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Sage Advice 2

Do not, more generally, publish your failures: I tried to prove
so-and-so; I couldn’t; here it is–—see?!

Paul Halmos, Four Panel Talks on Publishing, 1975



The Ehrenfeucht-Mycielsky Sequence 3



Just say no . . . 4

Ehrenfeucht and Mycielsky construct an infinite binary sequence

U = u1u2u3 . . . un . . .

based on the following simple idea:

When a situation arises that is similar to a previous one, do
exactly the opposite of what you did last time.



Formally . . . 5

Write
Un = u1u2 . . . un−1un

for the prefix of U of length n.

Definition
u1 = 0

Find the longest suffix v of Un that appears already in Un−1.
Let b be the bit following the last occurrence of v in Un−1.
Set un+1 = b.

If no such suffix exists set un+1 = un.



Less Formally 6

010 . . . a v b . . . a v
∣∣ b

0 1 0
0 1 0 0
0 1 0 0 1
0 1 0 0 1 1
0 1 0 0 1 1 0
0 1 0 0 1 1 0 1

And so on . . .



More Bits 7

The first 212 bits, in row-major order.



Random Bits 8

The first 212 bits from a good pseudo-random source.



64K Bits 9



EM Random Walk 10
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How Random Is It? 11

As an experiment one can try to compress the first million bits (actually,
217 = 131072 bytes).

Lemple-Ziv-Welch gzip: 159,410 bytes.

Burrows-Wheeler bzip2: 165,362 bytes.

Of course, the Kolmogorov complexity of U is quite low; the sequence
fails miserably as a random sequence in the sense of Martin-Löf.



Golomb’s Postulates 12

Here are some classical, simple randomness criteria due to Golomb,
initially used in the study of shift-register sequences.

R1: Equidistribution
The limiting density of 1’s should be 1/2.

R2: Blocks
The limiting density of every block of length k should be 2−k.



Statistical Tests 13

PearsonChiSquareTest[ U, DiscreteUniformDistribution[{0, 1}] ]

==> 0.931466

This uses the first 106 bits of U .



EM and Density 14

Distribution of 0’s and 1’s in the first i · 108 bits, for i = 1, . . . , 10.

i · 108 #0 ∆
1 49996379 3621
2 99993568 6432
3 149998751 1249
4 199995036 4964
5 249995563 4437
6 299992953 7047
7 349998485 1515
8 400003768 3768
9 449989561 10439
10 499988410 11590



Blocks 15

Here are the counts for all words of length 4 among the first 220 bits.

0000 0001 0010 0011 0100 0101 0110 0111
96 58 24 12 41 28 50 15

1000 1001 1010 1011 1100 1101 1110 1111
58 46 10 54 29 36 15 21

Difference to 216 = 65536.



Census Length 10 16
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All Together Now 17
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Words of lengths k = 9, 10, 11 (green, blue, red).



Extremal Words at 2 18

This behavior is rather surprising.

Suppose one wants to construct a sequence W ∈ Σω that maximizes the
number of subwords of all lengths in its prefixes.

For |Σ| ≥ 3 one can construct an infinite de Bruijn word.

For |Σ| = 2 there is no such word, though one can produce a limit
of de Bruijn words at every other level.

The analogous problem for subsequences is easy (Flaxman, Harrow,
Sorkin 2004).
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All Finite Words 20

It looks like every finite word appears somewhere in U .

Definition
An infinite sequence is disjunctive if it contains all finite words as factors.

Ehrenfeucht-Mycielsky showed in 1992 that the sequence is disjunctive,
using a combinatorial argument.



Terminology 21

Recall the construction of un+1 from Un:

. . . a v b . . . a v
∣∣ b

Definition
v is said to match at time n, v = µ(n),

|v| is the match length λ(n) at time n,

the match position π(n) at time n is the location (position of the
last bit) of the matching word v in Un−1.



Single Matches 22

µ : N→ 2? is almost injective: a word v can can match at most once,
except for inititial segments v = Uk; they can match twice.

. . . avb . . . av
∣∣ b

v . . . avb . . . av
∣∣ b

So, exactly one word of each length k ≥ 1 matches at most twice, all
others match at most once.



Match Lengths 23

It follows from the definition that

λ(n+ 1) ≤ λ(n) + 1

but it is perfectly conceivable that λ(n+ 1) is much smaller than λ(n).
Since there are infinitely many distinct matches, match lengths must be
increasing in the sense that

lim inf
n

λ(n) =∞.

Surprisingly, match lengths seem to increase very steadily.



Near Monotonicity 24
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Blowup 25

12

13

The region near 213.



No Drop 26
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Condense constant runs of λ; red dots indicate a new maximum.



Match Lengths 27

Note that the value of λ never seems to drop by more than 1.

Theorem (No Drop)
For all n:

λ(n)− 1 ≤ λ(n+ 1) ≤ λ(n) + 1.

Proof is very tedious, one needs to worry about a prefixes of a matching
word.



Increasing Maxima 28

Definition
The maximum match length and the critical time for k are

Λ(n) = max
(
λ(m) | m ≤ n

)
τk = min

(
n | Λ(n) = k

)

With a little bit of imagination one can see logarithmic growth for Λ.

Understanding the τk is crucial for the analysis of the EM sequence.



De Bruijn Graph of Order 3 29

001 011

000 010 101 111

100 110

Any infinite binary word traces a path in B3.



De Bruijn Graph of Order 3 30

001 011

000 010 101 111

100 110

The first few edges of the path traced by U in B3.



Aside: Line Graphs 31

Recall that Bk+1 is the line graph of Bk.

Hence a vertex-simple cycle in Bk+1 gives rise to a cycle in Bk, but not
necessarily a vertex-simple one.

The thing may fold back onto itself, but it will remain edge-simple.



Zig-Zags 32

A zig-zag is an alternating path of length 4

v1 → v2 ← v3 → v4 ← v1

ax xb

xb ax

Binary de Bruijn graphs are the edge-disjoint union of zig-zags.



Zig-Zag Decomposition 33

001 011

000 010 101 111

100 110



No Merge 34

The first two encounters of U with a zig-zag cannot look like this:

ax xb

xb ax

Blue: first hit, red: second hit.



The Second Coming 35

Consider the path traced by U in the de Bruijn graph Bk of order k.

Proposition
This path begins with a vertex-simple cycle returning to Uk.
Thus, Uk is the first word of length k that matches.

In other words, τk is the time when U has traced a first vertex-simple
cycle, the principal cycle, in the de Bruijn graph Bk.



Recurrence 36

Corollary
Every finite word in U must appear at least twice (and, therefore,
infinitely often).

Proof.
If w appears at all it must appear in some prefix Uk.

2



Disjunctiveness 37

Lemma
The Ehrenfeucht-Mycielsky sequence is disjunctive.

Proof.
Consider all nodes in Bk that are hit by U .
They must all be hit at least twice, so everybody has out-degree 2.
But the only subgraph with this property is Bk itself. 2

Unfortunately, this proof does not give any reasonable bound on when all
words of length k must already have appeared in U .
It seems that n ≈ 2k+2 suffices, but that is an open conjecture.



The Internal Clock 38

The inner life of U seems to unfold like so:

k Prefix u = Uk.
Start tracing a simple cycle C0 in Bk.

τk u is first match of length k.
Start tracing secondary cycle C1 in Bk.

τk+1 All zig-zags in Bk touched, all degree 4 cycles in the resid-
ual are bordered by degree 2 points.

τk+2 No residual points in Bk left, edges may remain.



Matches 39

As a consequence of disjunctiveness we know that there are exactly
2k + 1 matches of length k:

Each word of length k other than Uk appears exactly once as match.

Uk appears exactly twice as match.



EM Staircase (Match Positions) 40
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Fine Structure 41
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Prefixes 43

The language {Un | n ≥ 0 } of all prefixes of U fails to be regular. It
follows from the “Gap Theorem” by Calude and Yu (1995) that the prefix
language cannot be context-free (it is trivially context-sensitive).

If one accounts for space the right way, we have:

Prefixes of U can be recognized in logarithmic space and quadratic
time using Knuth-Morris-Pratt.

A linear space lookup algorithm can generate one bit of the se-
quence in amortized constant time, assuming near-monotonicity.



Computing a Billion Bits of U 44

From the No-Drop lemma we know that if the previous match length was
k one of the following three suffixes must work at the next step:

v = un−kun−k+1un−k+2 . . . un−1un

v = un−k+1un−k+2 . . . un−1un

v = un−k+2 . . . un−1un

The obvious brute-force implementation would require three searches of
length O(n).



Simultaneous Search 45

One can modify the classical Knuth-Morris-Pratt string search algorithm
to perform all three searches at once, in O(n) steps.

The KMP machine has states Q = {0, 1, . . . , k, k + 1} and we feed Un−1
to it, in reverse order.
State p means: we have seen a match of length p.
Record the first time p = k − 1 and p = k, stop when p = k + 1.

Hence we can compute the next bit in O(n+ k) steps.



Position Tables 46

All we really need to know to get bit un+1 is the last occurrence of the
three candidates

un−k . . . un un−k+1 . . . un un−k+2 . . . un.

So we could keep a hash table for all words up to length k + 1 that have
already been encountered.

In fact, hashing is not necessary: the table will grow to size 2k and fill
up, so we might as well use a simple array.



Maintaining the Lookup Table 47

Crucial: if all matches so far have length at most k we only need Pl for
l ≤ k.

In fact, we can even delete P1, P2 etc. once all words have matched.

At time τk+1 the max match length increases.

At that point, allocate and initialize Pk+1.

This costs Θ(2k+1) steps, but the cost can be amortized over the
following steps until the max match-length increases again.
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Density 49

For any word w ∈ 2k we write

∆(w) = (# 1 in w)/k

for the density of w, and ∆(W ) for the average density of a set of words
W ⊆ 2k.

For an infinite word V ∈ 2ω let

∆(V ) = lim
n→∞

∆(Vn)

We suspect strongly that ∆(U) = 1/2.
Of course, the limit might fail to exist or might be different from 1/2.



Density Basics 50

Clearly ∆(2k) = 1/2.

Write 2k,p = {x ∈ 2k | #1 in x = p }.

How about words of density up to α:

lim∆(2k,≤αk) = ???

As a function of α this is non-decreasing, 0 at 0 and 1/2 at 1.



A Surprise 51
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The Proof 52

∆(2k,≤p) =
∑
i≤p
(
k
i

)
i/k(

k
≤p
) = 1/2−

(
4
(
k−1
<p

)(
k−1
p

) + 2
)−1

Let 0 ≤ ε < 1/2 and p = bεk + cc where c is constant. Then

lim
k→∞

(
k
<p

)(
k
p

) = ε

(1− 2ε) .



Near Monotonicity 53

There is a connection between the density of U and match lengths.

Conjecture (2-Monotonicity)

m ≥ n implies λ(m) ≥ λ(n)− 2.

This is true for the first billion bits, but the conjecture is still open.



Monotonicity Implies Balance 54

We have for 0 ≤ α ≤ 1/2: limk→∞∆(2k,≤αk) = α.

Applying this to τk+c ≤ t < τk+c+1 and the set of k-factors of Ut we get
the following:

Theorem
c-monotonicity of λ for any constant c implies balance.

Proof



Bounding Density 55

Alas, the best result known so far is

Theorem
The density of 1’s in U is at least 0.11.

The proof combines a counting method by McConnell 2000 with a
detailed analysis of the behavior of U in de Bruijn graphs.
Here is an outline.



Another Cycle 56

Recall the principal cycle in Bk. Upon completion of the principal cycle,
U traces another cycle, also anchored at Uk.

Up to time t = τk+1 − 1 we have two cycles C0 and C1 in Bk, both
anchored at u = Uk:

C0︷ ︸︸ ︷
u a . . . b u a . . . b u︸ ︷︷ ︸

C1

a . . .

C0 is a vertex-simple cycle, and the two cycles are edge-disjoint.
Doubly hit vertices correspond to matches of length k up to time t.



Principal Cycle in B3 57

001 011

000 010 101 111

100 110

Note how one can read off the secondary cycle (up to degree 4 points).



Both Cycles in B3 58

001 011

000 010 101 111

100 110

Note how the match length drops at 000 and 111.



Residual Graph 59

Define the residual graph to be

Bk(t) = Bk − C0 − C1

Bk(t) consists only of degree 2 and, possibly, degree 4 points.

The strongly connected components of Bk(t) are all Eulerian.



Irregular Words 60

By disjunctiveness, U must later touches the components in the residual
graph. We have the following situation:

. . . a v b . . . a v b . . .

The first two occurrences of v are preceded by the same bit, v is
irregular.

Taxonomy

initial
regular
irregular



Counting Irregulars 61

The number of irregular words seems to be small.

k 1 2 3 4 5 6 7 8 9 10 11 12
Ik 1 2 2 2 4 4 6 6 6 12 6 16

There are 12 irregular words of length 10:

0000000000, 0010010010, 0010110101, 0011000000,
0011001100, 0011100000, 0111100001, 1001110010,

1010110000, 1110100111, 1111000111, 1111111111.



Who Cares? 62

λ can decrease only when an irregular word is encountered for the second
time, and will then correspondingly increase when the same word is
encountered for the third time, at which point it appears as a match.

The easy case: the SCC in the residual graph is a cycle (blue).

• v • •

• um−1 u0 u1 u2 •

• w • •



The Hard Case: Degree 4 63

The ui are degree 4 in the residual graph. Neighbors are degree 2.

w v • •

• um−1 u0 u1 u2 •

• • • •
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Density 65

Conjecture
The limiting density of 1’s in U is 1/2.

Conjecture
The limiting density of any word of length k in U is 2−k.

Conjecture
The last conjecture holds even if we start with an arbitrary finite word as
seed.



Entropy 66

For two words z, x ∈ 2? define

Fz(x) = number of occurrences of z in x

Hk(x) =
∑
|z|=k

−Fz(x) log2(Fz(x))

Conjecture

lim sup
m

Hk(Um) = 1

This can be handled for the Linus sequence: minimize length of last
double block . . . vv, has 0 entropy (Balister, Kalikow, Sarkar 2008).



Matches 67

Conjecture
All words of length k match by time 2k+2.

Conjecture
The match length function is 2-monotonic.



68

Let me know if you want to work on this.



c-Monotonicity Implies Balance: Proof 69

Assume otherwise; say for infinitely many t we have ∆(Ut) < α0 < 1/2.

Consider the prinicipal round for k + c and pick some time t in the
interval [τk+c, τk+c+1).

Let W be the multiset of all k-factors of Ut, so ∆(W ) < α0.

We must have 2k ⊆W : all matches after t have length at least k by our
assumption.



Proof, ctnd. 70

All words of length k + c+ 1 on Ut are unique, so there is a constant
bounding the multiplicities of x ∈ 2k in W .

Split W into 2k and a multiset: W = 2k + V where
∀x ∈ 2k (V (x) ≤ d).

Let δ = ∆(V ) and m = |V |, so that

α0 > ∆(W ) = 2k · 1/2 +m · δ
2k +m

Hence m = Ω(2k).



Proof, ctnd. 71

On the other hand, for some p we have

α0 ≥ ∆(V ) ≥ ∆(d · 2k,≤p) = ∆(2k,≤p).

If for some x ∈ 2k, q/k = ∆(x) < ∆(2k + d · 2k,<q) then 2k + d · 2k,≤q
minimizes the density of all multisets with multiplicities bounded by d
that include x.

From a previous observation, p ≤ α0k.



Proof, ctnd. 72

Using Sterling approximation we see that the cardinality m is bounded by

d

(
k

≤ α0k

)
≤ d+ dα0k

(
k

α0k

)
≈ d+ d

√
α0k

2π(1− α0) < 2kH(α0)

where H(x) = −x lg x− (1− x) lg(1− x) is the binary entropy function.

H is symmetric about x = 1/2 and concave, with maximum H(1/2) = 1.

Hence 2H(α0) < 2, contradicting our previous lower bound. 2
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