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Sage Advice

Do not, more generally, publish your failures: | tried to prove
so-and-so; | couldn't; here it is—see?!

Paul Halmos, Four Panel Talks on Publishing, 1975



The Ehrenfeucht-Mycielsky Sequence

UNSOLVED PROBLEMS
Edited by Richard Guy

In this department the MONTHLY presents easily stated unsolved problems dealing

with notions ordinarily encountered in undergraduate mathematics. Each problem should
be accompanied by relei:ant references (if any are known fo the author) and by a brief
description of known partial or related results. Typescripts should be sent fo Richard
Guy, Department of Mathematics and Statistics, The University of Calgary, Alberta.
Canada T2N IN4.

A Pseudorandom Sequence—How
Random Is It?

Andrzej Ehrenfeucht and Jan Mycielski

Let &, £,,... be a sequence of 0’s and 1’s. Suppose that we know &,..., £, and
are asked to predict ¢, ,. A very simple way, which we will call the method M, is

the following. Find the longest final segment ¢, &;,,-..,€, which occurs earlier
in £,...,e, So n —j is maximal such that (e; &;y,...,8,) =
(&;_irEjsis1r-+-r6,-,) for some i > 0. Then find the smallest i (the most recent

occurrence) for which this is so and let &,_;,, be your guess for &, . ;. (Note that if



Just say no ...

Ehrenfeucht and Mycielsky construct an infinite binary sequence
U=ujusuz...up...

based on the following simple idea:

When a situation arises that is similar to a previous one, do
exactly the opposite of what you did last time.



Formally ...

Write
U, =uius ... Up_1Un
for the prefix of U of length n.
Definition
Q@ U = 0
@ Find the longest suffix v of U,, that appears already in U, _1.
Let b be the bit following the last occurrence of v in U, 1.

Set Up+1 = b.

o If no such suffix exists set w11 = Uy,.



Less Formally

Andsoon ...

010...

avb...av

010
0100
01001
010011
0100110
01001101



More Bits

The first 22 bits, in row-major order.



Random Bits

The first 212 bits from a good pseudo-random source.



64K Bits




EM Random Walk
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How Random Is It? 11

As an experiment one can try to compress the first million bits (actually,
217 = 131072 bytes).

o Lemple-Ziv-Welch gzip: 159,410 bytes.

@ Burrows-Wheeler bzip2: 165,362 bytes.

Of course, the Kolmogorov complexity of U is quite low; the sequence
fails miserably as a random sequence in the sense of Martin-Lof.



Golomb’s Postulates 12

Here are some classical, simple randomness criteria due to Golomb,
initially used in the study of shift-register sequences.

R1: Equidistribution
The limiting density of 1's should be 1/2.

R2: Blocks
The limiting density of every block of length &k should be 27%.



Statistical Tests 13

PearsonChiSquareTest[ U, DiscreteUniformDistribution[{0, 1}] ]

==> 0.931466

This uses the first 10% bits of U.



EM and Density

Distribution of 0's and 1's in the first ¢ - 108 bits, for i = 1,. .., 10.

i 108 40 A
1 49996379 3621
2 99993568 6432
3 149998751 1249
4 199995036 4964
5 249905563 4437
6 299992953 7047
7 349998485 1515
8 400003768 3768
9 449989561 10439
10 499988410 11590



Blocks

Here are the counts for all words of length 4 among the first 22° bits.

0000 0001 0010 0011 0100 0101 0110 O111
96 58 24 12 41 28 50 15

1000 1001 1010 1011 1100 1101 1110 1111
58 46 10 o4 29 36 15 21

Difference to 2'6 = 65536.



Census
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All Together Now

2048 -

1024 -

512

I
512 1024 2048

Words of lengths & = 9,10, 11 (green, blue, red).

I
4096
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Extremal Words at 2 18

This behavior is rather surprising.

Suppose one wants to construct a sequence W € X that maximizes the
number of subwords of all lengths in its prefixes.

e For |X| > 3 one can construct an infinite de Bruijn word.

@ For |X| = 2 there is no such word, though one can produce a limit
of de Bruijn words at every other level.

The analogous problem for subsequences is easy (Flaxman, Harrow,
Sorkin 2004).



Disjunctiveness



All Finite Words 20

It looks like every finite word appears somewhere in U.
Definition

An infinite sequence is disjunctive if it contains all finite words as factors.

Ehrenfeucht-Mycielsky showed in 1992 that the sequence is disjunctive,
using a combinatorial argument.



Terminology

Recall the construction of u, 1 from U,:

..avb...av ‘I;

Definition
@ v is said to match at time n, v = u(n),
@ |v| is the match length A(n) at time n,

@ the match position 7(n) at time n is the location (position of the
last bit) of the matching word v in U,,_1.

21



Single Matches 22

w: N — 2% is almost injective: a word v can can match at most once,
except for inititial segments v = Uy; they can match twice.

..avb...&v’g

v...avb...6v|5

So, exactly one word of each length & > 1 matches at most twice, all
others match at most once.



Match Lengths 23

It follows from the definition that
An+1)<A(n)+1

but it is perfectly conceivable that A(n + 1) is much smaller than A(n).

Since there are infinitely many distinct matches, match lengths must be
increasing in the sense that

lim inf A(n) = oco.

Surprisingly, match lengths seem to increase very steadily.



Near Monotonicity
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Blowup

The region near 213,
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No Drop
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Condense constant runs of \; red dots indicate a new maximum.
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Match Lengths

Note that the value of A never seems to drop by more than 1.

Theorem (No Drop)

For all n:
A(n) =1 < An+1) < A(n)+ 1.

Proof is very tedious, one needs to worry about a prefixes of a matching
word.

27



Increasing Maxima

Definition
The maximum match length and the critical time for k are

A(n) = max(A(m) [ m <n)

7 =min(n | A(n) = k)

With a little bit of imagination one can see logarithmic growth for A.

Understanding the 7 is crucial for the analysis of the EM sequence.

28



De Bruijn Graph of Order 3
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Any infinite binary word traces a path in Bs.
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De Bruijn Graph of Order 3
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The first few edges of the path traced by U in Bs.
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Aside: Line Graphs

Recall that By is the line graph of By.

Hence a vertex-simple cycle in By gives rise to a cycle in By, but not
necessarily a vertex-simple one.

The thing may fold back onto itself, but it will remain edge-simple.

31



Zig-Zags

A zig-zag is an alternating path of length 4

V1 —> Vg < V3 — Vg < U1

Binary de Bruijn graphs are the edge-disjoint union of zig-zags.

32



Zig-Zag Decomposition

T
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No Merge 34

The first two encounters of U with a zig-zag cannot look like this:

A

() ——@—o0

Blue: first hit, red: second hit.



The Second Coming 35

Consider the path traced by U in the de Bruijn graph By of order k.

Proposition

This path begins with a vertex-simple cycle returning to Uy.
Thus, Uy, is the first word of length k that matches.

In other words, 7y, is the time when U has traced a first vertex-simple
cycle, the principal cycle, in the de Bruijn graph Bj.



Recurrence

Corollary

Every finite word in U must appear at least twice (and, therefore,
infinitely often).

Proof.

If w appears at all it must appear in some prefix Uy.

36



Disjunctiveness 37

Lemma
The Ehrenfeucht-Mycielsky sequence is disjunctive.

Proof.
Consider all nodes in By, that are hit by U.
They must all be hit at least twice, so everybody has out-degree 2.

But the only subgraph with this property is By, itself. O

Unfortunately, this proof does not give any reasonable bound on when all
words of length k& must already have appeared in U.

It seems that n ~ 282 suffices, but that is an open conjecture.



The Internal Clock 38

The inner life of U seems to unfold like so:
k Prefix u = Uy.
Start tracing a simple cycle Cy in By.

7w is first match of length k.
Start tracing secondary cycle C; in By,.

Tr11 All zig-zags in By, touched, all degree 4 cycles in the resid-
ual are bordered by degree 2 points.

Tr+2 No residual points in By left, edges may remain.



Matches 39

As a consequence of disjunctiveness we know that there are exactly
2% 4+ 1 matches of length k:

@ Each word of length k other than U} appears exactly once as match.

o U} appears exactly twice as match.



EM Staircase (Match Positions)
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Fine Structure

16384

8192



Complexity of U



Prefixes 43

The language {U,, | n > 0} of all prefixes of U fails to be regular. It
follows from the “Gap Theorem” by Calude and Yu (1995) that the prefix
language cannot be context-free (it is trivially context-sensitive).

If one accounts for space the right way, we have:

o Prefixes of U can be recognized in logarithmic space and quadratic
time using Knuth-Morris-Pratt.

@ A linear space lookup algorithm can generate one bit of the se-
quence in amortized constant time, assuming near-monotonicity.



Computing a Billion Bits of U 44

From the No-Drop lemma we know that if the previous match length was
k one of the following three suffixes must work at the next step:

V=Un—kUn—k+1Un—Kk4+2 - - Unp—1Un
v = Un—k+1Un—k+2 - - - Un—1Un

v = Up—k4+2 - - Up—1Up

The obvious brute-force implementation would require three searches of
length O(n).



Simultaneous Search 45

One can modify the classical Knuth-Morris-Pratt string search algorithm
to perform all three searches at once, in O(n) steps.

The KMP machine has states Q = {0, 1,...,k, k4 1} and we feed U,,_;
to it, in reverse order.

State p means: we have seen a match of length p.

Record the first time p =k — 1 and p = k, stop when p=Fk + 1.

Hence we can compute the next bit in O(n + k) steps.



Position Tables 46

All we really need to know to get bit u, 11 is the last occurrence of the
three candidates

Up—k .. Up Up—k+1---Un Up—k+2 - Up.

So we could keep a hash table for all words up to length k& + 1 that have
already been encountered.

In fact, hashing is not necessary: the table will grow to size 2* and fill
up, so we might as well use a simple array.



Maintaining the Lookup Table

Crucial: if all matches so far have length at most k we only need P, for
I <k.

In fact, we can even delete P;, P etc. once all words have matched.

At time 71 the max match length increases.

At that point, allocate and initialize Pj1.

This costs ©(2F+1) steps, but the cost can be amortized over the
following steps until the max match-length increases again.

47



Density



Density 49

For any word w € 2* we write

Aw) = (#1inw)/k

for the density of w, and A(W) for the average density of a set of words
W C 2%,

For an infinite word V' € 2% let

A(V) = lim A(V,)

n—oo

We suspect strongly that A(U) =1/2.
Of course, the limit might fail to exist or might be different from 1/2.



Density Basics

Clearly A(2F) = 1/2.

Write 28P = {z € 2F | #1 inz=p}.
How about words of density up to a:

lim A(2F=ek) = 777

As a function of « this is non-decreasing, 0 at 0 and 1/2 at 1.

50



A Surprise

0.5

0.4

02

0.1
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The Proof 52

o, (M)i/k Ml =
A2R=) = Zl(p,fl)) Ly (4 Ek_ﬁ; +2>

Let 0 <e < 1/2 and p = |ek + ¢| where ¢ is constant. Then

lim (<kp) = c
k—o0 (2) (1 — 28) '




Near Monotonicity 53

There is a connection between the density of U and match lengths.

Conjecture (2-Monotonicity)

m >n implies A(m) > A(n) — 2.

This is true for the first billion bits, but the conjecture is still open.



Monotonicity Implies Balance 54

We have for 0 < o < 1/2: limy,_, oo A(2F59) = a.

Applying this to 7,1, <t < Tk1c+1 and the set of k-factors of U; we get
the following:

Theorem

c-monotonicity of A for any constant ¢ implies balance.



Bounding Density

Alas, the best result known so far is

Theorem
The density of 1's in U is at least 0.11.

The proof combines a counting method by McConnell 2000 with a
detailed analysis of the behavior of U in de Bruijn graphs.

Here is an outline.
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Another Cycle

Recall the principal cycle in Bi. Upon completion of the principal cycle,
U traces another cycle, also anchored at Uy.

Up to time t = 7,11 — 1 we have two cycles Cy and Cy in By, both
anchored at u = Uy:

Cy is a vertex-simple cycle, and the two cycles are edge-disjoint.

Doubly hit vertices correspond to matches of length k up to time ¢.

56



Principal Cycle in B;

P

Note how one can read off the secondary cycle (up to degree 4 points).
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Both Cycles in 53

e

(& Oo_® @)

Note how the match length drops at 000 and 111.
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Residual Graph

Define the residual graph to be

Bi(t) = B, — Co — C4

B (t) consists only of degree 2 and, possibly, degree 4 points.

The strongly connected components of By (t) are all Eulerian.

59



Irregular Words

By disjunctiveness, U must later touches the components in the residual
graph. We have the following situation:

..avb...avb...

The first two occurrences of v are preceded by the same bit, v is
irregular.

Taxonomy
e initial
@ regular

@ irregular

60



Counting Irregulars

The number of irregular words seems to be small.

k|1
I | 1

2 3 45 6 7 89
2 2 2 4 46 6 6

There are 12 irregular words of length 10:

0000000000, 0010010010, 0010110101, 0011000000,
0011001100, 0011100000,0111100001, 1001110010,

1010110000,1110100111,1111000111,1111111111.
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Who Cares? 62

A can decrease only when an irregular word is encountered for the second
time, and will then correspondingly increase when the same word is
encountered for the third time, at which point it appears as a match.

The easy case: the SCC in the residual graph is a cycle (blue).

. v . .
A . A .
v v
* > Um—1 > Uug > Uy > Ug >
A

S""'



The Hard Case: Degree 4

The u; are degree 4 in the residual graph. Neighbors are degree 2.

W A v o - °
A l A l
i » Uy —1 > ug » U7 > Uo

o4
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Open Problems



Density

Conjecture

The limiting density of 1's in U is 1/2.

Conjecture

The limiting density of any word of length k in U is 2.

Conjecture

The last conjecture holds even if we start with an arbitrary finite word as
seed.
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Entropy 66

For two words z,x € 2* define

F,(z) = number of occurrences of z in x

Hi(z) = ) —F.(z)logy(F.())

|z|=k
Conjecture
lim sup Hy, (Up,) =1

This can be handled for the Linus sequence: minimize length of last
double block ...wvw, has 0 entropy (Balister, Kalikow, Sarkar 2008).



Matches

Conjecture
All words of length k match by time 2F+2.

Conjecture

The match length function is 2-monotonic.
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Let me know if you want to work on this.
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c-Monotonicity Implies Balance: Proof 69

Assume otherwise; say for infinitely many ¢ we have A(U;) < ap < 1/2.

Consider the prinicipal round for k + ¢ and pick some time ¢ in the
interval [Tgic, Thtcet1)-

Let W be the multiset of all k-factors of Uy, so A(W) < ap.

We must have 2F C W: all matches after ¢ have length at least k by our
assumption.



Proof, ctnd.

All words of length k& + ¢+ 1 on U, are unique, so there is a constant
bounding the multiplicities of = € 2% in W.

Split W into 2F and a multiset: W = 2¥ 4+ V where
Va e 28 (V(z) <d).

Let 6 = A(V) and m = |V, so that

2k 1/24m-6
00> A(w) = ZE

Hence m = 2(2F).
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Proof, ctnd. 71

On the other hand, for some p we have

ag > A(V) > A(d - 25P) = A(2F=P),

If for some = € 2%, q/k = A(z) < A(2F + d - 2K:<9) then 2F 4 4 . 2k:=4
minimizes the density of all multisets with multiplicities bounded by d
that include z.

From a previous observation, p < agk.



Proof, ctnd. 72

Using Sterling approximation we see that the cardinality m is bounded by

k k OZ()]C kH
d < d+ dogk ~d+4dy | —— < 2k (o)
<§ aok‘> S a+ dog (aok> + 27(1 — «ap)

where H(z) = —zlgxz — (1 — z)lg(1 — ) is the binary entropy function.

H is symmetric about = 1/2 and concave, with maximum H(1/2) = 1.

Hence 27 (@) < 2 contradicting our previous lower bound. |
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