position of the last bit) of the matching word v in U_{n-1} .

 $\mu:\mathbb{N}\to 2^\star$ is almost injective: a word v can can match at most once, except for inititial segments $v=U_k$; they can match twice.

$$\dots avb \dots \overline{a}v \mid \overline{b}$$

$$v \dots avb \dots \overline{a}v \mid \overline{b}$$

So, exactly one word of each length $k \geq 1$ matches at most twice, all others match at most once.

It follows from the definition that

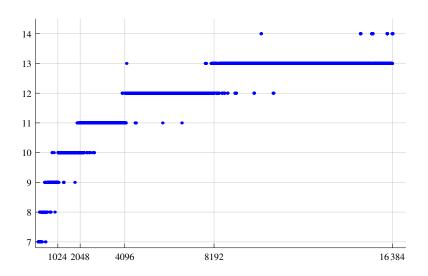
$$\lambda(n+1) \le \lambda(n) + 1$$

but it is perfectly conceivable that $\lambda(n+1)$ is much smaller than $\lambda(n)$.

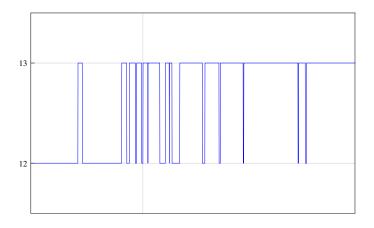
Since there are infinitely many distinct matches, match lengths must be increasing in the sense that

$$\liminf_{n} \lambda(n) = \infty.$$

Surprisingly, match lengths seem to increase very steadily.

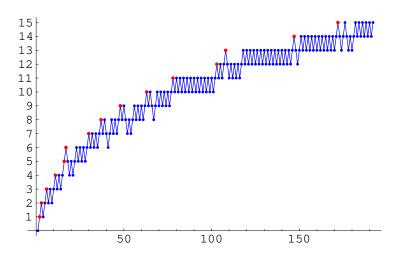


Blowup 25



The region near 2^{13} .

No Drop 26



Condense constant runs of λ ; red dots indicate a new maximum.

Note that the value of λ never seems to drop by more than 1.

Theorem (No Drop)

For all n:

$$\lambda(n) - 1 \le \lambda(n+1) \le \lambda(n) + 1.$$

Proof is very tedious, one needs to worry about a prefixes of a matching word.

Definition

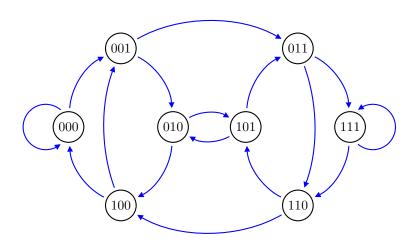
The maximum match length and the critical time for k are

$$\Lambda(n) = \max(\lambda(m) \mid m \le n)$$

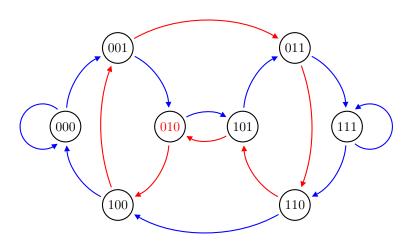
$$\tau_k = \min(n \mid \Lambda(n) = k)$$

With a little bit of imagination one can see logarithmic growth for Λ .

Understanding the au_k is crucial for the analysis of the EM sequence.



Any infinite binary word traces a path in \mathcal{B}_3 .



The first few edges of the path traced by U in \mathcal{B}_3 .

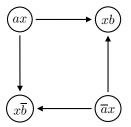
Recall that \mathcal{B}_{k+1} is the line graph of \mathcal{B}_k .

Hence a vertex-simple cycle in \mathcal{B}_{k+1} gives rise to a cycle in \mathcal{B}_k , but not necessarily a vertex-simple one.

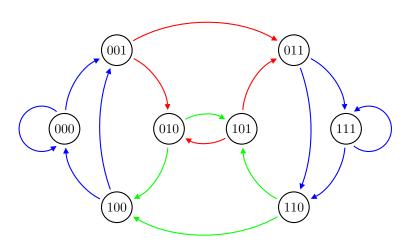
The thing may fold back onto itself, but it will remain edge-simple.

A zig-zag is an alternating path of length 4

$$v_1 \rightarrow v_2 \leftarrow v_3 \rightarrow v_4 \leftarrow v_1$$

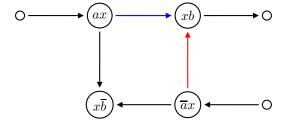


Binary de Bruijn graphs are the edge-disjoint union of zig-zags.



No Merge

The first two encounters of U with a zig-zag **cannot** look like this:



Blue: first hit, red: second hit.

Consider the path traced by U in the de Bruijn graph \mathcal{B}_k of order k.

Proposition

This path begins with a vertex-simple cycle returning to U_k . Thus, U_k is the first word of length k that matches.

In other words, τ_k is the time when U has traced a first vertex-simple cycle, the principal cycle, in the de Bruijn graph \mathcal{B}_k .

Recurrence 36

Corollary

Every finite word in U must appear at least twice (and, therefore, infinitely often).

Proof.

If w appears at all it must appear in some prefix U_k .

Lemma

The Ehrenfeucht-Mycielsky sequence is disjunctive.

Proof.

Consider all nodes in \mathcal{B}_k that are hit by U.

They must all be hit at least twice, so everybody has out-degree 2.

But the only subgraph with this property is \mathcal{B}_k itself.

Unfortunately, this proof does not give any reasonable bound on when all words of length k must already have appeared in U.

It seems that $n \approx 2^{k+2}$ suffices, but that is an open conjecture.

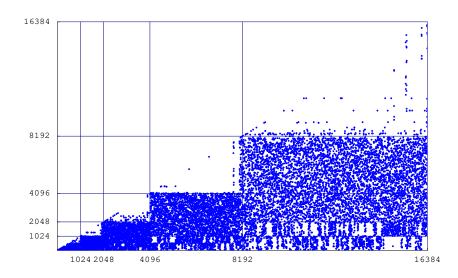
The inner life of U seems to unfold like so:

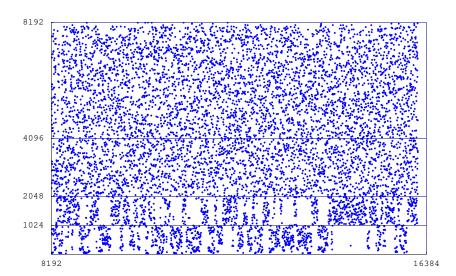
- k Prefix $u = U_k$. Start tracing a simple cycle C_0 in \mathcal{B}_k .
- au_k u is first match of length k. Start tracing secondary cycle C_1 in \mathcal{B}_k .
- au_{k+1} All zig-zags in \mathcal{B}_k touched, all degree 4 cycles in the residual are bordered by degree 2 points.
- τ_{k+2} No residual points in \mathcal{B}_k left, edges may remain.

Matches 39

As a consequence of disjunctiveness we know that there are exactly 2^k+1 matches of length k:

- ullet Each word of length k other than U_k appears exactly once as match.
- ullet U_k appears exactly twice as match.





The Ehrenfeucht-Mycielsky Sequence

Disjunctiveness

 $\ \, \hbox{Complexity of}\,\, U$

Density

Open Problems

Prefixes 43

The language $\{U_n \mid n \geq 0\}$ of all prefixes of U fails to be regular. It follows from the "Gap Theorem" by Calude and Yu (1995) that the prefix language cannot be context-free (it is trivially context-sensitive).

If one accounts for space the right way, we have:

- ullet Prefixes of U can be recognized in logarithmic space and quadratic time using Knuth-Morris-Pratt.
- A linear space lookup algorithm can generate one bit of the sequence in amortized constant time, assuming near-monotonicity.

From the No-Drop lemma we know that if the previous match length was k one of the following three suffixes must work at the next step:

$$v = u_{n-k}u_{n-k+1}u_{n-k+2}\dots u_{n-1}u_n$$

$$v = u_{n-k+1}u_{n-k+2}\dots u_{n-1}u_n$$

$$v = u_{n-k+2}\dots u_{n-1}u_n$$

The obvious brute-force implementation would require three searches of length ${\cal O}(n).$

One can modify the classical Knuth-Morris-Pratt string search algorithm to perform all three searches at once, in O(n) steps.

The KMP machine has states $Q = \{0, 1, \dots, k, k+1\}$ and we feed U_{n-1} to it, in reverse order.

State p means: we have seen a match of length p.

Record the first time p = k - 1 and p = k, stop when p = k + 1.

Hence we can compute the next bit in O(n+k) steps.

All we really need to know to get bit u_{n+1} is the last occurrence of the three candidates

$$u_{n-k}\ldots u_n \qquad u_{n-k+1}\ldots u_n \qquad u_{n-k+2}\ldots u_n.$$

So we could keep a hash table for all words up to length k+1 that have already been encountered.

In fact, hashing is not necessary: the table will grow to size 2^k and fill up, so we might as well use a simple array.

Crucial: if all matches so far have length at most k we only need P_l for l < k.

In fact, we can even delete P_1 , P_2 etc. once all words have matched.

At time τ_{k+1} the max match length increases.

At that point, allocate and initialize P_{k+1} .

This costs $\Theta(2^{k+1})$ steps, but the cost can be amortized over the following steps until the max match-length increases again.

The Ehrenfeucht-Mycielsky Sequence

Disjunctiveness

Complexity of U

Density

Open Problems

Density 49

For any word $w \in \mathbf{2}^k$ we write

$$\Delta(w) = (\# 1 \text{ in } w)/k$$

for the density of w, and $\Delta(W)$ for the average density of a set of words $W \subseteq \mathbf{2}^k$.

For an infinite word $V \in \mathbf{2}^{\omega}$ let

$$\Delta(V) = \lim_{n \to \infty} \Delta(V_n)$$

We suspect strongly that $\Delta(U) = 1/2$.

Of course, the limit might fail to exist or might be different from 1/2.

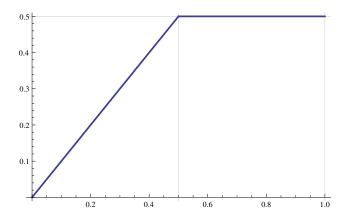
Clearly
$$\Delta(\mathbf{2}^k) = 1/2$$
.

Write
$$2^{k,p} = \{ x \in 2^k \mid \#1 \text{ in } x = p \}.$$

How about words of density up to α :

$$\lim \Delta(\mathbf{2}^{k, \leq \alpha k}) = ???$$

As a function of α this is non-decreasing, 0 at 0 and 1/2 at 1.



The Proof 52

$$\Delta(\mathbf{2}^{k,\leq p}) = \frac{\sum_{i\leq p} \binom{k}{i} i/k}{\binom{k}{\leq p}} = 1/2 - \left(4\frac{\binom{k-1}{\leq p}}{\binom{k-1}{p}} + 2\right)^{-1}$$

Let $0 \leq \varepsilon < 1/2$ and $p = \lfloor \varepsilon k + c \rfloor$ where c is constant. Then

$$\lim_{k \to \infty} \frac{\binom{k}{< p}}{\binom{k}{p}} = \frac{\varepsilon}{(1 - 2\varepsilon)}.$$

There is a connection between the density of U and match lengths.

Conjecture (2-Monotonicity)

$$m \ge n$$
 implies $\lambda(m) \ge \lambda(n) - 2$.

This is true for the first billion bits, but the conjecture is still open.

We have for $0 \le \alpha \le 1/2$: $\lim_{k \to \infty} \Delta(\mathbf{2}^{k, \le \alpha k}) = \alpha$.

Applying this to $\tau_{k+c} \le t < \tau_{k+c+1}$ and the set of k-factors of U_t we get the following:

Theorem

c-monotonicity of λ for any constant c implies balance.

Alas, the best result known so far is

Theorem

The density of 1's in U is at least 0.11.

The proof combines a counting method by McConnell 2000 with a detailed analysis of the behavior of ${\cal U}$ in de Bruijn graphs.

Here is an outline.

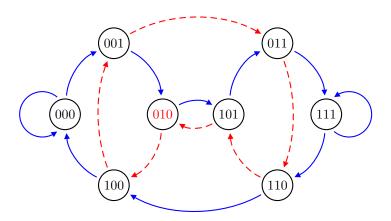
Recall the principal cycle in \mathcal{B}_k . Upon completion of the principal cycle, U traces another cycle, also anchored at U_k .

Up to time $t = \tau_{k+1} - 1$ we have two cycles C_0 and C_1 in \mathcal{B}_k , both anchored at $u = U_k$:

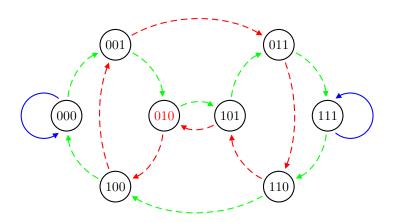
$$\overbrace{u\,a\ldots b\,u}^{C_0} \overline{\underline{a}\ldots \overline{b}\,u}\,a\ldots$$

 C_0 is a vertex-simple cycle, and the two cycles are edge-disjoint.

Doubly hit vertices correspond to matches of length \boldsymbol{k} up to time t.



Note how one can read off the secondary cycle (up to degree 4 points).



Note how the match length drops at 000 and 111.

Define the residual graph to be

$$\overline{\mathcal{B}}_k(t) = \mathcal{B}_k - C_0 - C_1$$

 $\overline{\mathcal{B}}_k(t)$ consists only of degree 2 and, possibly, degree 4 points.

The strongly connected components of $\overline{\mathcal{B}}_k(t)$ are all Eulerian.

By disjunctiveness, ${\cal U}$ must later touches the components in the residual graph. We have the following situation:

$$\dots a v b \dots a v \overline{b} \dots$$

The first two occurrences of v are preceded by the same bit, v is irregular.

Taxonomy

- initial
- regular
- irregular

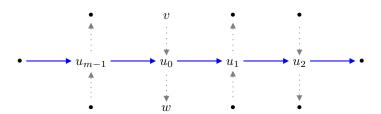
The number of irregular words seems to be small.

There are 12 irregular words of length 10:

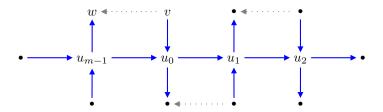
Who Cares? 62

 λ can decrease only when an irregular word is encountered for the second time, and will then correspondingly increase when the same word is encountered for the third time, at which point it appears as a match.

The easy case: the SCC in the residual graph is a cycle (blue).



The u_i are degree 4 in the residual graph. Neighbors are degree 2.



The Ehrenfeucht-Mycielsky Sequence

Disjunctiveness

Complexity of U

Density

Open Problems

Density 65

Conjecture

The limiting density of 1's in U is 1/2.

Conjecture

The limiting density of any word of length k in U is 2^{-k} .

Conjecture

The last conjecture holds even if we start with an arbitrary finite word as seed.

Entropy 66

For two words $z, x \in \mathbf{2}^*$ define

$$F_z(x) =$$
 number of occurrences of z in x

$$H_k(x) = \sum_{|z|=k} -F_z(x) \log_2(F_z(x))$$

Conjecture

$$\lim_{m} \sup_{m} H_k(U_m) = 1$$

This can be handled for the *Linus sequence*: minimize length of last double block ... vv, has 0 entropy (Balister, Kalikow, Sarkar 2008).

Matches 67

Conjecture

All words of length k match by time 2^{k+2} .

Conjecture

The match length function is 2-monotonic.

Let me know if you want to work on this.

Assume otherwise; say for infinitely many t we have $\Delta(U_t) < \alpha_0 < 1/2$.

Consider the prinicipal round for k+c and pick some time t in the interval $[\tau_{k+c}, \tau_{k+c+1})$.

Let W be the multiset of all k-factors of U_t , so $\Delta(W) < \alpha_0$.

We must have $\mathbf{2}^k \subseteq W$: all matches after t have length at least k by our assumption.

All words of length k+c+1 on U_t are unique, so there is a constant bounding the multiplicities of $x\in\mathbf{2}^k$ in W.

Split W into $\mathbf{2}^k$ and a multiset: $W=\mathbf{2}^k+V$ where $\forall\,x\in\mathbf{2}^k\,(V(x)\leq d).$

Let $\delta = \Delta(V)$ and m = |V|, so that

$$\alpha_0 > \Delta(W) = \frac{2^k \cdot 1/2 + m \cdot \delta}{2^k + m}$$

Hence $m = \Omega(2^k)$.

On the other hand, for some p we have

$$\alpha_0 \ge \Delta(V) \ge \Delta(d \cdot \mathbf{2}^{k, \le p}) = \Delta(\mathbf{2}^{k, \le p}).$$

If for some $x \in \mathbf{2}^k$, $q/k = \Delta(x) < \Delta(\mathbf{2}^k + d \cdot \mathbf{2}^{k, < q})$ then $\mathbf{2}^k + d \cdot \mathbf{2}^{k, \leq q}$ minimizes the density of all multisets with multiplicities bounded by d that include x.

From a previous observation, $p \leq \alpha_0 k$.

Using Sterling approximation we see that the cardinality m is bounded by

$$d\binom{k}{\leq \alpha_0 k} \leq d + d\alpha_0 k \binom{k}{\alpha_0 k} \approx d + d\sqrt{\frac{\alpha_0 k}{2\pi(1-\alpha_0)}} < 2^{kH(\alpha_0)}$$

where $H(x) = -x \lg x - (1-x) \lg (1-x)$ is the binary entropy function.

H is symmetric about x=1/2 and concave, with maximum H(1/2)=1.

Hence $2^{H(\alpha_0)} < 2$, contradicting our previous lower bound.

Return

П