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Abstract

Sequences of neural activity representing paths in an environment are expressed in the

rodent hippocampus at three distinct time scales, with different hypothesized roles in hip-

pocampal function. As an animal moves through an environment and passes through a

series of place fields, place cells activate and deactivate in sequence, at the time scale of

the animal’s movement (i.e., the behavioral time scale).

Moreover, at each moment in time, as the animal’s location in the environment overlaps

with the firing fields of many place cells, the active place cells fire in sequence during each

cycle of the 4-12 Hz theta oscillation observed in the hippocampal local field potentials (i.e.,

the theta time scale), such that the neural activity, in general, represents a short path that

begins slightly behind the animal and ends slightly ahead of the animal. These sequences

have been hypothesized to play a role in the encoding and recall of episodes of behavior.

Sequences of neural activity occurring at the third time scale are observed during both

sleep and awake but restful states, when animals are paused and generally inattentive, and

are associated with sharp wave ripple complexes (SWRs) observed in the hippocampal lo-

cal field potentials. During the awake state, these sequences have been shown to begin

near the animal’s location and extend forward (forward replay) or backward (backward re-

play), and have been hypothesized to play a role in memory consolidation, path planning,

and reinforcement learning.

This thesis uses a novel sequence detection method and a novel behavioral spatial

decision task to study the functional significance of theta sequences and SWR sequences.

The premise of the thesis is that by investigating the behavioral content represented by

these sequences, we may further our understanding of how these sequences contribute to

hippocampal function.

The first part of the thesis presents an analysis of SWR sequences or replays, reveal-

ing several novel properties of these sequences. In particular it was found that instead of
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preferentially representing the more recently experienced parts of the maze, as might be

expected for memory consolidation, paths that were not recently experienced were more

likely to be replayed. Additionally, paths that were never experienced, including shortcut

paths, were observed. These observations suggest that hippocampal replay may play a

role in constructing and maintaining a "cognitive map" of the environment.

The second part of the thesis investigates the properties of theta sequences. A recent

study found that theta sequences extend further forward at choice points on a maze and

suggested that these sequences may be partly under cognitive control. In this part of the

thesis I present an analysis of theta sequences showing that there is diversity in theta se-

quences, with some sequences extending more forward and others beginning further back-

ward. Furthermore, certain components of the environment are preferentially represented

by theta sequences, suggesting that theta sequences may reflect the cognitive "chunking"

of the animal’s environment.

The third part of the thesis describes a computational model of the hippocampus which

explores how synaptic learning due to neural activity during navigation (i.e., theta sequences)

may enable the hippocampal network to produce forward, backward, and shortcut se-

quences during awake rest states (i.e., SWR sequences).
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1 Introduction

The work described in this thesis was performed with the goal of understanding how the

spiking of a population of neurons in a particular region of the brain may contribute to the

region’s cognitive functions. The link between neural activity and cognition can be made in

two steps. By observing the spiking of a particular neuron with respect to an animal’s be-

havior (e.g., movement in an environment), one can determine if the activity is informative

(predictive) of the behavioral variable (the animal’s location). Methods can then be used

to decode the behavioral content represented by the neural activity. These methods allow

investigators to determine what the brain is representing purely from the neural activity.

And since cognitive functions such as memory and planning involve representing informa-

tion that is distinct from the animal’s immediate sensory/behavioral state (i.e., non-local

information), such techniques allow us to study how these processes are expressed in the

brain.

Spiking neurons are a unique and advantageous window into brain function at multiple

levels. For one, the ability to discern the activity of an individual neuron (thought to be the

fundamental processing unit of the brain) allows for the extraction of information in systems

in which neurons very near to one another in the brain are representing different behavioral

or cognitive information. Without the ability to distinguish individual neuron activity, the in-

formation would be merged and lost in such systems. Furthermore, it has been shown that

behavioral information is sometimes represented at fast time scales that require recording

methods with fine temporal precision in order to resolve. The ability to record neural activity

at fast time scales additionally provides us with a connection between the behavioral infor-

mation represented in spike trains and neural plasticity. Spike timing dependent plasticity

(STDP) has been shown to occur when the pre and post synaptic cells fire within 80 ms of

one another. Recording from populations of neurons at sub-millisecond time scales enables

the study of neural sequences to determine how sequences of behavioral information may
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be stored in the synaptic connections in the brain.

The work described in this thesis studies the behavioral information represented by a

population of spiking neurons in the CA1 region of the rodent hippocampus during the

performance of a spatial navigation decision task. The thesis focuses on the hippocampus

because it is known to play an important role in episodic memory and spatial navigation, and

because it has recently been implicated in higher cognitive functions such as self-projection

and imagination. The rodent hippocampus is an extremely informative system because it is

relatively easy to access with electrodes, and because the firing of hippocampal pyramidal

cells has a clear behavioral correlate: the animal’s location in an environment. At any

given time as an animal moves through an environment, the population of pyramidal cells

in the hippocampus is representing the animal’s physical location. The strong correlation

between neural activity and the animal’s physical location on the maze enables accurate

decoding of the animal’s location from subsequent neural activity alone. It also allows us

to determine (via decoding) if and when non-local information (e.g., a different location or

path on the maze) is being represented, as has been found during pausing at a choice

point, and during sleep and awake rest states. These studies have suggested that the non-

local representations play a role in memory consolidation, decision making, reinforcement

learning, and planning. In this thesis I explore the content of non-local representations

on a novel task that has several advantages over previous studies, allowing me to test

some of the suggested functions of non-local representations. Additionally, I construct a

computational model to explore how the known synaptic learning rules in the hippocampus

may enable the expression of some of the non-local representations that are observed.

The thesis is organized into eight additional chapters. Chapter 2 provides an overview

of hippocampal function and physiology, while Chapter 3 focuses on experimental work

on neural sequences observed in the hippocampus. Chapter 4 surveys different decoding

methods for characterizing sequences of neural activity, and then describes the decoding

method developed here and the advantages it imparts given data constraints. Chapter 5
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describes the general methods used in the experimental studies in this thesis. Chapter 6

and Chapter 7 present original experimental work on neural sequences recorded from the

hippocampus as animals are performing a novel behavioral task. Chapter 6 presents an

analysis of neural sequences as animals are awake, but paused and resting at feeder lo-

cations on the maze. Chapter 7 presents an analysis of neural sequences as animals are

actively navigating the maze to reach the feeder locations. Chapter 8 describes a compu-

tational model that explores how the backward and shortcut sequences presented in Chap-

ter 6 may be produced, taking into account the anatomical and physiological constraints of

the hippocampal network. Finally, Chapter 9 summarizes the advances made in this thesis

and outlines important future work.
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2 Hippocampal function and physiology

Hippocampal roles in spatial navigation and episodic memor y

The hippocampus has been long known to play an important role in spatial navigation

(O’Keefe and Nadel, 1978; Morris et al., 1982; Redish, 1999) and encoding the memory

of autobiographical events (i.e., episodic memory, Scoville and Milner, 1957; Squire, 1992;

Eichenbaum et al., 1999; Tulving, 2002). Some of the first evidence of hippocampal in-

volvement in episodic memory came from studies of patients who had lesions of the hip-

pocampus and surrounding neural structures. Studies of the famous patient HM, who had

a bilateral hippocampal resection due to intractable epilepsy, revealed a specific deficit in

declarative memory (i.e., the acquisition of new fact and event memory). HM’s ability to

form new memories of autobiographical experiences was lost (anterograde amnesia, Scov-

ille and Milner, 1957). The memory of recent experiences was also impaired (retrograde

amnesia), but past experiences and childhood memories were preserved, pointing to a role

for the hippocampus in encoding memories, but not in the long term storage of episodic

memory (Milner et al., 1968). Numerous studies performed on HM and other patients over

a half century have revealed that hippocampal lesions specifically impair episodic memory

and that other types of memories, including working memory and procedural memory (e.g.,

delay conditioning and habit learning) are left intact (Squire and Zola-Morgan, 1991).

Similarly, lesion studies in animals have elucidated the role of the hippocampus in spa-

tial navigation. Morris et al. (1982), using a novel experimental paradigm (the now famous

Morris water maze), demonstrated that animals with hippocampal lesions were impaired in

their ability to learn a spatial navigation task. The water maze task involved a cylindrical

tank of opaque water, with a hidden platform located at a fixed location in the tank, just be-

neath the water. Rodents were dropped in the tank, and finding the cold water unpleasant,

searched for the hidden platform. Cues were present in the room such that normal rats

quickly learned the location of the hidden platform and were able to navigate direct routes
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to the platform even when initially placed at a novel location in the tank. Hippocampus le-

sioned animals had no trouble taking direct routes to a visible platform in the tank, but could

not learn to take direct routes to a hidden platform, thus demonstrating the impairment in

spatial memory. This experiment supported the idea that the hippocampus is involved in

the formation and use of cognitive maps (i.e., a mental representation of the environment)

to flexibly navigate or take novel paths through space (Tolman, 1948; O’Keefe and Nadel,

1978). Several other experiments have supported a role for the hippocampus in enabling

flexible navigation (Tolman et al., 1946; Nadel et al., 1975; Packard and McGaugh, 1996).

An important similarity between episodic memory and spatial navigation is the need to

encode and recall sequenced information. In the case of episodic memory, the sequential

information is a series of events in time. For spatial navigation, the sequential informa-

tion is a series of locations in space. An elegant study (Fortin et al., 2002) showed that

hippocampal lesions in rats specifically disrupted their ability to perform a task requiring a

representation of sequence. Normal and hippocampus lesioned rats were presented with

a sequence of odors and were asked to perform a recognition task (choose the odor not

presented in the sequence) or a sequential order task (choose the odor presented earlier in

the sequence). Normal rats were able to learn both tasks. Hippocampus lesioned rats could

perform the recognition task, but not the sequential order task, demonstrating a specific im-

pairment in sequence memory. Thus, several lines of evidence suggest that a basic function

of the hippocampus is to process sequential information. As will be discussed, observations

at the neurophysiological level (i.e., place cell activity in the rodent hippocampus) provide

evidence that sequential information is represented in the hippocampus and in a way that

could allow for sequence learning at a synaptic level.

Representation of the environment by hippocampal place cel ls

The discovery of cells with spatially localized firing fields (place cells) in the rodent hip-

pocampus (O’Keefe and Dostrovsky, 1971), has provided researchers with a way to link
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neural activity in the hippocampus with an animal’s behavior. This has been a key to un-

derstanding how the hippocampus represents physical environments and an animal’s ex-

perience in that environment. Forty years of research has revealed numerous properties of

place cells, some of which will be reviewed here.

Place cells are pyramidal cells located in the CA1 and CA3 subregions of the hippocam-

pal formation and are defined by their tendency to fire when the animal occupies a particular

region of the environment: the cell’s place field (Figure 1 ). Most place cells have a single

place field, but individual place cells can have multiple distinct firing fields in an environ-

ment. Place fields are uniformly distributed over the entire environment (in general there

is not a propensity for certain parts of the environment to have a higher density of place

fields, O’Keefe, 1976; Olton et al., 1978; McNaughton et al., 1983) and each place field

has a roughly Gaussian shape in terms of its firing rate over space. A typical rate map is

shown in Figure 1 . Due to these properties, an animal’s location in an environment can be

accurately decoded from the activity of a population of place cells during a small window of

time (a few hundred milliseconds) using statistical techniques (Zhang et al., 1998).

Not every pyramidal cell in CA1 has a place field in every environment. Guzowski et al.

(1999) used the immediate early gene Arc to label active CA1 neurons as animals explored

an environment and determined that approximately 45% of neurons had place fields in

a given environment, which is consistent with cellular recording studies (Wilson and Mc-

Naughton, 1993; Gothard et al., 1996). This demonstrates the prominence of place cells in

the rodent hippocampus and the large proportion of cells involved in representing a given

environment.

In the hippocampus, there is no topographical mapping between the anatomical location

of place cells in the brain structure and the location of their place fields in the physical

environment (Redish et al., 2001; Dombeck et al., 2010). This is an important feature of the

hippocampus, as it has been shown that place cells "remap" between environments; when

an animal is moved from environment A to environment B, cells with place fields at particular
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Figure 1: The rate maps of 80 cells, simultaneously recorded as an animal foraged in a square box environ-
ment. Each panel is the average firing rate of a single neuron as a function of location in the square box (red
is high, blue is low). Some of the cells had spatially localized firing fields (place cells), some were silent in
the environment, and others fired at a high rate throughout the environment (interneurons). (Reprinted from
Wilson and McNaughton, 1993, with permission from author and publisher.)
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locations in environment A have new, independent place field locations in environment B

(Wilson and McNaughton, 1993). When an animal is returned to environment A, place cells

remap again to take on their original place field locations (Wilson and McNaughton, 1993).

Thus, place cells in the hippocampus form a unique and stable representation of each new

environment that an animal encounters.

The spatially selective firing fields of place cells are not derived from a single sensory

modality, consistent with the multimodal sensory input that the hippocampus receives from

the entorhinal cortex. Place fields persist in darkness (O’Keefe, 1976; Quirk et al., 1990;

Markus et al., 1994) and have normal fields even after olfactory, visual, or both visual and

auditory inputs are eliminated (Save et al., 1998; Hill and Best, 1981). However, when vision

is not impaired, place fields are influenced by local and distal visual cues (O’Keefe, 1976;

Olton et al., 1978; Kubie and Ranck, 1983; Muller and Kubie, 1987; Rossier et al., 2000).

Zinyuk et al. (2000) used an experimental paradigm to independently alter local and distal

cues, showing that the degree to which place fields were influenced by local versus distal

cue perturbations depended on the degree to which the cues were used for the navigation

task. When the task required the animal to attend to the distal cues, perturbation of the dis-

tal cues altered place field locations more than the perturbation of local cues. These studies

indicate that place cells in the hippocampus reflect a high-level multimodal representation

of the environment. Such a representation could be useful for encoding behavioral expe-

riences in an environment, an important component of both episodic memory and spatial

navigation.

Functional implications of theta phase precession

The experiments described above indicate the way in which place cells use a rate code to

represent the environment. In a landmark study, O’Keefe and Recce (1993) provided the

first evidence that hippocampal place cells may also represent information using a temporal

code. The authors observed that there was a special relationship between the firing of
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place cells and the 4-12 Hz theta rhythm observed in the hippocampal local field potentials

(Vanderwolf, 1969; Buzsáki et al., 1983). As an animal entered a cell’s place field, the cell

initially fired late in the theta cycle and as the animal passed through the field, the cell

fired earlier and earlier in the cycle (Figure 2 ). This phenomenon was termed theta phase

precession. It has been shown that information about the phase of spikes can be used

to improve the accuracy of position decoding (Jensen and Lisman, 2000) and provides

information about an animal’s direction of motion (Huxter et al., 2008).

The discovery of phase precession has spawned a wealth of research concerned with

the mechanism and function of the phenomenon. Many models have been developed to

attempt to explain the mechanism of phase precession. In general, one class of models

proposes that phase precession is largely an individual cell phenomenon, with each cell

precessing independently of other cells. Another class of models proposes that the phe-

nomenon arises due to network properties and synaptic communication between cells with

overlapping place fields. The proposed mechanisms have been nicely reviewed by Maurer

and McNaughton (2007). Although phase precession describes the relationship between

the firing of a single place cell with the theta oscillation, the phenomenon implies a spike tim-

ing relationship between cells with overlapping place fields (Skaggs et al., 1996; Tsodyks

et al., 1996; Jensen and Lisman, 1996). Imagine an animal running through a series of

ordered place fields A, B, C, D, and E (Figure 3A ). When the animal is located at the inter-

section of these place fields, the animal is at the end of place field A, the middle of place

field C, and the beginning of place field E. Due to the phase precession phenomenon, place

cell A fires first in the theta cycle, C fires in the middle of the theta cycle, and E fires at

the end of the cycle. Thus, the order of behavioral experience is preserved and temporally

compressed during each 125 ms theta cycle.

Phase precessing neurons imply that hippocampus is not representing the animal’s pre-

cise location at each moment in time, but is instead representing a short trajectory during

each theta cycle, which begins slightly behind the animal and ends slightly ahead of the

16



Figure 2: Theta phase precession by hippocampal place cells. (A) The relationship between the spiking of
two neurons and the theta oscillation. Each set of short vertical lines surrounded by a red box represents
the set of spikes emitted by a single cell as an animal runs through that cell’s place field. As the animal runs
through the field (left to right in time), the spikes fire earlier and earlier in the theta cycle (i.e., they phase
precess). (Adapted from O’Keefe and Recce, 1993, with permission from author and publisher) (B) Phase
precession by two cells (one cell per panel) compiled over many passes through each cell’s place field. Each
dot in the panel represents a spike occurring with a particular theta phase (y-axis) at a particular location on
the maze (x-axis). When the animal enters the place field (left side of panel), spikes occur late in the theta
cycle. As the animal passes through the field, eventually exiting on the right side of the panel, spikes occur
with earlier phases. (Adapted from Skaggs et al., 1996, with permission from author and publisher.)
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Figure 3: (A) Due to phase precession, if an animal runs from left to right through a series of place fields
(ellipses in top of panel), the order of place cell firing matches the order of place field visitation during each
theta cycle (bottom of panel: colored dots represent the firing of each corresponding place cell. X-axis is
time and y-axis is spatially ordered place cell). (B) Schematic showing how the phase precession of two cells
with overlapping place fields results in the first cell firing before the second in each theta cycle (red dots are
spikes corresponding to the red place cell, blue dots correspond to the blue place cell). (C) The spike timing
dependent plasticity (STDP) learning rule (top of panel, reprinted from Bi and Poo, 1998, with permission from
author and publisher). Due to STDP, the connection from the red cell to the blue cell in panel B would be
strengthened and the connection from the blue cell to the red cell would be weakened (depicted in bottom of
panel).

animal (Foster and Wilson, 2007). The trajectory represented progresses in the same di-

rection that the animal is moving and the order of place cell firing during each theta cycle

matches the order of place fields being visited by the animal. This temporal structure is

especially interesting given the observation of spike timing dependent plasticity (STDP) in

the hippocampus (Bi and Poo, 1998).

STDP is a synaptic learning rule in which the synapse enabling communication from

neuron A to neuron B is potentiated (strengthened) if neuron A fires before neuron B and

is depressed (weakened) if neuron B fires before neuron A (Figure 3B,C ). Synaptic poten-

tiation or depression takes place when the two neurons fire within 80 ms of each another

(Figure 3C , Bi and Poo, 1998). Place cells in hippocampal subregion CA3 have strong

recurrent connections (Lorento do Nó, 1934; Swanson et al., 1978), meaning that place

cells within this region synapse onto other place cells in this region, and project strongly

to place cells in subregion CA1 (Schaffer collaterals, Swanson et al., 1980, 1981). Thus,
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the anatomical connections of neurons in the hippocampus combined with the ordered fir-

ing of place cells during each theta cycle, may enable synaptically connected hippocampal

neurons to encode episodes of behavior in the precise order that it is experienced (Skaggs

et al., 1996; Tsodyks et al., 1996; Jensen and Lisman, 1996), which is an important com-

ponent of both episodic memory and spatial navigation. It should be noted that these spike

sequences are occurring during 125 ms theta cycles and are therefore consistent with the

time scale of STDP.
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3 Hippocampal neural sequences

Hippocampal theta sequences

As described in Chapter 2 , hippocampal phase precession implies that the hippocampus

represents a short trajectory in the environment during each theta cycle (i.e., theta se-

quences), beginning slightly behind the animal and ending just ahead of the animal. Recent

work has begun to explore the properties of theta sequences by analyzing the spiking of

neuron pairs with overlapping place fields (Dragoi and Buzsaki, 2006) or by analyzing the

entire population of neurons active during each theta cycle (Foster and Wilson, 2007; John-

son and Redish, 2007; Maurer et al., 2011).

Dragoi and Buzsaki (2006) showed that some pairs of neurons with overlapping place

fields fired with a relatively constant temporal relationship during each theta cycle. The

time offset between the firing of each cell was less than the time it took for the animal

to traverse the distance between the centers of the two place fields, indicating that the

neural representation of space was temporally compressed with respect to behavior (by

10 to 15 times, Dragoi and Buzsaki, 2006). Furthermore, it was shown that the temporal

coordination of pairs of neurons was stronger than would be expected if each cell phase

precessed independently, suggesting that synaptic interactions were involved. Foster and

Wilson (2007) extended this work by moving beyond cell pairs to analyze the entire neural

sequence taking place during each theta cycle. They confirmed the prediction that phase

precession results in a neural sequence representing a forward path beginning behind the

animal and extending forward. Similar to Dragoi and Buzsaki (2006), they showed that the

integrity of the forward ordered sequence was beyond what would be expected if each cell

phase precessed independently, further supporting synaptic involvement in the coordination

of theta sequences.

Johnson and Redish (2007) were the first to examine the behavioral content represented

by neural activity at the theta time scale. Using a Bayesian decoding approach (Brown et al.,
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1998; Johnson et al., 2008, discussed in Chapter 4 ), the authors decoded physical loca-

tions represented by the neural activity in sliding 20 ms windows. Decoding at this fine time

scale (approximately an eighth of a theta cycle), allowed for the visualization of paths rep-

resented during theta cycles. Using this technique, Johnson and Redish (2007) observed

that when an animal came to the choice point on a modified T-maze, and moved its head

back and forth as if considering its options (vicarious trial and error or VTE, Meunzinger,

1938; Tolman, 1939), the paths represented did not end just ahead of the animal as previ-

ously observed, but swept considerably ahead of the animal. These "sweeps" represented

each path option separately and specifically occurred at the choice point. The authors sug-

gested that sweeps could reflect the mental search of a "cognitive map" (a mental model

of the environment, Tolman, 1948; O’Keefe and Nadel, 1978), in order to evaluate possible

options before making a decision (Johnson and Redish, 2007; van der Meer and Redish,

2009). Thus, by analyzing the behavioral content expressed by theta sequences, Johnson

and Redish (2007) provided neural evidence for the recall of previously experienced se-

quential information, and the first evidence that theta sequences may be under cognitive

influences and play a role in decision making. Chapter 7 describes original work in which

I examine the behavioral content represented by theta sequences using a novel decoding

method described in Chapter 4 . Briefly, I found that the paths represented by these se-

quences shifted forward or backward in space depending on the animal’s acceleration, and

they parsed the environment in segments, providing a potential mechanism for cognitive

chunking of experience.

Hippocampal network states: theta and LIA

When animals are awake, there are two main network states in the hippocampus, reflected

by the local field potentials (Vanderwolf, 1969; Buzsáki et al., 1983). One network state is

the "theta" state which occurs while animals are moving around in an environment or are

stationary but attentive and engaged in a task. This state is characterized by high power in
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the theta frequency band (4-12 Hz) and it is in this state that the theta sequences described

above occur. It is generally thought that experience encoding and recall occurs during the

theta state, as animals are interacting with the world. The neural activity and the behavioral

correlates of theta sequences support this view (Skaggs et al., 1996; Tsodyks et al., 1996;

Jensen and Lisman, 1996).

The other main network state consists of a non-rhythmic pattern in the hippocampal

local field potentials known as large amplitude irregular activity (LIA, O’Keefe and Nadel,

1978; Buzsáki et al., 1983). This is the main pattern observed while animals are awake

and eating, grooming, or resting, and is also the pattern observed during slow-wave sleep

(SWS). Neural activity is on average lower than during the theta state, but there are inter-

mittent bursts of high spike rate activity, which are accompanied by a short duration (40-120

ms), high frequency (180-220 Hz) oscillation in the local field potentials, called sharp wave

ripples (SWRs, O’Keefe and Nadel, 1978; Buzsáki et al., 1983; Buzsáki, 1989). It has been

suggested that the high frequency neural activity during SWRs is well suited for the long

term potentiation of synapses (Buzsáki, 1989) and that this activity occurring while animals

are inattentive and at rest may play a role in the transfer or consolidation of experiential

information from the hippocampus to the cortex (Marr, 1971; Buzsáki, 1989; Sutherland

and McNaughton, 2000). The next section describes the analysis of neural activity during

SWRs.

Hippocampal replay sequences

If neural activity during inattentive awake states and during sleep reflects a consolidation

process involving the transfer of information from hippocampus to cortex, the neural activity

would likely represent information from the animal’s recent experiences. Wilson and Mc-

Naughton (1994) tested this hypothesis by recording from place cells during active behavior

and subsequently during slow-wave sleep (SWS). The authors identified pairs of neurons

that fired together (within 100 ms) during behavior and found that these neuron pairs prefer-
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entially reactivated together during SWRs in SWS. Pairs of neurons that did not fire together

during behavior did not reactivate together during SWRs. Skaggs and McNaughton (1996)

extended this work by showing that correlated neuron pairs not only reactivate together dur-

ing SWS, but the order of firing observed during behavior is preserved during sleep. These

initial observations have been replicated and refined using different experimental and an-

alytical techniques, demonstrating that reactivation preferentially occurs after experience

compared to before (Kudrimoti et al., 1999; Lee and Wilson, 2002), occurs during SWRs

in SWS as well as during SWRs in the awake state (Kudrimoti et al., 1999; Nadasdy et al.,

1999), and is a property not only of neuron pairs, but involves sequences of neurons acti-

vating in concert ("replay" instead of the more general term, "reactivation", Nadasdy et al.,

1999; Lee and Wilson, 2002).

Thus, neural sequences representing paths in the environment are observed not only

during active behavior (theta sequences), but also when animals are asleep or awake and

inattentive, during SWRs (replay sequences). Whereas theta sequences are thought to

be involved in the rapid encoding and recall of episodes of behavior (Skaggs et al., 1996;

Tsodyks et al., 1996; Jensen and Lisman, 1996), replay sequences are thought to play

a role in memory and learning consolidation (Marr, 1971; Buzsáki, 1989; Sutherland and

McNaughton, 2000). Studies have directly disrupted SWRs (Girardeau et al., 2009; Ego-

Stengel and Wilson, 2010) or, as in Nakashiba et al. (2009), have blocked CA3 output

(the site of SWR generation, Ylinen et al., 1995), showing that these manipulations impair

performance on hippocampal-dependent tasks. This provides evidence that SWRs and

associated neural activity play an important role in learning and memory.

Several studies have begun to look at the behavioral content represented during re-

play sequences, with the goal of understanding in more detail how this neural activity may

contribute to learning and memory. The experiments described above showed that replay

sequences matched the order of behavior: when the locations A, B, C, D, and E were visited

in that order, the replay sequences observed also represented the ordered locations A, B,
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Figure 4: Examples of forward and backward replay sequences recorded from an animal running on a linear
track. The y-axis is place cells ordered by the location of their respective place fields along the linear track.
Thus, when running along the linear track the animal passes through place cell 1’s firing field first and place
cell 13’s firing field last. The x-axis is time. Each short vertical line represents a spike emitted by a cell. The
local field potential during one lap on the track is shown in the top of the figure, and the corresponding velocity
of the animal at each moment in time plotted in the bottom of the figure. The dense neural activity in the middle
of the figure occurs as the animal is running, and parts of the neural activity occurring before and after the run
while paused (boxed in gray), are replotted at a finer time scale on either side of the figure. The activity during
the pause before the run (left of figure) is a forward replay since the order of firing is the same as the order of
firing during behavior. The activity after the run is a backward replay because the order of firing (reflected by
the negative slope) is the reverse of behavior. (Reprinted from Diba and Buzsáki, 2007, with permission from
author and publisher.)

C, D, and E. Foster and Wilson (2006) observed that during some SWRs in the awake state,

sequences replayed experienced trajectories in the reverse order (E, D, C, B, and then A).

These "reverse" or "backward" replay events (Figure 4 ) were observed when animals were

paused after running the length of a linear track, and always began at the animal’s location

and spread backwards.

Foster and Wilson (2006) speculated that these backward replays may be a mechanism

to resolve the "credit assignment" problem described in reinforcement learning models (Sut-

ton and Barto, 1998). The credit assignment problem arises when a sequence of actions

leads to later reward. The agent needs to determine which of its past actions were responsi-

ble for this reward, as those are the actions it will want to repeat. Proper credit assignment

may not be clear from a single trial, but can be inferred from repeated trials with varying

behavior. Memory is crucial to this process, as the agent must have access to the en-

tire sequence of actions that led to a reward in order to apportion credit appropriately. A
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phenomenon such as backward replay, which begins at the animal’s location and spreads

backward over the trajectory that was just experienced (Foster and Wilson, 2006), could

play a role in passing outcome information back through the action sequence to update the

value of each action at each location along the path.

Backward replay is a surprising phenomenon because as described earlier, the phase

precession mechanism results in forward ordered theta sequences during behavior, which

are thought to synaptically encode paths in the order they were experienced (i.e., forward,

not backward), due to the STDP learning rule. If experienced paths are encoded asymmet-

rically in the forward order, how can the paths be replayed in the reverse order? Foster and

Wilson (2006) proposed that backward replays may occur due to a non-synaptic mecha-

nism, specifically a decaying activity trace: cells whose place fields were the most recently

experienced are the most excitable and therefore firing occurs in approximately the reverse

order of experience. Davidson et al. (2009) examined backward replay as animals ran back

and forth on a long track and found that backward replay events could begin at locations

away from the animal’s position. As will be described in Chapter 6 , I observed backward

replays over non-local and non-recently experienced paths. These observations are incom-

patible with a decaying activity trace mechanism. Chapter 8 presents potential mechanisms

that could enable the hippocampal network to encode experiences in a reverse order and

produce backward replay events of non-recent and non-local paths.

Diba and Buzsáki (2007) replicated the findings of Foster and Wilson (2006), also on

a linear track maze. They observed that in addition to replaying the last experience in a

backward order, the hippocampus replays the path that is about to be experienced (and

has been experienced previously by the animal) in a forward order, while the animal is

awake and just prior to movement (Figure 4 ). Forward replays, like backward replays, were

observed to begin at the animal’s position on the maze and extend down the track. The

authors suggested that forward replay events, since they traverse the upcoming path, may

play a role in planning future behaviors. The studies of Foster and Wilson (2006) and Diba
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and Buzsáki (2007), in addition to highlighting the robust nature of forward and backward

neural sequences during awake SWRs, also demonstrate how analyzing the behavioral

content of neural sequences can help generate hypotheses about the role of the sequences

in cognitive functions such as learning, memory, and planning. In Chapter 6 I present a

detailed analysis of the behavioral content represented by forward replay events during the

awake state, in part showing that they are not restricted to beginning at the animal’s position

on a maze, and suggest that forward and backward replays may play a role in learning a

cognitive map of the environment.
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4 Extracting behavioral information from neural sequences

Decoding the animal’s location in the environment

In order to analyze the behavioral content represented by hippocampal activity sequences,

we need analytical methods that can translate place cell spike trains into paths in the envi-

ronment. The problem of decoding paths represented by neural sequences is a relatively

new undertaking, but several studies have shown that an animal’s location in the environ-

ment can be accurately decoded from the population activity of a group of place cells (Wil-

son and McNaughton, 1993; Zhang et al., 1998; Brown et al., 1998). It is intuitive that it

should be possible to decode an animal’s location from the activity of many place cells: if

three cells fire in a small window of time and they each have a place field located in the

top right corner of an environment, we should be able to say that the neural activity is rep-

resenting the top right corner. As will be discussed, neural data is inherently noisy and

current recording technologies are limited, which raises challenges for decoding neural ac-

tivity. There are two main techniques that have been used to decode an animal’s location in

an environment. One is template matching (Wilson and McNaughton, 1993) and the other

is Bayesian decoding (Zhang et al., 1998; Brown et al., 1998).

Template matching

The first step of the template matching method is to parse the environment into a num-

ber of equally sized spatial bins and then compute the average firing rate (over the entire

recording session) of each neuron in each spatial bin (Equation 1 ; f (x) is the average firing

rate of a neuron at each spatial location, S(x) is the total number of spikes that the neuron

fired in each spatial bin, P(x) is the number of position samples recorded in each spatial

bin, and dt is the position sampling period in seconds.)

f (x) =
S(x)

P(x)dt
(1)
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This procedure results in an N × X matrix (space matrix) of firing rates, where N is the

number of cells and X is the number of spatial bins in the environment. Thus, the matrix

contains the average firing rate of each neuron at each location in the environment. The

next step is to bin the neural activity recorded over the session into small time bins (on

the order of a few hundred milliseconds), in order to create an N × T matrix (time matrix)

of firing rates, where N is once again the number of cells and T is the number of time

bins. Each column of this matrix represents the instantaneous firing rate of the population

of place cells. To decode the animal’s location from neural activity at a moment in time, a

column in the time matrix (representing the instantaneous firing rates at a moment in time)

is compared with each column in the space matrix. The vector comparison, which can be

the Euclidean distance or dot product, results in a similarity score for the time vector with

each space vector. The location of the spatial bin corresponding to the space vector with the

highest score is the decoded location. Wilson and McNaughton (1993) performed template

matching on datasets obtained from three rats, with 34, 24, and 40 place cells recorded

from each rat. Using 1 s time bins to construct the time matrix, they were able to decode

the animal’s location with average errors of 2 to 5 cm. Using smaller time bins increased

the average error and the authors estimated that in order to decode locations with a finer

temporal precision (i.e., every 100 ms), with the same average error obtained using 1 s time

bins, 380 place cells would be required. Thus, template matching can accurately decode

an animal’s location in the environment, but has poor temporal and spatial resolution.

Bayesian decoding

In the context of template matching, the space matrix was introduced as a collection

of N-length vectors, with each vector containing the average firing rate of each neuron at

a particular location in the environment. However, by transposing the space matrix, it can

also be viewed as a collection of X-length vectors, with each vector containing the average

firing rate of a single neuron at each location in the environment. In this interpretation, each

vector is a neuron’s place field or tuning curve. The Bayesian decoding technique (Zhang
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et al., 1998; Brown et al., 1998) converts the N-collection of tuning curves, fN(x), into the

conditional probability distribution P(n|x), which is the probability of observing the vector of

spike counts, n, at each location in the environment (Equation 2 ; n is an N-length vector

of spike counts observed in a time window, x is each spatial bin in the environment, and τ

is the size of the time window). This conversion assumes that the firing of each neuron is

independent (allowing for the product of each neuron’s probability distribution) and assumes

that the firing of place cells follows Poisson statistics (Tuckwell, 1988) with the λ parameter

equal to the mean firing rate of each neuron at each location in the environment, multiplied

by τ (λi(x) = τ fi(x)). The entire expression inside the product is the Poisson probability

mass function and represents the probability that a neuron would fire n spikes at each

location in the environment.

P(n|x) =
N

∏
i=1

P(ni|x) =
N

∏
i=1

(τ fi(x))ni

ni!
exp(−τ fi(x)) (2)

Once the conditional probability distribution, P(n|x), has been calculated, Bayes’ rule

(Equation 3 ) can be used to calculate the likelihood of each location in the environment

given the spike count vector (P(x|n)). Taking the mode of the likelihood distribution provides

the decoded location in the environment at a moment in time.

P(x|n)P(n) = P(n|x)P(x) (3)

P(x|n) = P(x)(
N

∏
i=1

fi(x)ni)exp(−τ

N

∑
i=1

fi(x)) (4)

The normalizing constant, P(n), has been dropped from Equation 4 because it doesn’t

depend on x and therefore does not affect the mode of P(x|n). P(x) is the prior probability

distribution over x, and the decision to use a non-uniform prior distribution depends on the

application. Non-uniform priors improve the decoding of an animal’s location when the prior
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is set to the likelihood distribution calculated at the previous time step (Pt(x) = Pt−1(x|n)).

However, if the neural activity is representing locations that begin a new sequence or jump

away from the animal’s location, as is the case during replay events, using a non-uniform

prior can lead to inaccurately decoded paths.

Zhang et al. (1998) showed that the Bayesian decoding approach both with and without

a prior, was more accurate compared to template matching for decoding an animal’s loca-

tion. However, the accuracy of Bayesian methods rapidly decreased when the time window

was reduced beyond 500 ms, similar to the template matching method, indicating the poor

temporal precision of these algorithms.

New method for decoding paths in the environment

Going from decoding single locations to decoding paths represented by neural sequences

is a non-trivial step. First, there are additional pieces of information that need to be ex-

tracted from the data. The beginning and end of the sequence need to be identified. In the

case of theta sequences, neural sequences generally occur during each theta cycle and the

beginning and end of the theta cycle can be used as a guide for determining the ends of the

sequence. However, replay sequences have variable lengths and begin at seemingly ran-

dom times during pauses, thus it can be a challenge to accurately identify the beginning and

end of the sequence. Furthermore, it must be determined if the neural activity represents a

coherent path and not just random locations.

The decoding of neural sequences is also very sensitive to limited data. Because the

paths represented by neural sequences are 10-20 times sped up compared to behavior, ac-

tivity must be analyzed in small time windows in order to decode the path. Theta sequences

last on average about 125 ms and replay sequences last 60-500 ms. Thus, time windows

need to be small and in the 10-20 ms range in order to decode the path. Using time win-

dows in the 500-1000 ms range, as required for accurate template or Bayesian decoding,

would blur the path and completely miss its temporal structure.
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Given the challenges presented above, I will now describe a new method I developed to

decode the behavioral content represented by neural sequences while animals ran laps on

a modified T-maze with a left and a right loop (Figure 5 ). The algorithm required the maze to

be linearized, such that the animal’s location on the maze was described by a single scalar

value (Schmitzer-Torbert and Redish, 2004). This linearization and the algorithm described

below were performed separately for the left and right loops of the maze and separately

for detecting forward and backward sequences. The input to the algorithm was the neural

activity of each place cell over time and the location of the place field centers of each place

cell (cells could have multiple place fields).

This algorithm was used to detect the beginning and end of replay sequences, determine

if the path was forward or backward, and decode the spatial path represented. Results

are presented in Chapter 6 . The same algorithm was used to decode theta sequences

(Chapter 7 ), except that sequences were restricted to the time period between the peaks

of each theta cycle and only forward paths were detected.

Sequence detection.

Stepping through each recording session in 10 ms steps, the sequence score of place

cell activity within a flexible time window (40 ms to 600 ms, to accommodate longer se-

quences) was calculated as follows. Using the place field centers and spike times, each

spike in the flexible time window was pairwise compared with other “local” spikes in the

same time window. A “local” spike is a spike that occurred within 80 ms of its neighbor and

whose place field center was separated by less than 80 cm along the linearized path (this 80

cm restriction was subsequently removed during significance testing (see below) to ensure

that all spikes contributed equally to the scoring of the sequence). Thus, within each flexible

time window, a “local region” was defined around each spike and the score contributed by

each spike came from comparing it with the other spikes within its local region. If the place

field center corresponding to spike A was traversed before the place field center for spike B

(positive value in ∆C matrix, see below) and spike A occurred before spike B (positive value
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in ∆T matrix), the forward score was +1 and the backward score was -1. Within the flexible

time window, all pairwise comparisons were summed to determine the cumulative score of

the forward or backward sequence.

Basic sequence scoring algorithm:

Given:

1. Spike times: T vector: [nSpikes x 1]

2. Spike place field centers: C vector: [nSpikes x 1]

Compute:

1. Time difference for each spike pair: ∆T matrix: [nSpikes x nSpikes]

2. Field center distance for each spike pair: ∆C matrix: [nSpikes x nSpikes]

3. Element-wise multiply ∆T and ∆C to create ∆TC matrix: [nSpikes x nSpikes]

4. Binarize ∆TC. For each element in ∆TC: if element is positive, replace with

’+1’; if element is negative, replace with ’-1’.

5. Sum over all elements in ∆TC to get the sequence score.

- A positive sequence score indicates that the sequence is ’forward’ or-

dered. A negative score indicates that the sequence is ’backward’.

The scoring presented above requires that each spike is associated with a single place

field. For cells with multiple place fields, it is unclear which place field is being represented

by a spike. In order to address this issue, the algorithm assigned each spike from a multi-

field cell to the place field which best fit with the rest of the firing sequence. This was per-

formed by maximizing the forward score (for forward replays) and maximizing the backward

score (for backward replays) over each place field available to a spike. Always picking the

place field that optimizes the replay score could result in artificially high sequence scores.

In order to provide a fair and statistically justified comparison, this same score maximization
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procedure was performed for the control sequences produced in the bootstrapping proce-

dure described below.

The time window was allowed to keep increasing until there were five consecutive time

window steps (50 ms) without an increase in the score or the window reached 600 ms.

Once the beginning and end of the sequence were detected, along with the place fields

contributing positively to the sequence score, the spatial coverage of replays was defined:

the coverage of each replay event was represented as an X-element binary vector (where

X is the number of spatial pixels in the environment), with a ’1’ at each position where a

contributing place field existed.

Sequence significance testing.

The preceding algorithm resulted in a series of time windows (start and stop times for

each replay), place field center-labeled spikes, and scores for each putative forward or back-

ward sequence occurring on left and right laps during a single session. These sequences

were then analyzed to identify significant replay events using two independent bootstrap-

ping procedures. The first method preserved the identity of the cell to which each spike

belonged, and randomly shuffled the spike times for each event 300 times. Each shuf-

fled event had its sequence score recomputed, once again assigning spikes from cells with

multiple place fields to the place field center that maximized the sequence score. This en-

sured that there was no bias resulting from assigning spikes to fields that maximized the

sequence score. The second bootstrapping procedure preserved the spike trains, but ran-

domly reassigned each spike train to a different cell’s firing field(s) (Davidson et al., 2009).

Each event was shuffled 300 times, once again assigning spikes from cells with multiple

place fields to the place field center that maximized the sequence score. If the unshuffled

replay score was greater than 95% of both independent sets of shuffled sequences, the

replay was deemed significant and included for analysis. These methods ensured that only

significant replay events were included in the analysis. Because sequences were initially

identified for left and right laps separately, identical pairs (i.e. replay pairs occurring over

33



the central stem) were merged. This method provides an effective and statistically justified

means of identifying sequences directly from the recorded spike trains.

Comparison of our method with Bayesian decoding.

This method for identifying sequences was used instead of a Bayesian decoding ap-

proach for two reasons. First, it can identify sequence structure even when a small number

of neurons are co-active by considering neural activity over a relatively large time window,

without sacrificing spatial precision. Bayesian decoding relies on the activity of several cells

during a small time window (on the order of 10-20 ms for SWR replay events) in order

to accurately and precisely decode the spatial locations being represented. The decoded

locations over time are then analyzed to determine if a forward or backward behavioral

sequence is present, which relies on the quality of the decoding. As mentioned above,

large time windows are often needed to accurately decode locations using the Bayesian

approach. The method described here operates in the opposite order. Pair-wise compar-

isons of spikes separated by less than 80 ms are used to identify behaviorally meaningful

sequential structure in the pattern of place cell activity. Once the sequence has been identi-

fied, then the trajectory corresponding to the entire sequence is decoded by combining the

score-maximizing place field from each spike contributing positively to the sequence score.

Since whether a spike contributes positively to the sequence score depends on its relation-

ship with all spikes occurring within 80 ms of it, data over a relatively large time window is

considered, which enables accurate decoding even with sparse data. Since this large time

window is used to detect sequential structure, not spatial location, the precision of spatial

decoding is not affected.

Second, the method described here effectively handles the multi-field place cells present

in complex mazes such as the 2T maze. When a multi-field cell fires, the Bayesian decoding

approach increases the decoded probability distribution over all the cell’s fields. This is

problematic when many cells have multiple place fields and only one or two cells are active

in a 15-20 ms time window, and results in inaccurate spatial decoding and subsequent
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degradation of sequence identification. The sequence detection method described here

assigns each spike emitted by a multi-field cell to the place field that fits best within the

sequential structure of the replay (as described above). This produces an improvement in

trajectory decoding.
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5 General methods used in electrophysiology experiments

In this chapter, I discuss the experimental and analysis methods used to study hippocampal

replay sequences (Chapter 6 ) and theta sequences (Chapter 7 ). The majority of these

methods were also described in Gupta et al. (2010).

Behavioral task: The 2T maze

Animals were trained on the 2T-Maze (Figure 5 ). The task consisted of two T intersections,

with return rails after the second turn, making it a lap based task in which the environment

was experienced in one direction. Food was delivered at 2 sites on each return rail contin-

gent on the animal’s choice at the second turn. On left laps the first reward site delivered

banana-flavored pellets (5TUL-banana, TestDiet, Richmond IN) and on right laps the first re-

ward site delivered fruit-flavored pellets (5TUL-fruit). On both left and right laps the second

reward site delivered white unflavored pellets (5TUL). Each training and recording session

lasted 40 min. Training on the task was performed in two phases. During phase one, rats

were trained to run laps on one side of the maze, while the other side was blocked. After

running at least 40 laps on two consecutive days, phase two of training began. Blocks were

removed and on a given day, rats had to run all left laps (L), all right laps (R), or alternating

left and right laps (A) in order to receive reward. After consistently getting 80% of the laps

correct on all three tasks, rats were implanted with hyperdrives. During initial training, rats

attempting to run backwards on the maze were blocked by the experimenter. While there

were occasions in which rats faced backwards during their early experiences, rats rarely ran

backwards on the track. After recovery from surgery, phase two of training resumed until

the rats regained proficiency and tetrodes were in the cell layer. At this point, training ended

and a six-day sequence of recording sessions began. During the six recording sessions,

the task contingency changed approximately midway through the session (mean: 18.07 min

± 1.13 min (SD)). There were six recording sessions to allow for all possible pairings of the
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Figure 5: (A) The two-choice T maze. The maze had two possible physical configurations, the second
indicated by dotted green lines. Noteworthy locations on the maze are labeled as follows: maze start (MS), turn
1 (T1), turn 2 (T2), feeder 1 (F1), and feeder 2 (F2). In addition the task entailed three reward contingencies
reflecting a decision made at the second choice point (T2): animals were trained to turn left at the final choice,
right at the final choice, or to alternate on a lap-by-lap basis. During recording days, the contingency was
changed approximately midway through the task. (B) Correctness of final choice (T2) aligned to the start of
the session. If the task was alternation, the first lap was always deemed correct, so chance performance over
all tasks is 2/3=66%. (C) Correctness of final choice (T2) aligned to the time of contingency switch. Chance of
a pre-switch correct behavior being a correct behavior after the switch is 1/6=16%. (From Gupta et al., 2010.)

three tasks (L-R, R-L, L-A, A-L, R-A, A-R). The order in which each rat experienced the six

potential pairings was randomized across animals. Animals learned the contingency quickly

at the onset of the recording session and again after the contingency switch (Figure 5B,C ).

Surgery, recording, and histology

Subjects.

Six male Fisher-Brown-Norway hybrid rats (Harlan, Indianapolis, IN, age 7-10 months

at time of implantation) were maintained on a synchronous day/night cycle. Rats were food

deprived to no less than 80% of their body weight during behavioral training and water was

available ad libitum in the home cage at all times. All procedures were in accordance with

National Institutes of Health guidelines for animal care and were approved by the Institu-

tional Animal Care and Use Committee at the University of Minnesota.

Surgery, recording, and histology.

After pre-training to proficiency (19-24 days), three rats were implanted with a single
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bundle 12-tetrode, 2-reference microdrive (Neuro-Hyperdrive; Kopf, Tujunga, CA) directed

toward the CA1 hippocampal (HC) subfield (3.8 mm posterior and 2.5 mm right-lateral from

bregma). Another three rats were implanted with a double bundle 12-tetrode, 2-reference

microdrive directed toward CA1 and ventral striatum (CA1 targets 3.8 mm posterior and 2.5

mm right-lateral from bregma, only HC data analyzed here). The remaining details of the

surgery were as presented previously (Jackson et al., 2006). Tetrodes and references were

slowly advanced toward the pyramidal cell layer over approximately two weeks after surgery.

For HC-only implants, one reference was lowered to the HC fissure and one was left in

corpus callosum or a quiet region of cortex to be used as a superficial reference. For the

dual-structure implants, the HC reference was placed in the fissure and the ventral striatum

reference was placed near the corpus callosum; spike data was referenced against the HC

reference and LFP data against the ventral striatal reference. Neural activity was recorded

and spikes were sorted into putative cells as presented previously (Jackson et al., 2006). All

units were examined to have a reasonable Isolation distance and L-ratio (Schmitzer-Torbert

et al., 2005), and no spikes during the two second refractory period. The median Isolation

distance and L-ratio were 21 and 0.09, respectively. Only well isolated units were included

in the analyses. Recordings from an example tetrode are shown in Figure 6 .

After task performance, rats were overdosed on Nembutal (150 mg/kg, i.p.) and perfused

intracardially with formalin. After 24 h in formalin, brains were transferred to a 30% sucrose-

formalin solution, sliced, and stained with cresyl violet using standard procedures. All HC

recording locations were verified to lie in the CA1 region of the dorsal HC.

Place fields

Cells that fired more than 15000 spikes over the 40 minute session (6.25 Hz) were excluded

in the analysis to filter putative inhibitory interneurons. Additionally, cells with fewer than 100

spikes (approximately 0.04 Hz) were excluded. Sessions with > 40 cells were considered

for analysis (31 out of the 36 recording sessions). A total of 2046 cells were isolated from
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Figure 6: (A) Schematics showing the position of implanted electrodes directed towards hippocampus for
each of the six rats. (B) Example tetrode recordings from one recording session. Each spike cluster is shown
with different colors on two projections (right). One millisecond waveforms for each of the four tetrode channels
are plotted for each separable cluster along with the cluster’s Isolation distance and L-ratio (left). Scale bar
next to each cluster’s waveforms is 100 µV.
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31 recording sessions. 1881 cells satisfied the number of spikes criteria and 1470 cells con-

tained at least one place field on the maze. For each session separately, position along the

maze was linearized separately for left and right laps such that the rat’s position along a lap

could be described by a single scalar value (Schmitzer-Torbert and Redish, 2004). Place

fields were then identified as contiguous linear pixels (one linear pixel is approximately 3.5

cm along the linearized maze) with average activity > 5% of the maximum rate observed

over the session for any cell at any pixel (cells could have more than one place field, al-

though place fields separated by only a single pixel were merged). Low time speeds were

not excluded in place field identification. In this way we identified 2729 place fields from

the 1470 place cells. This allowed for the determination of place field centers along left and

right laps. The centers were ordered from maze start (MS) to MS in the direction the rats

traveled around the maze.

Replay sequence specific analyses

Place field centers obtained as described above and spike times were used to detect both

replay sequences and theta sequences (Chapter 6 and Chapter 7 ). For replay sequences,

the algorithm was performed 4 times separately for each session (left lap centers, forward

sequences; left lap centers, backward sequences; right lap centers, forward sequences;

right lap centers, backward sequences).

Classification of same-side and opposite-side replays.

Once sequences were decoded as described in Chapter 4 , replay sequences were

identified as occurring on one side of the maze ( > 10% coverage on the non-central stem

of one side and < 5% coverage on the other) or else were labeled as central-stem replays. If

a replay occurred over the right portion of the maze while the rat was at a right-side reward

site, it was labeled a same-side replay. If the rat was at a right-side reward site and the

replay covered a trajectory on the left side of the maze, it was labeled an opposite-side

replay. Same-side and opposite-side replays were defined analogously when the rat was
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sitting at a reward site on the left side of the maze. The vector representation of each replay

was used to create the spatial distribution plots in Figure 10 (page 51).

Simulating scenarios to test the relationship of replay with experience.

Three scenarios based on three proposals (1. replays reflect the most recent experience;

2. replays reflect accumulated experience within a session; 3. replays are independent of ex-

perience) were simulated and compared with our data. As described above, each observed

replay was classified as occurring on the left, right, or central stem portion of the maze.

This information was then used to identify same-side and opposite-side replays based on

the rat’s location at the time of the replay. In order to generate a comparable dataset that

was representative of the three scenarios, the actual replay times and rat locations were

kept constant and the left/right classification was changed for each individual replay (cen-

tral stem replays were left intact). For scenario 1, replays were restricted to cover only the

parts of the maze that were traversed over the last lap (i.e. all replays occurring while the

animal is paused at a reward location on the left side of the maze after performing a left lap

were assigned to the left side of the maze). For scenario 2, replays stochastically preferred

portions of the maze that were most visited at the time of the replay (i.e. regardless of the

rat’s paused location on the maze, the probability of a replay being assigned to the left side

of the maze was equal to the proportion of accumulated experience on the left side of the

maze at the time of the replay). For scenario 3, each non-central stem replay was ran-

domly assigned to be on the left or right, independent of recent or accumulated experience

during the session. From these new assignments, same-side and opposite-side classifica-

tions were made and time since last experience, laps since last experience, and proportion

of accumulated experience on the side of the replay were calculated for each scenario.

Each of these distributions was calculated 100 times and compared to the actual data using

Kolmogorov-Smirnov tests. The mean p-value and mean distribution was reported for each

comparison (see Figure 11A-C and Figure 12A on pages 54 and 56).

Additionally, we performed 1-step Bayesian decoding (Zhang et al., 1998) with a uniform

41



spatial prior and a 20 ms sliding time window on the identified replay times. Replays were

classified as occurring on the side of the maze with the largest cumulative probability and

the results from Figure 11A-C and Figure 12A were replicated (Figure 13 on page 57).

See Chapter 4 for a discussion of my decoding method compared with Bayesian decoding.

Shortcut detection and analysis.

A shortcut sequence on the two-choice maze can be viewed as a combination of one

forward and one backward replay that are temporally and spatially adjacent on the top or

bottom of the maze. There are 32 possible combinations of forward and backward replays

on the maze. There are 4 types of forward replays: top left (TL), top right (TR), bottom left

(BL), bottom right (BR). Each of the forward replays can be paired with the 4 types of back-

ward replay (TL, TR, BL, BR), to make 4×4 = 16 combinations. Since order matters, there

are 16×2 = 32 possible combinations. Out of these combinations, 4 give rise to shortcut

sequences (bwdTR-fwdTL, bwdTL-fwdTR, fwdBR-bwdBL, fwdBL-bwdBR), 8 give rise to a

coherent trajectory that does not result in a shortcut path, and 20 do not create a coherent

trajectory at all (see Figure 15 ). Thus the theoretical probabilities of shortcut, non-shortcut,

and disjoint combinations are 4/32, 8/32, and 20/32, respectively. These probabilities as-

sume that forward and backward replays are evenly distributed on the top and bottom of

the maze. We used a bootstrapping procedure to determine the actual probabilities of each

combination from the distributions of replays observed. This procedure randomly paired

each forward replay with 100 backward replays and each backward replay with 100 forward

replays. The probability of shortcut, non-shortcut, and disjoint combinations were then cal-

culated from the number of occurrences of the 32 possible combinations.

A simple algorithm was then used to identify the actual numbers of shortcut, non-

shortcut, and disjoint combinations present in the data. The algorithm first identified replays

that occurred primarily in each corner of the maze (TL, TR, BL, BR). Using this set of re-

plays, the algorithm identified all pairs of forward and backward replays whose mid-times

were separated by less than 150 ms (the mean duration of the replays). Other methods of
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identification produced similar results. The algorithm identified 16 shortcut sequences, 3

non-shortcut sequences, and 0 disjoint pairings. To test the likelihood that 19/19 pairings

would be contiguous sequences based on the replay distributions in our data, we calculated

the probability that the random alignment of forward and backward replays could give rise

to 0/19 disjoint sequences (binomial test, see Table 1 on page 59). Out of the 32 combi-

nations, 12 give rise to sequences (back-to-back replays in which the second replay picks

up where the first left off), 4 of which are shortcut sequences. To test whether the short-

cut sequences resulted from two back-to-back replays in which the second replay picked

up where the first one left off, we calculated the probability under this theory that 16/19

sequence pairings would result in shortcuts (binomial test, see Table 1 ).

Theta sequence specific analyses

For theta sequences, the sequence detection algorithm (Chapter 4 ) was performed 2 times

separately for each session (left lap centers, forward sequences; right lap centers, forward

sequences). Since theta sequences occur during each theta cycle, the beginning and end

of the sequences were confined to within a single theta cycle.

Path, Pro, and Ret length.

As described above, the sequence detection algorithm resulted in start and end times

(and start and end theta phases), place field center-labeled spikes, and scores for each

sequence occurring on left and right laps during a single session. For theta sequence

analyses, there were three important quantities: prospective (pro) length (distance from the

animal’s location to the end of the represented path in space), retrospective (ret) length

(distance from the beginning of the spatial path to the animal’s location), and overall path

length (length of the represented path). The represented path in space was determined

from the place field center-labeled spikes. The mean place field center location of the first

two spikes in the sequence was the start location of the path and the mean place field

center location of the last two spikes in the sequence was the end location of the path.
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Results were qualitatively identical when only the first and last spike or the first and last

three spikes were used to determine the start and end location. These locations defined

the spatial path represented by each theta sequence. Path length was computed by taking

the distance between the start and end location, Pro length was computed by taking the

distance between the animal’s location and the end location, and Ret length was computed

by taking the distance between the start location and the animal’s location.

Bayesian decoding. The main theta sequences results were replicated using a Bayesian

decoding approach (Zhang et al., 1998) to identify the path represented during each theta

cycle. Decoding was performed on each theta cycle using a 40 ms sliding time window

(shifting by 10 ms at each step). Decoding was restricted to an approximately 190 cen-

timeter region centered at the animal’s location (half a lap). Thus, decoding over each

theta cycle resulted in an nTimeBins × nSpaceBins matrix of probabilities, with each row

containing the probability distribution over space for a particular time bin.

To detect the beginning of the spatial path represented, the probability distributions over

space for the first half of the theta cycle (matrix size nTimeBins/2 × nSpaceBins) were

summed to create a single probability distribution over space (a nSpaceBins-element vec-

tor). The 5% tail of this distribution (tail on the end of the distribution that is behind the

animal) was located, providing the beginning location of the spatial path. Similarly, the end

of the represented path was determined by summing the probability distributions over space

for the second half of the theta cycle and locating the 5% tail of that distribution (tail on the

end of the distribution that is ahead of the animal). The Bayesian decoding results pre-

sented in Figure 18 (page 70), Figure 20 (page 74), and Figure 23 (page 81) were robust

to other time windows (20 and 30 ms), other tail sizes (10%, 15%, and 20%), and were

similar when using the first and last time bin for determining the ends of the spatial path or

when summing the spatial distributions over the entire theta cycle rather than the first and

second half separately.
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6 Hippocampal replay sequences

This chapter contains a reproduction of original work published by my colleagues and me:

Hippocampal replay is not a simple function of experience (Gupta et al., 2010). In this

paper, we reported several novel findings and suggested an additional way that replay may

contribute to hippocampal function (see commentary by Derdikman and Moser, 2010).

6.1 Summary

Replay of behavioral sequences in the hippocampus during sharp wave ripple complexes

(SWRs) provides a potential mechanism for memory consolidation and the learning of

knowledge structures. Current hypotheses imply that replay should straightforwardly re-

flect recent experience. However, we find these hypotheses to be incompatible with the

content of replay on a task with two distinct behavioral sequences (A and B). We observed

forward and backward replay of B even when rats had been performing A for >10 minutes.

Furthermore, replay of non-local sequence B occurred more often when B was infrequently

experienced. Neither forward nor backward sequences preferentially represented highly-

experienced trajectories within a session. Additionally, we observed the construction of

never-experienced novel-path sequences. These observations challenge the idea that se-

quence activation during SWRs is a simple replay of recent experience. Instead, replay

reflected all physically available trajectories within the environment, suggesting a potential

role in active learning and maintenance of the cognitive map.

6.2 Results

To investigate the relationship between experience and the content of hippocampal replay,

we recorded neural ensembles from the CA1 region of hippocampus in 6 rats trained on a

spatial decision task with two possible paths (Figure 5A ), allowing for the separation of re-
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Figure 7: Place fields did not change between contingencies. Each session was split at the time of the
switch in contingencies, and place fields were determined for each half-session. Similarity was measured
as the cross-correlation between the two place field distributions (as in Barnes et al., 1997). (A) Histogram
showing the similarity between the pre and post-switch spatial tuning curves for each recording session.
Cross-correlation was consistently high, comparable to using the same map between half-sessions (compare
Barnes et al. 1997). (B) Place fields from an example pre-switch half-session. (C) Place fields from the
corresponding post-switch half-session. Each cell’s place fields are plotted in the same color between the two
half-sessions. The place fields remain in the same locations after the switch, even though the task changes
from right-only to alternation. (From Gupta et al., 2010.)

cent and non-recent experiences. The maze consisted of two choices with a daily-changing

contingency: the rat was rewarded for turning left (L), turning right (R), or alternating left

and right turns (A) at the final choice point. During recording sessions, the reward contin-

gency switched approximately midway through the session. Thus results were analyzed in

half-sessions which could be L, R, or A. This means that within a session, rats sampled

both loops of the maze, but how long ago each loop was experienced and the total amount

of experience on each loop of the maze could differ depending on the contingency. Place

cells did not "remap" after the switch (i.e. place cells maintained the same place fields after

the switch, Figure 7 ). The vast majority of experience on this track occurred in one direction

(Figure 8 ).

Forward and backward replay of local and non-local trajecto ries

We analyzed sequences (replays) of place cell activity during sharp wave-ripple (SWR)

events as rats paused at the reward locations. A sequence detection algorithm was applied

to quantify the degree to which spiking activity during SWRs represented a coherent se-
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Figure 8: Rats primarily ran forward on the maze. Direction of travel was measured from sequential po-
sition samples using the Janabi-Sharifi algorithm (Janabi-Sharifi et al., 2000; Masimore et al., 2005), pro-
viding a velocity vector 〈dx, dy〉 for each position sample. Spatial points were gridded on a 64×48 grid.
For each grid point, the average velocity vector for all position samples within 5 pixels (1.7 cm) was calcu-
lated, giving an average velocity vector for each grid point 〈d̃x, d̃y〉. Then for each grid point, the propor-
tion of position samples with direction of motion velocities in the opposite quadrant of the mean direction
(sign(dx) = − sign(d̃x) & sign(dy) = − sign(d̃y)) was measured. Only grid samples with > 5 position sam-
ples in range were included in the analysis, but every session (including all training and test sessions) for each
animal was included. Plots show the proportion opposite for all grid points from all sessions. A small random
jitter was added to the x and y coordinates for the grid points for display only. For display, points were sorted
so that the brightest colors (highest proportion opposite) were on top for display. Most areas include a vast
oversampling of forward relative to backward directions. (From Gupta et al., 2010.)
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quence, identifying 1719 replays across 31 sessions from 6 rats (see Methods, Chapter 5 ).

The median number of active cells during these events was 10 with a median “sequence

score” of 90 (see Methods, Chapter 5 ). In general, replays varied in their starting location

and direction and were identified as occurring on either the left, right, or central stem of

the maze. In line with previous reports (Foster and Wilson, 2006; Diba and Buzsáki, 2007;

Karlsson and Frank, 2009) we observed replays occurring over spatially proximal portions

of the environment (rat sitting on the same side of the maze as the replayed trajectory,

“same-side replay”, n = 869, 450 forward, 419 backward, Figure 9A ). However, we also ob-

served frequent replays of spatially distal portions of the environment (rat on opposite side

of the maze as the replay, "opposite-side replay", n = 534, 307 forward, 227 backward, Fig-

ure 9B ). The median number of active cells (MAC) and the median sequence score (MSS)

were similar across all groups (same-side, forward: MAC = 8 and MSS = 65; same-side,

backward: MAC = 10 and MSS = 85; opposite-side, forward: MAC = 10 and MSS = 86;

opposite-side, backward: MAC = 11 and MSS = 96). These data show that forward and

backward replay robustly occurred over both loops in the maze when the animal paused at

a reward site on one side of the maze. This is consistent with recent studies showing re-

activation of experiences from previous environments (Jackson et al., 2006; Gelbard-Sagiv

et al., 2008), replay of forward sequences from previous environments (Karlsson and Frank,

2009), and backward replay of trajectories that don’t begin at the animal’s location on a

linear track (Davidson et al., 2009). However, unlike backward replay on linear tracks, this

result demonstrates that backward replay robustly occurred in an environment experienced

in one direction, over trajectories that had never been experienced in the direction of replay.

While rats would sometimes face backwards during early experiences, for each rat there

were backward trajectories that were replayed but never experienced and the vast majority

(>96%) of all experience was in the forward direction. Yet, forward and backward replays

were observed with similar proportion.
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Figure 9: Examples of forward and backward replays. Row (A): Examples of same-side and central stem
replays (3 forward, 3 backward). Row (B): Examples of opposite-side replays (3 forward, 3 backward). Gray
diamond indicates the rat’s location at the time of the replay. On the bottom panel of each subfigure, spikes
are plotted by ordered place field (spatial firing field) center (along either a left or right loop of the maze) over
a one second period (see Methods, Chapter 5 ). LFPs filtered between 180 Hz and 220 Hz are plotted at the
bottom of the panel. Colored points indicate spikes that contribute positively to the sequence score of the
replay according to the automatic sequence detection algorithm. The color of the spike indicates its relative
time within the replay (light blue = early, light purple = late). Gray points are spikes that do not contribute
positively to the score. For cells with multiple place fields, small black points are plotted at every place field
center belonging to the cell (colored points occupy the place field center that contributes maximally to the
score). Each colored point from the bottom panel is plotted on the 2D maze in the top panel at the location of
its 2D place field center. Note that forward replays could begin near the rat’s location (row (A), left) or on the
opposite side of the maze (row (B), left). Similarly, backward replays could begin near the rat’s location (row
(A), right) or on the opposite side of the maze (row (B), right). Backward replays occurred over parts of the
environment that were rarely or never experienced in the reverse direction (Figure 8 and Figure 14 ). (From
Gupta et al., 2010.)
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Spatial distributions of forward and backward replays

Given that replays could start at any location on the maze, we investigated whether certain

portions of the maze were preferentially represented by forward or backward replays. While

same-side replays occurred as expected, with forward replays ahead of the animal and

backward replays behind it, this pattern was reversed for opposite-side replays (Figure 10 ).

Here, forward replays preferentially occurred on the segment leading up to reward sites, and

backward replays similarly covered trajectories ending near reward sites. Thus, distant/non-

local replays not influenced by the animal’s current location did not uniformly represent the

environment, but preferred certain trajectories. A potential concern is that if the distribution

of place fields is non-uniform, more replays will be detected along segments of the track

that have more place fields. To test this possibility we compared the spatial distributions

of forward and backward replays with the spatial distribution of place fields and found that

they were significantly different (p < 10−71, forward vs place fields; p < 10−176, backward

vs place fields; Kolmogorov-Smirnov tests). As shown by the place field distribution in

Figure 10A,B , the trajectory preferences for forward and backward replay on the top and

bottom of the maze were not reflected by the spatial distribution of place fields. Backward

replays frequently included the central stem, whereas forward replays did so less often.

Overall spatial distributions of forward and backward replays were also significantly different

(p < 10−197, Kolmogorov-Smirnov test). Since trajectories around a given loop were equally

experienced, but not equally replayed, this demonstrates a dissociation between the two,

which is inconsistent with the hypothesis that the content of replay reflects the amount of

previous experience.

Comparison of data with current proposed mechanisms

Current proposals for the mechanism of replay suggest that it should reflect recent expe-

rience (Foster and Wilson, 2006; Jackson et al., 2006) or total experience (Buzsáki, 1989;
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Figure 10: Spatial distribution of forward and backward replays. (A) Place field spatial distribution. (B)
Forward replay spatial distribution. (C) Backward replay spatial distribution. Spatial distributions over the entire
environment are shown in the second row. The first and third rows display the spatial distribution over the top
and bottom of the maze (indicated by gray and black boxes in row 2), respectively. Spatial distributions over the
top and bottom of the maze are overlaid for comparison in the fourth row. All mazes were flipped and aligned
such that the animal’s location was always on the left side of the maze (indicated by gray diamonds) at the
time of the replay. Therefore, the spatial distribution on the left side of the maze reflects same-side replays and
the distribution on the right reflects opposite-side replays. The pixel color indicates the total number of replays
that represented that particular location in the environment (see colorbar in image). Errorbars in rows 1, 3,
and 4 are SEMs over 31 sessions. Note that forward and backward replays preferentially represented certain
portions of the maze, which could not be explained by the place field distribution. Overall distributions were
significantly different (p < 10−71, forward vs place fields; p < 10−176, backward vs place fields; p < 10−197,
forward vs backward; Kolmogorov-Smirnov tests). (From Gupta et al., 2010.)
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Wilson and McNaughton, 1994; Redish and Touretzky, 1998; Redish, 1999; Sutherland and

McNaughton, 2000). To test these ideas, we examined the distributions of time and number

of experiences that had elapsed between replaying a sequence and the most recent expe-

rience of that sequence. Since same-side replays involve a recent behavioral experience,

we only considered the 534 opposite-side replays for this analysis. Histograms showing the

amount of time elapsed since the last experience and the number of laps that had been

run since the last experience for each replayed trajectory are shown in Figure 11A,B . The

median time since the last experience was 337 s and the median number of laps since the

last experience was 9 laps (366 s, 11 laps for forward replays and 298 s, 7 laps for backward

replays). A substantial number of forward and backward trajectories were replayed more

than 10 minutes or 15 laps after they were last experienced.

We also asked whether replayed trajectories favored the side of the maze that had been

the most experienced within a session. For each non-central stem replay (1403 replays),

the total number of laps the rat had run on the same side of the maze as the replayed

trajectory was divided by the total number of laps that the animal had run on either side of

the maze at the time of replay. A histogram of this proportion (the proportion of the rat’s

total experience that had occurred over the replayed trajectory) is shown in Figure 11C .

The symmetry of this histogram indicates that poorly and extensively experienced portions

of the maze were both replayed with a similar frequency (median of distribution = 0.5 for

all replays). Contrary to the predictions of current proposals, replay did not preferentially

represent trajectories that had been experienced most often within a session. This also

held true for forward replays only and for backward replays only (not shown).

To directly test the recent experience and total experience hypotheses, we compared

the data in Figure 11A-C with the distributions that would be expected under three sce-

narios of replay content generation: (1, blue) replays preferentially include the most recent

experience, (2, red) replays preferentially include trajectories that are highly experienced

within a session, and (3, green) replays are independent of experience (all portions of the
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environment have an equal chance of being replayed, independent of recent or total experi-

ence). For each scenario, we used the actual rat behavior and replay times, but reassigned

the content of each replay depending on the scenario (see Methods, Chapter 5 ). For ex-

ample, under Scenario 1 (most recent experience), replay was assumed to reflect the most

recently experienced lap. Thus, the number of laps since the last experience (Figure 11B )

was always 1, but the time since the last experience (Figure 11A ) depended on the time

the animal had been paused at the reward sites.

Our observations are not compatible with the hypothesis that replay reflects the most re-

cent experience, nor with the hypothesis that it reflects the accumulated experience within

a session. Instead, our data is most similar to what would be expected if replays were in-

dependent of experience within a session. (Data vs accumulated experience: laps (p <

10−12), time (p < 10−10), proportion (p < 10−32); Data vs most recent experience: laps

(p < 10−54) time (p < 10−31), proportion (p < 10−34); Data vs experience independent: laps

(p < 0.05), time (p < 0.05), proportion (p < 0.05), Kolmogorov-Smirnov tests, see Methods,

Chapter 5 .) Since the number of left and right laps that each animal experienced over its

lifetime was counterbalanced, a scenario in which replay equally reflects all experiences

over the animal’s lifetime would look like the experience-independent scenario. Thus, this

result is not compatible with the recent or accumulated experience within a session scenar-

ios, but may be explained by a scenario in which replay reflects the animal’s total experience

over its lifetime. However, the preferential replay of certain trajectories (described above)

and the pattern of replays (below) cannot be explained by the experience-independent sce-

nario either.

Task-dependence of the content of replay

Since the task contained alternation (A) as well as left-only (L) and right-only (R) half-

sessions, we asked whether the proportion of opposite-side replays was different when

the animals were alternating compared to when they were performing laps on only one
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Figure 11: Replay content is incompatible with scenarios based on recent experience or accumulated experi-
ence within a session. (A) Histogram showing the time elapsed since the last behavioral experience over each
replayed trajectory. (B) Histogram showing the number of laps elapsed since the last behavioral experience
over each replayed trajectory. (C) Histogram showing the proportion of total behavioral experience on the
same side of the maze as each replayed trajectory at the time of the replay. The actual data (gray bars) is
compared against three scenarios, where replay coverage is determined by recent experience (blue line), by
accumulated experience (red line), or independent of experience (green line). The curves representing each
scenario were constructed based on the animals’ actual behavior and replay times (see Methods, Chapter 5 ).
Thus, the shapes of the curves reflect the finite session length and the behavioral contingencies. For example,
the time-since-last-experience curve for the experience independent scenario (panel A) slopes downward due
to the decreased probability that a replay event and the last experience over the replayed trajectory will be
separated by 2000 s in a 2400 s recording session. Similarly in panel C, the experience independent curve
has three peaks, reflecting the fact that experience was evenly distributed between left and right laps (during
alternation) or was primarily on one side of the maze (during left or right-only contingencies). Note that in
panel C, only the experience-independent scenario yields a good match to these data, because the other two
scenarios fail to account for the peak in replays on the poorly-experienced side (black arrow). These results
were replicated using a Bayesian decoding approach (Figure 13 ). (From Gupta et al., 2010.)
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side of the maze. During alternation half-sessions, experiences on the opposite side of the

maze occurred more recently in the past and would occur sooner in the future compared

with opposite-side experiences during left-only or right-only half-sessions. The median time

since the last experience over the replayed trajectory and the number of laps since the last

experience for opposite-side replays during alternation was 110 s and 1 lap, while the me-

dian time and laps since the last experience for opposite-side replays during left-only or

right-only half-sessions was 382 s and 11 laps. These distributions were significantly differ-

ent (time since last experience, alternation vs left or right-only: p < 10−4; laps since last

experience, alternation vs left or right-only: p < 10−7, Mann-Whitney tests). The recent ex-

perience and total accumulated experience within a session scenarios predict an increased

number of opposite-side replays during alternation sessions and the experience indepen-

dent scenario predicts an equal proportion of opposite-side replays during alternation and

left-only and right-only sessions. Contrary to all three of these scenarios, a larger propor-

tion of opposite-side replays occurred during left-only or right-only half-sessions compared

to the alternation half-sessions (Figure 12A, B , p < 0.002, Mann-Whitney test). This result

suggests that replays may serve a role in preserving the representation of non-recent tra-

jectories. The results shown in Figure 11 and Figure 12 were replicated using a Bayesian

1-step decoding method with a 20 ms sliding time window (Zhang et al. (1998), see Fig-

ure 13 and Methods, Chapter 5 ).

Never-experienced shortcut sequences

19 shortcut sequences were observed over 8 sessions from 3 rats. These sequences tra-

versed a straight path on the top (R152: 1 occurrence; R153: 11 occurrences over 3 ses-

sions) or bottom (R153: 1 occurrence; R158: 6 occurrences over 3 sessions) of the maze

between the reward sites. Trajectories spanning the bottom of the maze were very infre-

quently experienced (R153: 4 times out of approximately 1780 laps; R158: 12 times out of

approximately 1550 laps), never rewarded, and at the time of recording a minimum of three
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Figure 12: Influence of the behavioral contingency on the content of replay. (A) Proportion of opposite-side
replays on alternation (A) vs right (R) or left-only (L) contingencies. The “Data” group is shown with all replays
combined, as well as with forward and backward replays separately. Whereas the scenarios (described in
text) all predicted a higher or equal proportion of opposite-side replays during alternation half-sessions, the
data contained a significantly higher proportion of opposite-side replays during right or left-only half-sessions.
[Errorbars are SEMs over half-sessions] This result was replicated using a Bayesian decoding approach
(Figure 13 ). (B) Examples of same-side and opposite-side replays on L and R contingencies versus an A
contingency (2 sessions shown). For each session, the top panel shows left lap experiences (vertical green
lines), which were followed by pauses at left reward locations, and replays (points) that occurred over the
left side of the maze, while the animal was paused at either left or right reward locations. The bottom panel
shows right lap experiences (vertical purple lines) and replays (points) that occurred over the right side of the
maze. Dashed lines indicate error laps (e.g. the animal performs a right lap when only left laps are rewarded).
Opposite-side replays are indicated by blue points, same-side replays by red points, and central stem replays
by small gray points. Vertical red lines mark the contingency switch. X axis is time, Y axis is replay sequence
score (see Experimental Procedures). Note the large number of blue points (opposite-side replays) during L
or R contingencies compared to A. Thus, there was a bias for replaying non-local trajectories when they were
infrequently experienced. This is in contrast to all three scenarios for replay content generation, including the
experience-independent scenario. (From Gupta et al., 2010.)
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Figure 13: Replay content versus scenarios using Bayesian decoding. (A-C) Comparison of opposite-side
replays (classified using Bayesian decoding) with the same three scenarios presented in Figure 11 . (D)
Proportion of opposite-side replays on alternation (A) vs right (R) or left-only (L) contingencies determined
from Bayesian decoding of replay sequences. Compare with Figure 12 . (From Gupta et al., 2010.)

days had passed since the animal had experienced the trajectory. Trajectories spanning the

top of the maze were never experienced by one rat (R153) and only experienced 6 times

by another (R152). All experience on the maze, including all training sessions, was ana-

lyzed (Figure 14 ). Therefore, rat R153 constructed at least 11 never-experienced shortcut

sequences across the top of the maze over 3 separate recording sessions (Figure 15A ).

Each of these novel trajectories began close to the animal’s location on one side of the

maze and ended close to the reward location on the opposite side. Some of the trajectories

appear to dip down slightly at the choice point. This is likely to be a consequence of the

assignment of place field centers and can be explained by the non-uniform sampling of the

region around the choice point (lots of sampling below, but not above) and by the observa-

tion that the animals usually cut the corner at the choice point, creating a sampling bias that

resulted in downwardly displaced place field centers at the choice point.

In order to control for the possibility that back-to-back forward and backward replays
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Figure 14: Physical paths taken by each rat. Each maze from each day was divided into nine boxes and
sequential sampling of each pair of boxes was measured. Thus, if a rat was at the top right corner of the
maze, if the next box entered was the center portion of the return rail on the right side, this would contribute
one count to a forward path from top-right to center-right. However, if the next box entered was the choice
point (top-center), then this would contribute one count to a backward path from top-right to top-center. Total
number of sampled paths were counted over all training and test sessions. The vast majority of paths were
forward. Note that some of the backward replay sequences observed occurred over paths never completely
experienced in the backward direction (implying that they are truly backward replays, see Figure 9 ). Also
note that shortcut replays occurred that were never completely experienced in either forward or backward
directions (implying that they are truly novel sequences, see Figure 15 ). There are multiple reasons why the
number of trajectories identified around each lap are not identical: tracking errors, clipping of the first few
seconds of some sessions (due to tracking errors as the animal is first placed on the maze), removal of the
animal at the end of the session at different points on the maze, and possible errors by the detection algorithm.
Nevertheless, it is clear that the vast majority of trajectories were forward and that there are trajectories that
were replayed but never experienced in the direction of replay. (From Gupta et al., 2010.)
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Sequence expected (E) bootstrap observed (O) significance of O-E
type probability probability probability difference (binomial test)
Disjoint sequences 20/32 = 62.5% 64% 0/19 = 0% 8 × 10

−9

Non-shortcut sequences 8/32 = 25% 24% 3/19 = 15% 0.15
Shortcut sequences 4/32 = 12.5% 12% 16/19 = 84% 2 × 10

−12

Shortcut sequences under 4/12 = 33.3% 33% 16/19 = 84% 7 × 10
−6

back-to-back replay theory

Table 1: Comparison of shortcuts observed with expected proportions of shortcuts given random pairings of
forward and backward replays. (From Gupta et al., 2010.)

aligned to give rise to what appeared to be a shortcut trajectory, we measured the likelihood

that the random alignment of forward and backward replays would account for the number

of shortcuts actually observed. The chance of this happening was very small (p < 10−8,

binomial test, see Table 1 ). Similarly, the possibility that the novel trajectories were actually

two replays in which the second replay picked up where the first one left off was also un-

likely to account for the shortcut trajectories (p < 10−5, binomial test, see Table 1 ). Given

all possible combinations of forward and backward replays, we calculated the distribution of

disjoint, non-shortcut, and shortcut sequences that would occur if forward and backward re-

plays were randomly paired. Both the expected distribution (based on a uniform distribution

of forward and backward replays) and the bootstrapped distribution (based on the actual

distribution of replays) differed from the observed distribution (Figure 15B, C ). This strongly

suggests that the observed sequences were novel sequence constructions.

6.3 Discussion

By considering the content of what is replayed during a task that manipulates the recency

and frequency of experiences, our data speaks to two main issues: the first concerning the

relationship between replay and experience within a session and the second concerning the

content of what is replayed. We found that within a session the hippocampus replayed both

frequently and infrequently experienced trajectories in both forward and backward orders.

Both forward and backward replay robustly occurred over trajectories not experienced in
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Figure 15: Construction of novel shortcuts. (A) Examples of novel trajectories. On the bottom panels, spikes
are plotted by ordered place field center for both left and right loops over the same 0.5 s period. The gray
vertical lines mark the beginning and end of the shortcut sequence and capture the exact same period of time
on both left and right loop raster plots (as can also be seen in the repeated LFP trace). The temporally color
coded spikes (as described in the Figure 9 caption) are plotted on the 2D maze (top panels) to visualize the
shortcut trajectories spanning the top of the maze. (B) Examples of a shortcut trajectory (black), a disjoint
trajectory (beige), and a non-shortcut sequence (light blue). (C) Expected, bootstrapped, and observed dis-
tributions of disjoint, non-shortcut, and shortcut trajectories (see Methods, Chapter 5 ). This analysis shows
that the observed shortcuts were extremely unlikely to arise from chance alignments of forward and backward
replays, supporting the notion that rats can mentally construct spatially coherent, but never-experienced paths
(see Figure 14 for paths experienced by each rat). (From Gupta et al., 2010.)
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more than 10 minutes or 15 laps, in an environment with the vast majority of experience in

one direction. Furthermore, during left-only and right-only half-sessions, trajectories along

the non-recent (opposite-side) loop were replayed with a similar frequency to trajectories on

the recent (same-side) loop. This observation was in contrast to alternation half-sessions in

which opposite-side loops were replayed less frequently. These observations indicate that

current proposals for potential mechanisms of replay that rely on recency or frequency of

experience are inadequate.

In theories of learning and consolidation, the information replayed is the information

learned (Marr, 1971; Buzsáki, 1989; Wilson and McNaughton, 1994; Redish and Touretzky,

1998; Redish, 1999; Sutherland and McNaughton, 2000; Foster and Wilson, 2006). In

our data, trajectories in the environment leading toward reward locations and/or locations

where the animal paused after a lap were preferentially replayed. This result could not

be accounted for by the distribution of place fields on the task and suggests that certain

trajectories were actively replayed. Proposals suggesting that replay is a simple function of

experience cannot explain the preferential replay of particular trajectories.

We also found that the content of replay changed depending on the behavioral task

at hand: during alternation half-sessions a lower proportion of replays occurred along

the opposite-side loop compared to left-only and right-only half-sessions, even though the

opposite-side loop had been traversed more recently in the past and would occur sooner in

the future during the alternation half-sessions. This finding is consistent with the prediction

that the content of replay should depend on the animal’s behavior, but is the opposite pat-

tern to that predicted by the recency and frequency proposals (compare simulations from

Redish and Touretzky, 1998 and the discussion in Foster and Wilson, 2006). While previous

studies (Wilson and McNaughton, 1994; Jackson et al., 2006; O’Neill et al., 2006; Karlsson

and Frank, 2009) have found increasing replay with experience, these studies did not com-

pare tasks with different behavioral requirements in which parts of the environment were

experienced more than others. Therefore, the increase in replay with experience seen in
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these earlier studies may be due to general experience in the environment rather than the

experience of particular trajectories.

Previous interpretations of the role of replay have arisen from the concept that it pro-

vides a mechanism by which recent experiences are written out from hippocampus to

cortex (Marr, 1971; Squire et al., 1984; Squire, 1987; Buzsáki, 1989; Cohen and Eichen-

baum, 1993; Alvarez and Squire, 1994; Hasselmo and Bower, 1993; Redish and Touretzky,

1998). Correlational studies have found interactions between hippocampal replay and cor-

tical learning (Hoffmann and McNaughton, 2002; Euston et al., 2007; Ji and Wilson, 2007)

as well as transfers of dependence (Squire, 1987; Maviel et al., 2004) and learning changes

from disruption of SWRs (Girardeau et al., 2009; Jackson et al., 2009; Ego-Stengel and Wil-

son, 2010). While our data does not preclude the possibility that information is transferred

between hippocampus and cortex during SWRs, it suggests that the information available

for transfer is more reflective of the entire set of navigationally available paths rather than

the specific experiences themselves.

The results presented above suggest that sequence generation during SWRs is likely to

be involved in learning and maintaining a representation of the environment. The forward

and backward replay of all trajectories in the environment (not just the recent and well-

experienced ones) could be a mechanism to establish and reinforce connections between

nearby locations in the representation. During behavior, the combination of phase preces-

sion and spike timing dependent plasticity (STDP) has been proposed to enable the storage

of sequences in the order experienced by the animal (asymmetric connections are learned)

(Levy, 1996; Skaggs et al., 1996; Mehta and McNaughton, 1996). While this mechanism

would produce representations of the forward paths traversed by the animal, it would not

produce backward connections, nor would it produce novel (never-experienced) connec-

tions. Our finding of backward replay in an environment experienced primarily in one direc-

tion, over trajectories never experienced in the direction of replay, suggests that backward

replay could be an important mechanism for learning a navigationally-complete representa-
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tion of the environment: a representation that reflects not only the trajectories experienced

by the animal, but also the reverse trajectories available in the environment. This interpre-

tation is consistent with the observation that reactivation and backward replay events are

more frequent in novel environments (Foster and Wilson, 2006; Cheng and Frank, 2008),

which could be a mechanism to rapidly acquire a complete representation.

Our finding that novel sequences never experienced by the animal are also played out

during awake SWRs may also reflect mechanisms for learning the navigationally-complete

representation of the environment through the internal exploration of potential shortcuts

(Samsonovich and Ascoli, 2005). Although they were rare, the likelihood that these novel

sequences could be accounted for by chance alignments of forward and backward replays

was very low — the distributions observed were significantly different from those expected

by a bootstrap pairing of replays. The presence of shortcut sequences offers strong support

that the hippocampal network contains a navigationally-complete representation (a cogni-

tive map) of the environment (Tolman, 1948; O’Keefe and Nadel, 1978). These sequences

further support the idea that backward replay is not simply an experience replayed in the

reverse order, but rather reflects a constructed sequence representing a trajectory in the

environment. The properties of sequence “play” described here suggest that hippocam-

pal reactivation during SWRs could be an important part of the mechanism that learns this

cognitive map.

One problem with maintaining a stable representation of the environment is the issue

of catastrophic interference: when a network simultaneously learns and encodes many

sequences, sequences that aren’t being rehearsed tend to degrade as other activated se-

quences interfere with them (O’Reilly and McClelland, 1994; McClelland et al., 1995). Pref-

erentially replaying non-local trajectories when they aren’t being visited (as was the case

for left-only and right-only half-sessions but not for alternation half-sessions) could be a

mechanism to prevent the representation of the non-recently experienced trajectories from

degrading (Pomerleau, 1991). Reactivation of memories from previous tasks within a day
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(Jackson et al., 2006; Karlsson and Frank, 2009) may serve a similar purpose.

The hippocampal formation has been shown to be important for the imagination of novel

situations (Hassabis et al., 2007) and has been implicated in self-projection (Gelbard-Sagiv

et al., 2008), the ability to consciously explore the world from different perspectives (Buck-

ner and Carroll, 2007). Our data that sequential place cell activation during awake states

reflects forward, backward, and novel sequences spanning the environment, with a pattern

more consistent with maintaining a representation of the environment than with replaying

recent experiences, supports the hypothesis that the hippocampus may provide a potential

substrate for self-projection-like processes. The fact that these properties occur during the

awake state, while the animal is paused but still engaged in the behavioral task, allows the

intriguing speculation that “replay” could contribute to the animal’s real-time representation

of the world, providing access to information spanning the cognitive map, thereby support-

ing flexible and goal-driven behaviors.
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7 Hippocampal theta sequences

This chapter contains original work submitted by my colleagues and me: Hippocampal

theta sequences: dynamic modulation and the segmentation of spatial experience (Gupta

et al., in revision). This work demonstrates a relationship between animal behavior and

hippocampal spatial representations and provides a potential mechanism for the cognitive

chunking of experience.

7.1 Summary

In freely-moving rodents, neural activity during each theta cycle represents a path beginning

just behind the animal and ending just ahead of the animal. We report that, under certain

conditions, as animal velocity increased, theta sequences represented longer paths in the

environment. As animals accelerated, paths included more space ahead of the animal and

during deceleration, paths included more space behind the animal. Furthermore, as path

length increased, there were linear increases in both theta period and number of gamma

cycles per theta cycle. Finally, we observed that neural activity represented the environment

in segments bounded by physical maze landmarks. These observations suggest a potential

neural mechanism for the cognitive chunking of experience.

7.2 Results

To investigate the relationship between behavior and the paths represented by theta se-

quences, we recorded neural ensembles from the CA1 region of hippocampus in six rats

trained on a spatial decision task (see Methods, Chapter 5 , Figure 16A ). The beginning

and end of each theta cycle was identified and the neural activity during each cycle was

analyzed. Using the sequence decoding algorithm described in Chapter 5 , the paths repre-

sented during each theta cycle were determined, and only those sequences with statistically
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significant structure and three or more active cells were included for analysis (analyses were

also performed using a Bayesian decoding approach Zhang et al., 1998). Furthermore,

theta cycles with a mean sharp wave ripple (SWR) power greater than one standard devia-

tion above the mean were excluded from analysis to avoid the inclusion of replay sequences.

Out of 618,408 theta cycles over 31 recording sessions, 168,770 cycles had three or more

active cells, SWR power less than one standard deviation above the mean, and theta power

greater than one standard deviation below the mean. Of these cycles, 33,397 (19.8%)

contained statistically significant neural sequences (see Methods, Chapter 5 ). Figure 16C

displays the distribution of animal occupancy (time spent) over the linearized maze for all

theta cycles (dotted line) and only theta cycles with significant sequences (solid line). As

expected, animals spent the most time at the feeder locations (dotted line) and a smaller

proportion of theta cycles were significant at the feeder locations compared with other loca-

tions on the maze (contrast dotted and solid lines).

For each theta sequence, the detection algorithm determined the start and end location

of the represented path as well as the starting and ending theta phase of spikes in the

sequence. From the start and end location of the path, as well as the animal’s location,

we calculated three key distances: the distance from the animal’s location to the end of the

path (the "ahead" length), the distance from the start of the path to the animal’s location (the

"behind" length), and the total length of the path ("path" length).

We examined the relationship between animal velocity and path length by creating a 2D

histogram of velocity as a function of path length. As shown in Figure 16B , there was a

low-velocity and a high-velocity population of sequences. The low-velocity sequences were

preferentially observed when animals were at the feeder locations and the choice point

(Figure 16E ), whereas high-velocity sequences were evenly distributed across the maze

(Figure 16D ). For the remainder of the analyses presented here, we focus on high-velocity

theta sequences (29,351 sequences), although all results are unchanged by the inclusion of

low-velocity sequences. We come back to the relationship between velocity and the length
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Figure 16: (A) The two-choice T maze. The maze had two possible physical configurations, the second
indicated by dotted lines. Noteworthy landmarks on the maze include the maze start (MS), turn 1 (T1), turn
2 (T2), top corner (TC), feeder 1 (F1), feeder 2 (F2), and bottom corner (BC). Arrows indicate the direction
of maze traversal. (B) Theta sequence histogram of animal velocity versus path length. The color of each
pixel indicates the number of theta sequences with a specified path length (x-axis) recorded while an animal
was running at a particular velocity (y-axis). The horizontal dotted line separates low velocity theta sequences
from high velocity ones. Average velocity as a function of path length for high-velocity sequences is plotted in
white with thickness indicating the SEMs. Short and long theta sequences were divided based on the peak of
the average velocity curve (vertical dotted line). (C) Overall and selected sequence count over the linearized
maze. Overall sequence count over the maze (dotted line) is a reflection of the amount of time animals spent
at each location on the maze. Selected sequence count (solid line) indicates the number of sequences at each
location on the maze that passed the inclusion criteria. (D) High-velocity sequence count over the linearized
maze. The number of high-velocity sequences (sequences above horizontal line in panel B) at each location
on the maze. (E) Low-velocity sequence count over the linearized maze.
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of space represented later in the Results section.

Ahead and behind length are anti-correlated and occur durin g different parts of the

theta cycle

To determine the relationships between path, ahead, and behind length, we plotted each

mean length with respect to the others. As shown in Figure 17E , as path length increased,

both ahead and behind length increased, as would be expected since the path length of

each theta sequence is the sum of its ahead and behind length. On the other hand, as

behind length increased, ahead length decreased. Thus, ahead length and behind length

were anti-correlated (r = -0.24, p < 0.01): spatial paths that extended further forward did not

begin as far back and vice versa.

Next, we determined the mean starting and ending phase of each spike sequence as a

function of path, ahead, and behind length. As path length increased, the spike sequence

began earlier in the theta cycle and ended later in the theta cycle (Figure 18A , left column).

As ahead length increased, the spike sequence ended later in the theta cycle, but the

starting phase of firing was relatively constant (Figure 18A , middle column). The opposite

was true for increasing behind length: as behind length increased, the spike sequence

began earlier in the theta cycle and the ending phase was relatively constant. Thus, as the

represented path extended further ahead of the animal, spikes extended later in the theta

cycle, and as the path represented began increasingly behind the animal, spikes began

earlier in the theta cycle.

Theta period and gamma cycles increase with path length

As path length increased, we observed that theta period and the number of gamma cycles

per theta period also increased (Figure 18B,C ). Using the relationship between theta period

and velocity (Figure 17D ) and the observed relationship between velocity and path length
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Figure 17: (A) Histograms of the number of theta cycles over the number of active cells per theta cycle.
Top panel includes all theta cycles over 31 recording sessions (618,408 cycles). Middle panel includes theta
cycles with three or more active cells, mean sharp wave ripple power less than one standard deviation above
the mean, and theta power greater than one standard deviation below the mean (168,770 cycles). Bottom
panel includes theta cycles whose neural activity contains significant sequential structure as described in
Chapter 5 (33,397 cycles). (B) Mean LFP power (z-scored by session) as a function of path, ahead, and
behind length. (C) Compression ratio (length of spatial path represented divided by distance traveled by the
animal) as a function of velocity and acceleration. For clarity, compression ratio versus velocity is shown for
velocities greater than approximately 20 cm/s. For slower velocities, as velocity decreases, the compression
ratio increases exponentially. (D) Theta period and number of gamma cycles as a function of velocity. (E)
Left to right: ahead length as a function of path length, behind length as a function of path length, and ahead
length as a function of behind length. Note the inverse relationship between ahead length and behind length.
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Figure 18: (A) Starting and ending theta phase as a function of path, ahead, and behind length. Starting
phase refers to the theta phase of the first spikes in each theta sequence. Similarly, ending phase refers to
the theta phase of the last spikes in each sequence. (B) Theta period as a function of path length. The blue
curve in the top panel displays average theta period (y-axis) with increasing path length (x-axis). Errorbars are
SEMs. The gray curve demonstrates the relationship between theta period and path length if the relationship
was purely a secondary affect of the relationship between theta period and velocity and path length and
velocity. The bottom panel shows the subtraction of the gray and blue curves in the top panel, which removes
the velocity component of the relationship. (C) Gamma cycles as a function of path length. See panel B
description, with the number of gamma cycles replacing theta period. Figure insets show results replicated
using Bayesian decoding (see Methods, Chapter 5 ).
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(Figure 16B ), we determined the relationship between theta period and path length if theta

period were purely a function of velocity (Figure 18B , top, gray curve) and subtracted it

from the observed relationship (Figure 18B , bottom). As shown in this figure, when con-

trolled for velocity, theta period increased linearly with increasing path length. Similarly, the

number of gamma cycles increased linearly with increasing path length (Figure 18C ). In

summary, longer theta periods, more gamma cycles per theta cycle, and spikes occurring

earlier and ending later in the theta cycle were associated with longer paths represented by

theta sequences.

Ahead and behind representations

As described above, we observed that the represented path sometimes extended well

ahead of the animal, and at other times began farther behind the animal.

Johnson and Redish (2007) observed that when animals arrived at a choice point, the

CA3 region of hippocampus represented spatial paths extending substantially ahead of the

animal. These representations began near the animal’s location and traversed each path

the animal had the option to take, one at a time. Power in the theta band was strong

during these representations. It is possible that the spatial paths they observed in CA3

are analogous to the longer, ahead representations we report here from CA1 recordings.

Examples of ahead and behind representations are shown in Figure 19 . Ahead sequences

were observed at the choice point as well as at other specific locations on the maze.

Average ahead and behind length over space

In order to determine whether theta sequences preferentially represented space ahead or

behind the animal at certain locations on the maze, the average ahead length and the

average behind length were plotted as a function of linearized location on the maze. As

shown in Figure 20A,C , we observed clear peaks and troughs in average ahead length
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Figure 19: Examples of ahead and behind sequences. Top row : ahead sequences while animals were
located at the choice point. Middle row : ahead sequences while animals were at other locations on the
maze. Bottom row : behind sequences on the maze. Each example is represented by a left and right panel.
Left panel : the gray diamond indicates the rat’s location at the time of the sequence. The animal’s average
velocity over the theta cycle is displayed at the top of each subfigure. On the bottom panel of each subfigure,
spikes are plotted by ordered place field center (along either a left or right loop of the maze) over a 300 ms
period (see Experimental Procedures). LFPs filtered between 6 Hz and 12 Hz (red), 40 Hz and 100 Hz (green),
and unfiltered (gray) are plotted at the bottom of the panel. Colored points indicate spikes that contribute
positively to the sequence score according to the automatic sequence detection algorithm. The color of the
spike indicates its relative time within the sequence (light blue = early, light purple = late). Gray points are
spikes that do not contribute positively to the score. For cells with multiple place fields, small black points
are plotted at every place field center belonging to the cell (colored points occupy the place field center that
contributes maximally to the score). Each colored point from the bottom panel is plotted on the 2D maze in
the top panel at the location of its 2D place field center. Right panel : the Bayesian decoded spatial probability
distributions computed over the theta sequence (see Methods, Chapter 5 ).
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over space and average behind length over space. Furthermore, average ahead length and

average behind length were anti-correlated over space (r = -0.5, p < 0.01), with ahead length

peaks aligning with behind length troughs, and vice versa. This observation is consistent

with, but not a necessary result of the inverse relationship between ahead and behind length

presented above (Figure 17E ). Thus, at certain locations on the maze, the hippocampus

represented more space ahead of the animal and less space behind, and at other locations

on the maze, the hippocampus represented more space behind the animal, and less space

ahead.

The peaks of ahead length and the peaks of behind length had a relationship with re-

spect to physical landmarks on the maze (i.e., turns and feeders). Ahead length peaks

were generally observed just after landmarks (e.g., MS, T2, F1, BC) and behind length

peaks were observed just before landmarks. Thus, as animals entered a segment of the

maze, defined by two physical landmarks, the spatial representation was more ahead of the

animal and as animals exited the segment, the representation was more behind the animal.

Spatial distribution of represented paths

The alternating pattern of ahead and behind representations resulted in the preferential rep-

resentation of segments of the maze lying between landmarks, as reflected in the spatial

distribution of represented paths (Figure 20B ). The distribution demonstrated that paths

represented by theta sequences preferentially occurred between landmarks on the maze,

instead of across them. The distribution shown was normalized such that the paths repre-

sented at each location on the maze contributed equally to the distribution (occupancy nor-

malization). This ensured that factors such as the animal consistently spending more time

at a particular location on the maze did not misleadingly influence the distribution around

that point.

The observed distribution was compared to a distribution created by a shuffling pro-

cedure. Keeping the animal location of each theta cycle constant, we shuffled the de-

73



Figure 20: (A) Ahead length as a function of location on maze. Peaks indicate locations at which the repre-
sented path extended farther ahead of the animal, on average. Troughs indicate locations where the repre-
sented path ended closer to the animal’s location. Figure insets in panels A, B, and C show results replicated
using Bayesian decoding (see Methods, Chapter 5 ). (B) Density of represented paths as a function of loca-
tion on maze. Peaks indicate regions of the maze that were overrepresented by theta sequences. Y axis is
average Z-score (Z-score computed over each session). (C) Behind length as a function of location on maze.
Peaks indicate locations at which the represented path began farther behind the animal, on average. Troughs
indicate locations where the represented path began closer to the animal’s location. (D) Acceleration as a
function of location on maze. Y axis is average Z-score (Z-score computed over each session). Errorbars
are SEMs. As a control, panels A-C include a curve produced by randomly reassigning theta sequences
with different animal locations. This shuffling procedure was performed 100 times and the average shuffled
distribution (black curve) is plotted alongside the real data.

74



coded paths and randomly assigned them to the animal locations. This was performed 100

times and the average spatial distribution was plotted along with the observed distribution

(Figure 20B ). As would be expected from the occupancy normalization, the shuffled distri-

bution was relatively flat, demonstrating that the observed spatial distribution of paths was

a product of specific sequences occurring at particular locations on the maze. The shuffling

procedure was also performed for the average ahead and behind length over space plot

(Figure 20A,C ), and as expected the shuffled distribution was flat.

We compared the spatial distribution of represented paths (and ahead and behind length

over space) with the place field density, place field length, the animal’s velocity, and the

animal’s acceleration. The place field density, place field length, and average velocity

over space did not match the shape of the path distribution or ahead and behind length

(Figure 21 ). Place field length, plotted by location on the maze, showed some peaks in

between landmarks, however the overall shape and magnitude was not consistent with the

ahead, behind, and spatial path distributions. For example, peaks in the ahead and behind

distributions between the maze start (MS) and turn 1 (T1) had peak to trough distances

of approximately 12 cm (18 to 30 cm for ahead and 11 to 23 for behind) (Figure 20A,C ),

whereas the peak to trough distance of the place field length distribution was approximately

half that distance (6 cm; 37 to 43 cm) (Figure 21B ). Furthermore, large peaks in the ahead

and behind distribution were seen between the feeders (F1 and F2) in the absence of a

peak in the place field length distribution.

However, average acceleration over space (Figure 20D ) shared striking similarities with

the path distribution. For each peak in the path distribution, there was a corresponding peak

in acceleration, which was shifted slightly to the left. The peaks and troughs of acceleration

were actually aligned with peaks in ahead length and peaks in behind length, respectively

(Figure 20A,C ) and ahead length was positively and behind length was negatively corre-

lated with acceleration over space (ahead: r = 0.41, p = 0.016; behind: r = -0.74, p < 0.01 ).

This observation predicts a relationship between acceleration and ahead and behind length
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Figure 21: (A) Place field density as a function of location on linearized maze. The height of the curve reflects
the number of place fields overlapping a particular location in the environment. Y-axis is z-scored place field
distribution by session, x-axis is linearized maze. (B) Mean place field length as a function of location. Y-axis
is centimeters averaged by session, x-axis is linearized maze. (C) Animal velocity as a function of location on
linearized maze. Y-axis is z-scored velocity by session, x-axis is linearized maze.

76



(see below).

In summary, the spatial distribution of paths represented by theta sequences reflected an

over-representation of certain segments or "chunks" of the environment that were bounded

by physical landmarks on the maze.

Ahead length increases with acceleration, behind length in creases with deceleration

Next, we investigated the relationship between animal acceleration and path, ahead, and

behind length. We observed that as ahead length increased, acceleration also increased,

and, conversely, as behind length increased, acceleration decreased (Figure 22A , top

row). In contrast, acceleration remained constant or decreased slightly with increasing path

length.

These relationships were strong for shorter ahead and behind lengths and dropped off

for longer lengths. This was also seen in the relationship between velocity and path, ahead,

and behind length (Figure 22B , top row). Thus, we divided sequences into a set of shorter

sequences and a set of longer sequences, based on the peaks of the velocity versus path,

ahead, and behind length curves (marked by vertical lines in Figure 22A,B , top row). The

peaks were located at approximately 25 cm (path) and 20 cm (ahead and behind). Accel-

eration continued to increase (with ahead length) and decrease (with behind length) slightly

past these drop-off points, indicating the relative strength of the relationship between accel-

eration and ahead and behind length compared to velocity.

Ahead length and behind length for the shorter sequences displayed a linear relation-

ship with acceleration (Figure 22A , middle row). Ahead length doubled in distance over

the range of acceleration. Conversely, behind length decreased by approximately 50%

with increasing acceleration. Whereas changes in ahead and behind length were clear for

the shorter sequences, ahead and behind length were relatively constant over acceleration

for the longer sequences (Figure 22A , bottom row), demonstrating that the path length of

shorter and longer theta sequences depend on behavior in different ways. These relation-
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ships were robust, as the exclusion of the spike with place field center farthest ahead or

farthest behind the animal did not alter the relationships (Figure 23A,B ). Furthermore, the

use of a Bayesian decoding approach to determine the represented path yielded qualita-

tively similar results (Figure 23C ).

In summary, there was a strong relationship between an animal’s acceleration and the

spatial path represented that was present for most, but not all theta sequences. As animals

accelerated on the maze, the path represented extended farther ahead of the animal and

began just behind the animal. In contrast, while decelerating, the path represented began

farther behind the animal and ended just ahead of the animal. On the other hand, path

length was relatively constant with acceleration. This demonstrates that the represented

path included more space ahead of the animal (and less space behind) during acceleration

and included more space behind (and less space ahead) during deceleration.

Lengths show a complex relationship with velocity

To determine the relationship between animal velocity and lengths, we plotted changes in

velocity as a function of path, ahead, and behind length. As shown in Figure 22B , top

row, as each of the three lengths increased, there was initially an increase in velocity and

subsequently a drop off.

As described above, we used the drop-off points to divide path, ahead, and behind

length into shorter and longer sequences. For the shorter theta sequences, path, ahead,

and behind length all increased with increasing velocity (Figure 22B , middle row). However,

for the longer sequences, path, ahead, and behind length all decreased with increasing ve-

locity (Figure 22B , bottom row). As with the relationship with acceleration, the relationship

of these lengths with respect to velocity were robust to spike exclusion and a Bayesian

decoding analysis (Figure 23C ).

This observation and the presence of low and high-velocity theta sequences presented

earlier (Figure 16B ) indicate that there was not a simple relationship between velocity and
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Figure 22: (A) Relationship between acceleration and path, ahead, and behind length. The top row shows
acceleration as a function of path, ahead, and behind length. Vertical lines mark the peak of each velocity
curve in panel B, which was used to divide sequences into short (S) and long (L). Below each panel of the top
row, short and long sequences are plotted separately, with path, ahead, and behind length now as a function
of acceleration. (B) Relationship between velocity and path, ahead, and behind length. As in panel A, the top
row shows velocity as a function of path, ahead, and behind length. Vertical lines mark the peak of each curve
and divide short (S) and long (L) sequences. Below each panel of the top row, short and long sequences are
plotted separately, with path, ahead, and behind length as a function of velocity.
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the paths represented during theta sequences. Some sequences representing both short

and long paths occurred while animals were stationary or moving at low velocities in the

environment as observed by Johnson and Redish (2007). Other sequences occurred as

animals were moving at faster velocities. These high-velocity sequences could be divided

into a set of short-path sequences which increased in length with increasing animal ve-

locity (Maurer et al., 2011), and a set of long-path sequences that decreased or remained

constant in length with increasing velocity. It should be noted that theta, beta, gamma,

and SWR power were relatively constant with increasing path, ahead, and behind length

(Figure 17B ), thus the LFP profile did not change as the represented path increased in

length. Furthermore, consistent with Maurer et al. (2011), we observed an exponential de-

crease in the sequence compression ratio (path length/distance traveled) with increasing

velocity (Figure 17C ).

7.3 Discussion

Neural activity during hippocampal theta provides a potential mechanism for encoding cur-

rent experience and may reflect the use of recalled information from past experience to

assist behavior. It has been previously shown that neural activity during each theta cycle

is sequential and represents a short path that begins just behind the animal and ends just

in front of the animal (Skaggs et al., 1996; Maurer and McNaughton, 2007; Foster and Wil-

son, 2007). It has also been demonstrated that the path represented increases in length

with animal velocity (Maurer et al., 2011) and extends further ahead of the animal during

pauses at a choice point (Johnson and Redish, 2007). The results presented here support

these observations and show that there is considerable diversity in the paths represented

during hippocampal theta, which is sometimes, but not always related to animal velocity,

acceleration, and physical landmarks in the environment.

We found coherent theta sequences when animals were paused or moving at very low
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Figure 23: (A) Relationship between velocity and acceleration and path, ahead, and behind length, with
the last spike in the theta sequence excluded. (B) Relationship between velocity and acceleration and path,
ahead, and behind length, with the first spike in the theta sequence excluded. Results are qualitatively similar
to those presented in Figure 22 . (C) Analyses in Figure 22 performed using Bayesian decoding (Zhang et al.,
1998) to detect the represented path during each theta cycle. See Methods, Chapter 5 for details.

81



velocities, which is consistent with the sequences observed by Johnson and Redish (2007)

in CA3. Consistent with the recent report by Maurer et al. (2011), we found that the length

of the spatial path represented during high-velocity theta sequences increased with animal

velocity. Interestingly, we found that more space was represented ahead of the animal dur-

ing acceleration and more space was represented behind the animal during deceleration.

These relationships between animal behavior and represented path held true for many, but

not all high-velocity theta sequences. Furthermore, the length of the path represented was

related to the length of the theta cycle, the number of gamma cycles occurring during each

theta cycle, and the starting and ending theta phase of the spike sequence. Finally, we ob-

served that theta sequences represented the maze in segments, which corresponded with

the segmented nature of animal behavior over the maze.

Sequence representations in the hippocampus have been extensively studied in the

theta phase precession literature. Phase precession refers to the observation that as an

animal passes through a cell’s place field, the cell initially fires late in the theta cycle and

gradually fires earlier and earlier in the theta cycle as the animal traverses the place field

(O’Keefe and Recce, 1993). At the population level, phase precession implies that com-

pressed sequences of place cell activity emerge during each theta cycle (Skaggs et al.,

1996; Tsodyks et al., 1996; Jensen and Lisman, 1996; Dragoi and Buzsaki, 2006; Foster

and Wilson, 2007; Maurer et al., 2011). A number of different models have been proposed

to account for phase precession: these include dual-oscillator interference models at the

single cell (O’Keefe and Recce, 1993) and local network level (Yamaguchi et al., 2007), as

well as network-level proposals (Tsodyks et al., 1996; Jensen and Lisman, 1996; Hasselmo

and Eichenbaum, 2005). Currently, these mechanisms cannot account for the diversity in

theta sequences reported here. Future evolutions of phase precession models will be re-

quired to explain how sequences can flexibly represent more space ahead, represent more

space behind, and vary in path length depending on the animal’s behavior.

A number of studies have investigated whether hippocampal activity is reflective of the
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past and/or the future. Some of these studies, like the one here, have focused on the

spatial path represented during the fast time scale neural activity observed in each theta

cycle (Dragoi and Buzsaki, 2006; Johnson and Redish, 2007; Foster and Wilson, 2007;

Maurer et al., 2011). Other studies have analyzed hippocampal activity with respect to the

animal’s past and future behaviors and have shown that the activity of individual place cells

or place cell ensembles (at relatively slow time scales) is sometimes more reflective of past

behaviors and is sometimes more reflective of future behaviors (Wood et al., 2000; Frank

et al., 2000; Ferbinteanu and Shapiro, 2003; Ji and Wilson, 2008). Muller and Kubie (1989)

made the argument that hippocampal activity represents the animal’s immediate future, due

to the fact that place fields were on average tighter when spikes were shifted to precede the

animal’s location by 120 ms. Thus, there is evidence that the hippocampus represents

more than just the current state of the animal during behavior and does so at multiple time

scales (Yartsev, 2008). We add to this body of work by showing that at the theta time scale,

the representation of future space and past space is dissociable and dependent on the

animal’s acceleration and landmarks in the environment. It should be noted that while its

been suggested that the "true place field" is different from the observed place field (Jensen

and Lisman, 1996; Lisman and Redish, 2009), we do not make any assumptions about the

true place field and define the point of representation of each spike as the center of the

place field (sequence detection) or the entire place field (Bayesian decoding).

Diversity in theta sequences

We suggest that some of the theta sequences observed here reflect a representation of

the animal’s immediate demands during navigation. As an animal increases its speed and

traverses a larger segment of the environment during a theta cycle, the neural sequence

correspondingly represents a longer path in space (Maurer et al., 2011). When an animal

is accelerating toward a location up ahead, the paths represented are shifted forward in

space, possibly in preparation or anticipation of reaching a desired location. As an animal
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decelerates upon approach to the goal or subgoal, the paths represented shift backward

in space, potentially in review of the experience. This indicates that sequence representa-

tions during theta are flexible, sometimes reflective of a "look ahead" function and at other

times reflective of "look behind", a result further supported by the observation that ahead

and behind length were anti-correlated in time and location on the maze. It is possible that

the ahead representations observed here reflect a predictive recall process to aid in nav-

igation (Lisman and Redish, 2009; Maurer et al., 2011) while the behind representations

reflect an encoding process to store what was just experienced (Buzsáki, 2005; Hasselmo,

2005). This type of recall process could be cued by sensory input from upcoming land-

marks, which were previously associated with locations in space, as modeled in Hasselmo

(2009). Furthermore, the observation that ahead sequences extend later into the theta cy-

cle and behind sequences begin earlier in the cycle is consistent with the proposal that

encoding and recall occur during different parts of the theta cycle (Hasselmo et al., 2002).

In addition to the theta sequences described above that increased in length with velocity

and shifted with acceleration, we observed sequences that appeared to be less related

to the animal’s immediate behavior. These include sequences representing a variety of

path lengths that were observed while animals were paused in the environment. They also

include longer path length sequences observed during movement that did not increase in

length with velocity or shift forward and backward with acceleration. These sequences may

reflect a more cognitive process, as seen by Johnson and Redish (2007). Whereas Johnson

and Redish (2007) observed long, ahead representations while animals were paused at the

choice point, we observed that these sequences occurred at other locations on the maze,

did not only occur when animals were paused, and at times represented more space ahead

of the animal and at other times represented more space behind the animal. This indicates

that theta sequences are not always a simple function of animal behavior and can flexibly

access more remote information by extending farther ahead of the animal and by beginning

farther behind the animal.
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Information processing: Theta and Gamma

It has been proposed that the information represented during each theta cycle is discretized

into parts by each cycle of gamma (Lisman and Idiart, 1995; Lisman, 2005). In this view, the

information capacity of a given cycle of theta would be determined by the number of gamma

cycles that occur over the course of the theta cycle. We observed a linear increase in theta

period and the number of gamma cycles per theta cycle as the length of the represented

path increased. Furthermore, as the path length increased, spikes began earlier and ended

later in the theta cycle. In support of Lisman and Idiart (1995) and Lisman (2005), it is

possible that the increase in gamma cycles per theta cycle allows for an increase in the

number of information processing steps, thus contributing to longer represented paths.

Behavioral and Neural Chunking

"Chunking" refers to a phenomenon in which sequential information is grouped into intuitive,

information-rich units. This recoding is thought to enable the handling of more information

at once (Miller, 1956) and to enable planning through subgoals (Newell, 1990; Newell and

Simon, 1972). From a navigation perspective, it has been previously shown that individ-

ual ventral striatal neurons, which receive hippocampal projections, have receptive fields

that represent navigationally-relevant segments in an environment (Mulder et al., 2004).

In contrast, hippocampal place cells do not represent environments in discrete segments

(Figure 21 ). As discussed below, we show for the first time that sequences of place cell ac-

tivity preferentially represent particular, navigationally-relevant chunks of the environment.

From a behavioral perspective, chunking was evident on the 2T task from the rat’s ac-

celeration over the linearized maze. There was a clear and smooth increase and decrease

in acceleration over segments of the maze bounded by physical landmarks. This was not

surprising, because landmarks on the maze were either turns or feeders, and it would be

expected for animals to slow down as they approached a turn and speed up afterwards.
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However, it should be noted that we observed an increase in acceleration prior to arrival at

the top corner of the maze, thus the behavioral chunking did not always perfectly align with

the physical landmarks.

Chunking was also evident from the neural representation of space. The spatial dis-

tribution of paths represented corresponded peak for peak with acceleration. Even the

acceleration peak that occurred over the top corner of the maze was matched with a peak

in the spatial distribution of paths. Thus, chunking was present both in the behavior of the

animal and in the neural representation of space.

It should be noted that although the spatial path distribution and mean acceleration plots

(Figure 20B,D ) had corresponding peaks, the corresponding peaks did not have similar size

characteristics. In particular, although there was a clear acceleration peak that occurred

just past the top corner (TC) of the maze, there was only a small peak in the spatial path

distribution at the TC location on the maze. This can be explained by the lack of a clear

peak in ahead length (Figure 20A ) at the TC location. Instead, ahead length continued to

increase from before the TC until the first feeder location (F1). On the other hand, the trough

in behind length was intact at the TC (Figure 20C ). This difference was reflected in the

degree of spatial correlation between behind length and acceleration (r = -0.74) compared

with ahead length and acceleration (r = 0.41). Furthermore, average ahead length and

behind length over space changed by 10-15 cm between landmarks on several instances

(Figure 20A,C ), whereas average ahead and behind length as a function of acceleration

changed by about 6 cm over the full range of acceleration (Figure 22A , middle row).

Based on these observations, we suggest that the chunking observed in the neural

representation does not imply a causal relationship between acceleration and ahead and

behind length. Instead, we suggest that the chunking present in behavior and the chunking

in the neural representation are parallel processes and the correlation between the two

processes may result in the observed relationship between acceleration and ahead and

behind length.
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While theta sequences preferentially represented segments of the environment, such

segmentation was not seen by replay sequences occurring during sharp wave ripples, while

animals were awake and paused at feeder locations on the 2T maze (Gupta et al., 2010).

Davidson et al. (2009) found that replay sequences can represent long paths in space and

can occur across multiple ripple events, leading to the suggestion that replay events consist

of chains of subsequences. Thus, it is possible that theta sequences preferentially encode

particular segments of experience, which are then concatenated during extended, multi-

ripple replay events.

Segmentation of the environment by hippocampal theta sequences has implications for

the encoding of experience and for how the hippocampus represents space. Since neu-

ral activity during theta represents experience as it occurs and operates at the time scale

required for STDP, it is thought that synaptic learning during each theta cycle is the basis

for storing experience. Thus, theta sequences representing the environment in segments

may result in the encoding of experience in chunks. Storing experience this way could be a

coding scheme that the brain uses to organize vast amounts of information in a way that is

efficient and behaviorally useful to animals.
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8 Model for backward replay generation

8.1 Abstract

The hippocampus is thought to consolidate information from past experiences by replaying

sequences of neural activity during rest states. Navigation paths are replayed both in the

order they were experienced (forward replay) and in reverse order (backward replay). It was

recently shown that backward replay can occur over spatially and temporally remote tra-

jectories, and that novel paths that were never traversed are also represented. To explore

how known hippocampal physiology may enable the expression of these replay events, I

built a computational model of hippocampal place cells in the dorsal third of CA3. Explic-

itly building in theta phase precession, the theta phase gradient, inter theta cycle learning,

and hippocampal longitudinal projections into the simulations enabled the learning of both

forward and backward associations using an STDP learning rule. Simulations showed that

under certain conditions the network produced forward, backward, and novel path replays

after traversal of a path in only one direction. If the hippocampus learns forward and back-

ward associations this way, this may provide a basis for creating a cognitive map of an

animal’s environment, allowing it to flexibly navigate and plan novel paths.

8.2 Introduction

As a rat travels a path A→B→C, the place cells representing locations along that path

become active in sequential order as the animal passes through each place field (the time

scale of behavior). However, sequential firing at the behavior time scale is not sufficient for

encoding the sequence: if each place cell fired within its place field, but fired independently

at the time scale for spike timing dependent plasticity (STDP, Levy and Steward, 1983; Bi

and Poo, 1998), in some instances the neuron representing location A would fire before

B and in others B would fire before A. Despite the fact that hippocampal pyramidal cells
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show STDP, the resulting synaptic connections would be relatively symmetric. However,

individual place cells phase precess (O’Keefe and Recce, 1993; Skaggs et al., 1996; Maurer

and McNaughton, 2007) and the order of firing is preserved within each theta cycle such

that the neuron representing location A reliably fires before the neuron representing location

B. This precisely coordinated firing, in conjunction with an STDP learning rule, enables the

hippocampal network to develop asymmetric neural connections representing experiences

in the order they were encountered (Levy and Steward, 1983; Skaggs et al., 1996; Blum

and Abbott, 1996; Mehta et al., 1997).

However, as discussed in Chapter 3 , during sharp wave ripples, hippocampal replay

sequences represent paths both in the order that they were experienced (forward replay)

and, surprisingly, in the reverse order of experience (backward replay). Backward replay

has now been shown to occur over trajectories remote in time (see Chapter 6 ), which is

difficult to explain using the proposal that backward replay results from a decaying trace of

recently active neurons. In addition, sequences can be played that were never traversed by

the animal (shortcut replay, Chapter 6 ), which cannot be explained by such a mechanism.

These results imply that reverse connections are present in the hippocampal network and

raises the question of how such connections are formed given that STDP learning rules

applied to forward order sequences can only produce forward connections. A network that

learns both forward and reverse connections could provide the basis for a cognitive map

(Tolman, 1948; O’Keefe and Nadel, 1978; Muller et al., 1991), which could be used to plan

novel behaviors and support flexible spatial navigation.

In this work, we explore how four aspects of hippocampal physiology and anatomy may

contribute to the establishment of reverse connections and the generation of backward and

shortcut replay sequences. The four components studied include hippocampal theta phase

precession, neural activity occurring during adjacent theta cycles (inter-theta cycle activity),

anatomical projections across the longitudinal or septo-temporal (ST) axis of the hippocam-

pus, and the hippocampal theta phase gradient across the longitudinal axis (Lubenov and
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Siapas, 2009). The way in which longitudinal projections and the theta phase gradient may

contribute to learning reverse connections will be introduced in the next section.

As described above, hippocampal phase precession organizes the timing of spikes

within each theta cycle such that forward sequences are observed and forward connections

can be established according to STDP learning rules. However, it is unknown how neural

activity in adjacent theta cycles may contribute to synaptic learning in the hippocampal net-

work. If the neural sequences observed in two consecutive theta cycles are A→B→C→D→E

and A→B→C→D→E (Figure 24), forward connections (e.g., A→B) would be strengthened

from the activity in a single theta cycle, as has been previously proposed. However, it is also

possible that backward connections (e.g., E→A) would be strengthened when considering

the activity across theta cycles (inter-theta cycle learning). Although there is some evidence

that synaptic learning occurs preferentially during certain phases of the theta cycle (Has-

selmo et al., 2002; Hyman et al., 2003), it is unclear whether synaptic learning can only

occur as a result of activity taking place within a single theta cycle.

In the following sections we present (1) a theoretical model of how the theta phase gra-

dient could influence learning of excitatory connections between place cells, (2) computer

simulations investigating the affects of phase precession, inter-theta cycle learning, and the

theta phase gradient on the learning of forward and backward connections along the long

axis, and (3) a computational model of a network of hippocampal place cells that exhibits

forward, backward, and shortcut replay of learned sequences under certain conditions.

8.3 Theoretical Model: potential contribution of the theta phase gradi-

ent and longitudinal projections for learning reverse conn ections

The hippocampal circuit has typically been modeled as a two dimensional structure, with the

third anatomical dimension (the septotemporal or long axis) not widely incorporated in mod-

eling work to date. However, anatomical studies indicate that the hippocampus, in terms of
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its physical connections, isn’t a purely laminar structure, as projections in many hippocampal

subregions extend substantially across the long axis (i.e., longitudinal projections, Amaral

and Witter, 1989; Ishizuka et al., 1990, 1995; Wittner et al., 2007). Recurrent connections

in hippocampal subregion CA3 extend up to two thirds of the way along the septotemporal

axis (Swanson et al., 1978; Amaral and Witter, 1989; Ishizuka et al., 1990; van Strien et al.,

2009; Bast et al., 2009; Adhikari et al., 2010). In fact, it has been shown that the density

of projections is strongest 1 mm or more septally or temporally from the level at which the

projections originated (Ishizuka et al., 1990). Experimental studies have demonstrated that

neurons residing at different levels along the septotemporal axis have different place field

sizes (Jung et al., 1994; Kjelstrup et al., 2008; Royer et al., 2010), that there are differences

in functional connectivity with other brain structures along the septotemporal axis (Risold

and Swanson, 1996; Dolorfo and Amaral, 1998; Cenquizca and Swanson, 2007), and that

there is a phase gradient in hippocampal theta across the long axis (Lubenov and Sia-

pas, 2009). These observations underlie the importance of understanding how the three

dimensional spatio-temporal structure of the hippocampus contributes to its function. Here

we describe how the hippocampal theta phase gradient may contribute to the encoding of

experiences in a forward and reverse order in at least the dorsal third of the hippocampus.

Lubenov and Siapas (2009) observed that the hippocampal theta rhythm behaves as a

traveling wave, propagating from dorsal to ventral (septal to temporal) hippocampus. They

showed that along at least the dorsal third of the hippocampus, the phase gradient is ap-

proximately 21◦/mm, which results in a phase difference of up to 124◦. Furthermore, they

recorded from neurons at different locations along the long axis and observed that there is

a corresponding temporal shift in neural firing along this axis. They concluded that instead

of the hippocampus representing a single location, it represents a trajectory at a moment in

time, where neurons at each cross-section (level) of the hippocampus perpendicular to the

long axis represent a location along the trajectory.

This implies that during a single theta cycle, the activity of neurons representing the
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spatial trajectory A→B→C→D→E has the spatiotemporal structure shown in Figure 24 . As

observed in Figure 24 , the order of neural firing within a level of the hippocampus matches

the order in which the trajectory was experienced (green arrows), with the consequence

of learning the forward sequence via the STDP rule. However, due to the delay in activity

across the long axis, it is apparent that some neurons representing locations later in the

trajectory (e.g. E3) become active prior to some neurons representing locations earlier in

the trajectory (e.g. D6). Since the recurrent connections in dorsal CA3 span up to two thirds

of the long axis, this could enable the encoding of reverse connections via the STDP rule.

Furthermore, the phase gradient combined with learning across theta cycles (inter-theta

cycle learning, discussed earlier) could enable the learning of reverse connections from a

more temporally located neuron to a more septally located neuron (e.g. D6 to A3).

Hippocampal plasticity studies have shown that STDP maximally occurs when the presy-

naptic cell spikes 0 to 20 ms before the postsynaptic cell (Bi and Poo, 1998). If two neurons

representing locations A and B fire 20 ms apart (representing the extreme case), a neuron

representing location A should be delayed by 20 to 40 ms in order for a reverse B→A con-

nection to be established. This delay can be realized by selecting the neuron representing

location A to be located more ventrally than the neuron representing location B. Assuming

a theta frequency of 8 Hz, a 20 − 40 ms time delay corresponds to a 58 − 115◦ theta phase

shift. This phase shift, representing the extreme case, easily falls within the observed phase

shift of up to 124◦ (Lubenov and Siapas, 2009). Of course, lower magnitude phase shifts

could also enable reverse connections to be established. If neurons representing locations

A and B fired with an offset of 5 ms, a delay in A of 10 ms (corresponding to a theta phase

shift of 28.8◦) would cause a neuron at another level of the long axis representing location A

to fire 5 ms after the neuron representing location B, enabling the establishment of a B→A

connection.

If reverse ordered firing is what establishes backward connections, why hasn’t reverse

ordered firing been observed in electrophysiology experiments? As shown in Figure 24
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Figure 24: The proposed mechanism for encoding both forward and backward sequences. The figure depicts
the activity of neurons within two theta cycles with time on the x-axis and location along the septotemporal
(long) axis of the hippocampus on the y-axis. Each circle represents the firing of a single neuron. The letter
(A-F) within the circle indicates the ordered location along a trajectory that the neuron is representing. The
subscripted number indicates the depth of the neuron along the long axis. As shown in the figure, due to the
temporal shift in firing along the long axis, it is possible for a neuron representing location ’E’ to fire before a
neuron representing location ’D’ (red arrow from E3 to D6). Green arrows indicate spike timing that gives rise
to forward connections.

the reverse ordered firing relationship occurs between neurons located at different positions

along the long axis of the hippocampus. Since typical recordings from hippocampal place

cells occur over a narrow range of the long axis of the hippocampus, reverse ordered firing

relationships would likely not be seen, even if they existed. Even though backward firing

is not seen during theta cycles, while animals are moving in the environment, as previ-

ously discussed forward and backward sequences are observed during sharp wave ripple

complexes (SWRs). This observation could result if during SWRs neural activity was syn-

chronized across the long axis such that at a brief moment in time only one location was

being represented across the axis (as opposed to a trajectory, Figure 25 ). The next set of

active neurons would then be driven by input from the previously active set of neurons. As-

suming a refractory period after neural firing, the replay would propagate in one direction.

Whether a replay event was a forward or backward sequence would be probabilistic and

depend on the set of neurons activated by the initial population burst and the subsequent

set of neurons that fire in response to the initial burst. Global inhibition would ensure that a

single location was being represented and stochastic activation would allow the same initial
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Figure 25: Activity spread during replay events. The figure depicts the activity of neurons during the first two
time steps of a hypothetical replay event with spatial location along a trajectory on the horizontal axis and
depth along the septotemporal (long) axis on the vertical axis. Each circle represents a single neuron. The
letter (A-E) within the circle indicates the location of the neuron’s place field center along the trajectory. The
subscripted number indicates the position of the neuron along the long axis. Dark magenta circles indicate
neurons that are firing during the time step and light magenta indicates neurons that are receiving input and
will fire at the next time step. Light blue indicates neurons that are not activated due to global inhibition in the
network and light yellow indicates neurons that are in a refractory state. In this schematic, we show that if
spatial input causes a single location to be represented across the long axis at a moment in time, activity can
spread either forward or backward through the network. In this example, activity spreads backward through
the network.

population burst to sometimes result in a forward replay and sometimes a backward replay.

There is evidence for spatial coherence of SWRs across the long axis of the hippocam-

pus (Chrobak and Buzsáki, 1996; Csicsvari et al., 2000). The spatial coherence increases

as SWR power increases (Csicsvari et al., 2000) and during electrophysiology experiments,

replay events are not observed during every SWR. Thus, it is possible that when spatial

coherence is not achieved (i.e. during low power SWRs), coherent replay events might not

be reliably initiated in the network.

In summary, we have described how the anatomical connections in the hippocampus,

combined with the shifted neural activity arising from the theta phase gradient, can support

the encoding of backward sequences, in addition to forward ones, using the STDP learning

rule.
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8.4 Synaptic Learning Model

In order to visualize the 3D anatomical structure of the forward and backward connections

that may be learned in hippocampal region CA3, we simulated a network of place cells re-

siding across 10 cross-sections (levels) of the dorsal third of the long axis, using cell counts

and activity levels derived from anatomical and electrophysiological studies. We focused

on CA3 because its recurrent projections provide a potential scaffold for sequence storage

and because the region is thought to be involved in generating the SWRs associated with

replay events (Buzsáki, 1989). The rodent hippocampus contains approximately 250,000

CA3 pyramidal cells (West et al., 1991; Rapp and Gallagher, 1996). Assuming a uniform

distribution of cells across the long axis, we estimated that there would be a total of 83,333

pyramidal cells in the dorsal third of CA3. Approximately forty percent of place cells are

active in a single environment (Guzowski et al., 1999), therefore we estimated that there

would be 33,333 neurons in the dorsal third of the hippocampus with place fields in a given

environment. Furthermore, we calculated from our 2T maze data (Gupta et al., 2010) that

each neuron had fields covering 10% of the environment on average, meaning that approx-

imately 3,333 neurons in the dorsal third of the hippocampus would be active at a particular

location in a given environment and 333 neurons active at a particular location in each of

the 10 long axis levels. Thus, we simulated a network with a total of 33,333 neurons, each

with a single Gaussian place field determining the probability of firing, which were identi-

cally sized and uniformly distributed along a linear track. Because we were modeling the

dorsal third of the hippocampus only, we ignored the increase in place field size along the

septotemporal axis (Jung et al., 1994; Kjelstrup et al., 2008; Royer et al., 2010).

For a single neuron residing at each of the 10 levels, we simulated 40 unidirectional

paths through the neuron’s place field and considered the learning of synaptic connections

between that neuron and neurons with overlapping place fields residing in each level. Sim-

ulations were performed separately for eight different parameter sets: with and without the
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theta phase gradient, with and without inter theta cycle learning, and with and without theta

phase precession.

The order of cell firing for neurons in a particular cross-section was determined once

per theta cycle (5 cycles total, although more cycles produce similar results) during the

place field pass by considering the neurons with place fields overlapping with the animal’s

location. In the case that phase precession was implemented, the firing of these cells

was ordered such that neurons with place fields behind the animal fired before neurons

with place fields ahead of the animal (each cell could only fire once per theta cycle). For

simulations without phase precession, the order of neuron firing was random within each

theta cycle. In order to increase the learning rate, the probability of firing obtained from the

Gaussian tuning curves was scaled such that on average 90% of the neurons with fields

overlapping with the animal’s location fired during each theta cycle (although results were

qualitatively similar for lower percentages) and the timing of spikes was uniformly spaced

across the theta period. Although this is a simplification of the activity seen during each

theta cycle, these measures ensured that for neurons within a level, when phase precession

was implemented, the order of behavioral experience was preserved in the compressed

sequence of firing during each theta cycle (Dragoi and Buzsaki, 2006), and over the course

of the place field pass neurons would gradually fire earlier and earlier in the theta cycle

(i.e., phase precess, O’Keefe and Recce, 1993; Skaggs et al., 1996). When implementing

the theta phase gradient reported by Lubenov and Siapas (2009), a 120 degree phase shift

(corresponding to a 120 deg × (125 ms / 360 deg) = 41.667 ms delay in neural firing,

assuming an 8 Hz theta frequency) was imposed between the septal-most level and the

temporal-most level, as shown schematically in Figure 24 .

Each CA3 pyramidal cell forms efferent synapses with approximately 1,242 other CA3

pyramidal cells residing in the dorsal third of the hippocampus, and these synapses can

be approximated as being uniformly distributed throughout the long axis (Wittner et al.,

2007). However, in order to calculate the average connection strengths between a particular
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neuron and neurons with place fields ahead and behind the animal at different levels of the

long axis, we implemented a fully connected network.

A 33,333 element vector describing the efferent synaptic strengths between a neuron at

one level of the long axis and all the other neurons at all levels was initially set to zero and

was updated during each unidirectional place field pass according to the relative spike tim-

ing of neuron pairs (see equations below for the update rule and Figure 26C for a graphical

representation). This update rule closely resembles the STDP curve presented in Bi and

Poo (1998). To study the effect of our proposed learning rule, we selected one neuron per

level and trained its weights. In the equations below, dt is the time difference between the

spikes emitted from two neurons, and dW is the change in the synaptic weight between the

neuron pair.

For dt ≥ 0:

dW = exp(−dt/20)

For dt < 0:

dW =
−exp(dt/30)

2

For |dt| > 80:

dW = 0

The learned forward and backward connection strengths from a single neuron at each

level of the long axis to neurons with overlapping place fields are represented in Figure 26 ,

for the simulation in which the theta phase gradient, inter-theta cycle learning, and phase

precession were all implemented. As shown in the figure, forward and backward connec-

tions are established between neurons at all levels of the long axis of the hippocampus

and the pattern of connections established depends on the neuron’s location along the long

axis.

In order to compare how the connections learned depend on the theta phase gradient,
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Figure 26: Connection strengths between a single neuron at each level and all other neurons. (A) The y-axis
is 10 septo-temporal levels and the x-axis is cells ordered according to place field center. As depicted in
panel D, cell 1 is a neuron with a place field behind and barely overlapping with the considered cell (shown in
gray) and cell 665 is a neuron with a place field ahead and barely overlapping with the considered cell. The
considered cell is always a cell at position 333, but resides at different levels along the long axis in each of
the panels in A (shown by gray dots). Color on these panels indicates the forward or backward connection
strength between the considered cell and all other cells. The color map ranges from dark green (strong forward
connection) to white (zero connection strength) to dark red (strong backward connection). As required from
the definition of forward and backward connections, forward connections are made with neurons to the right of
cell 333 (shown by the gray dots) and backward connections are made with neurons to the left of cell 333. (B)
The connection strengths for a cell residing at level 5 (fifth plot in panel A) were projected onto a 3D surface
representing the rodent hippocampus. In this figure, the dentate gyrus is blue, CA3 is dark gray, and CA1 is
green. (C) The STDP learning rule (equation in text) that was used to determine the synaptic strengths plotted
in panel A. 98



inter-theta cycle learning, and phase precession, the connections between a single neuron

residing at level 5 of the long axis were plotted for each combination of these phenom-

ena (Figure 27 ). In all but one case (the no phase gradient, no inter-theta cycle learning,

and phase precession case), both forward and backward connections were observed. In

the four simulations involving no phase precession, connections were established relatively

uniformly from the neuron at level 5 and all other neurons, independent of place field lo-

cation or anatomic location across the long axis. Thus, forward and backward connections

were created, but there was no observable structure to the connections. In the two phase

gradient and phase precession simulations, forward connections were established that were

proportional to the distance between place fields. Furthermore, strong backward connec-

tions were established between neurons with nearby place fields. For the simulation includ-

ing inter-cycle learning, additional, weaker, backward connections were also established.

For the last simulation, with no phase gradient, inter-theta cycle learning, and phase pre-

cession, weaker backward connections were established with cells with place fields some

distance away. These simulations indicate that the three phenomena simulated strongly

affect the pattern of forward and backward connections established during behavior. In the

next section, we explore which combinations of these phenomena allow forward, backward,

and shortcut replays to be produced by the network.

8.5 Replay Model

Given that most of the simulated networks described above learned both forward and back-

ward connections, we asked if the connections created in these simulations could allow

for the forward, backward, and shortcut sequences that we had observed on the 2T maze

(Gupta et al., 2010). To address this question, we built a second, smaller network with a two

dimensional grid of place cells. Similar to the previous network, this network had place cells

residing across 10 levels of the dorsal third of the long axis of the hippocampus. Each level
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Figure 27: Connection strengths between a single neuron at level 5 and all other neurons for each simulation.
See caption for Figure 26A . "PP" stands for phase precession.

contained 289 place cells, with place field centers distributed over a 17x17 point grid span-

ning a 2D square environment. Thus, there were a total of 2890 place cells in the network

(10 at each location on the 17x17 grid). We implemented a fully-connected network (ev-

ery neuron projected to every other neuron), due to the relatively small number of neurons

simulated here compared with the rodent hippocampus. Each place field center was ran-

domly jittered so that no two cells had place field centers at the exact same location in the

environment. For simplicity and since we modeled the dorsal third of the hippocampus and

not more ventral regions where place field sizes increase substantially (Jung et al., 1994;

Kjelstrup et al., 2008; Royer et al., 2010), we assumed a uniform spatial scale across levels:

each place cell, regardless of level, was randomly assigned a place field covering between

4 and 9% of the environment. However, our results were quantitatively similar when we im-

posed a gradient of place field sizes from 2 to 9% of the environment along the dorsal third

of the hippocampus. This gradient was chosen based on the Kjelstrup et al. (2008) data

showing that place field sizes in intermediate hippocampus were on average approximately
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four times the size of place fields in dorsal hippocampus.

To simulate neural activity during behavior, the average figure eight trajectory taken by

rats on the 2T maze (see Figure 28G ) was superimposed on the grid of place cells. We

simulated a constant running speed through the figure eight trajectory. The figure eight

trajectory took a total of 30 seconds and was repeated 40 times in the simulation (similar to

a typical rodent recording session on the 2T maze, Gupta et al., 2010). Once per theta cycle

during behavior (every 125 ms), the neural activity during the theta cycle was determined

as described below.

1) The potential set of active neurons consisted of those cells whose place fields over-

lapped with the animal’s location at the start of the theta cycle. Each neuron fired stochasti-

cally according to its Gaussian tuning curve, and as in the previous section, the probability

of firing was scaled such that on average 90% of the neurons with fields overlapping with

the animal’s location fired during each theta cycle. Noise was added to the inter spike in-

tervals (ISI) such that both the set of active neurons and their spike timing could differ for

each lap of the simulation. The minimum ISI was set by finding the location in the environ-

ment with the largest number of overlapping place fields. By assuming each cell spikes and

evenly distributing the spikes over a 125 ms theta cycle, we determined the minimum ISI as

the timing between adjacent spikes. The maximum ISI was variable and depended on the

actual number of active cells during a given theta cycle of the simulation. For example, if 10

cells were active during a theta cycle, the maximum ISI would be 12.5 ms. Noise was added

such that the actual ISI was uniformly distributed between the minimum and maximum ISI.

2) For simulations including the phase precession phenomenon, the order of neuron

spiking was determined by projecting the place field center of each firing neuron onto the

vector representing the animal’s direction of travel, with the cell whose place field center

projected furthest back on the vector firing first. This computation, which may not be the one

performed by the brain, nevertheless produces the forward sequenced firing patterns and

theta phase precession observed during electrophysiology experiments. For simulations
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not including phase precession, the spike order was randomly determined.

3) As in the previous section, for simulations involving the theta phase gradient and

accompanying delay in neural activity across the long axis of hippocampus, a 120 degree

phase shift (corresponding to a 41.667 ms shift in neural firing, assuming an 8 Hz theta

frequency) was imposed between the septal most level and the temporal most level. The

phase shift was set to zero for simulations lacking the phase gradient.

The n×n (n = 10×17×17) synaptic strength matrix was initially set to zero and was up-

dated during each theta cycle using the same STDP learning rule used in the previous sec-

tion (see Figure 26C ). This learning procedure was performed separately for each binary

combination of the following phenomena (i.e., with and without): the theta phase gradient,

anatomical longitudinal connections, inter-theta cycle learning, and phase precession.

After simulating 40 laps of the figure eight trajectory in a single direction of travel, we

visualized forward and backward connections between sets of neurons representing loca-

tions in the environment for one combination of the hippocampal phenomena: (+) theta

phase gradient, (+) anatomical longitudinal connections, (+) inter-theta cycle learning, and

(+) phase precession. Each location in the environment (each grid point) was represented

by 10 neurons per level and the average connection strength between each grid point and

all other grid points (based on the synaptic strengths of their neural connections) was com-

puted. By comparing the direction of the connection with the direction of the traveled tra-

jectory, the connection was determined to either be a forward connection (green) or back-

ward connection (red). For this particular combination of phenomena, the subset of neural

connections that occur within a level (intralevel connections) of hippocampus should be pri-

marily forward (Figure 28A,B ) and the subset of connections occurring between levels (in-

terlevel connections) should be both forward and backward (Figure 28C,D,E,F ). As shown

in Figure 28 , this was indeed the case.

As described above, during learning the neural activity was solely a function of spatial

input from an extrahippocampal source (such as MEC, Fyhn et al. (2004)). The synaptic
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Figure 28: 2T maze, forward and backward synaptic strengths. Grid points, each representing the approxi-
mate place field center (due to jittering) of 10 neurons positioned at 10 different locations along the long axis,
are plotted in black. Green arrows, beginning at one grid point and ending at another grid point, indicate that
a forward connection was learned between a pair of neurons with place field centers at the two grid points.
Red arrows, similarly, represent backward connections. In order to visualize connections being learned within
a level and across levels, we plotted intralevel connections (connections learned between neurons residing
at the same level along the long axis) in panels A and B and interlevel connections (connections learned be-
tween neurons residing at different levels along the long axis) in panels C, D, E, and F. Panels C and D show
the interlevel projections from neurons in levels 9 and 10 to neurons in levels 1 and 2, while panels E and F
show projections from neurons in levels 1 and 2 to neurons residing in levels 9 and 10. These panels indicate
that forward and backward connections are not equal between all level pairs as there are few strong forward
connections from neurons in levels 1 and 2 to neurons in levels 9 and 10 (E), while there are many strong
forward connections from neurons in levels 9 and 10 to neurons in levels 1 and 2 (C). As can be seen by these
plots and as predicted by the theoretical model for the (+) theta phase gradient, (+) anatomical longitudinal
connections, (+) inter-theta cycle learning, and (+) phase precession combination of phenomena, primarily
forward connections are learned between neurons at the same level (A and B), whereas both forward and
backward connections are learned between neurons at different levels (C, D, E, and F). For clarity, connection
strengths one standard deviation or more below the mean are omitted from these plots. Panel G displays the
2T maze from Gupta et al. (2010). Arrows indicate the direction of travel around the maze. MS is maze start,
T1 is turn 1, T2 is turn 2, F1 is feeder 1, and F2 is feeder 2.
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connections between neurons within the network did not contribute to the activity of individ-

ual neurons.

In the simulation of replay, the starting location of each replay event was determined by

spatial input from an extrahippocampal source, which caused neurons with place fields at

that location to fire. Subsequent neural activity was determined by synaptic connections

learned during behavior plus a fixed inhibitory network (as described above, learning was

different depending on the set of hippocampal phenomena included in the simulation). To

implement the inhibitory network, negative connection strength weights (representing the

inhibitory interneuron network) were imposed between neurons whose place fields did not

overlap (i.e., their learned synaptic weights were zero). The purpose of the inhibitory net-

work was to impart attractor-like properties to the model to support the representation of

a single location at each moment in time (Wilson and McNaughton, 1993; Samsonovich

and McNaughton, 1997; Zhang, 1996; Redish, 1999). The negative connection strength

parameter was tuned such that the network was forced to represent a single location at

each moment in time during the replay event (value = -0.5).

The simulation of each replay event was performed in discrete cycles. Below is a sum-

mary of the first cycle (subsequent cycles only involve step 2):

1) Spatial input specifying a random location in the environment (location A) causes

some neurons with place fields overlapping with location A to spike. To impose high vari-

ability in the set of neurons that fire, each neuron receiving spatial input had an equal prob-

ability of firing, and roughly 5% of neurons fired during each cycle of the replay event. The

equal probability of firing is consistent with the hyper-excitability of neurons during SWRs.

2) The spiking neurons send input (according to the learned synaptic strengths and the

inhibitory network) to another population of neurons, representing the next location (location

B). A refractory property assures that neurons that fired during the previous cycle cannot

reactivate too quickly. This enables the replay event to move away from the previously

represented location and form a coherent path. As in step 1, on average 5% of the neurons
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fired and each neuron receiving input fired with equal probability.

Step 2 was repeated 15 times for a single replay event, in order to generate a sequence

of activity representing a path in the environment. Replay events were generated for each

simulation (with different sets of hippocampal phenomena included) as described in the

Synaptic Learning Model section. For each simulation, replay events were analyzed to

determine if (1) coherent paths were represented, (2) if forward, backward, and shortcut

paths were expressed, and (3) if the same paths were represented at different levels of the

long axis (i.e., synchrony along the long axis).

For the (+) theta phase gradient, (+) anatomical longitudinal connections, (+) inter-theta

cycle learning, and (+) phase precession simulation, coherent forward, backward, and short-

cut sequences were observed. Furthermore, these sequences were synchronous across

the long axis of the hippocampus (Figure 29 ). Interestingly, removing the theta phase gra-

dient did not affect these observations: forward, backward, and shortcut sequences were

present and synchronous across the long axis. Simulations without the longitudinal connec-

tions showed two differences: synchrony across the long axis was lost and backward and

shortcut sequences were rarely observed. When inter-theta cycle learning was turned off,

only forward replays were observed. Thus, inter-theta cycle learning proved to be critical for

the generation of backward and shortcut sequences. Finally, for simulations lacking phase

precession (active cells fired at random times within the theta cycle), coherent paths were

not observed. Replays began at a particular location and spread in all directions rather than

in a single direction.

8.6 Discussion

We have shown through simulation that the hippocampal phenomena studied here allow for

the learning of forward and backward connections and the generation of forward, backward,

and shortcut replay events. Furthermore, through the simulation of different combinations of
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Figure 29: Forward, backward, and shortcut sequences. The left column shows actual replay events recorded
on the 2T maze (Gupta et al., 2010) and the right column shows simulated replay events. Left column: colored
points are spikes plotted at the firing neurons’ place field centers. Right column: two types of points are plotted.
The small points are spikes plotted at the simulated neurons’ place field centers. Each large point is the center
of mass of the spiking neurons’ place field centers for each cycle of the replay event. For all panels, the color
of the point indicates the relative time within the replay event (light blue = early, light purple = late). Panel G
takes the simulated backward replay event from panel D and plots the activity of neurons at each level of the
septotemporal axis separately (top row, left to right is levels 1-5; bottom row, left to right is levels 6-10). As
seen in this panel, clear backward replays are observed at each level separately, matching with experimental
observations.
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hippocampal phenomena, potential contributions of each phenomena to replay were iden-

tified. For example, inter-theta cycle learning was important for generating backward and

shortcut sequences, longitudinal connections were necessary for replay synchrony across

the long axis, and phase precession was required for generating sequences representing

coherent paths in the environment.

For the learning of backward associations between hippocampal place cells, we pro-

posed two potential mechanisms. The first mechanism was based on the hippocampal theta

phase gradient and the second mechanism was based on inter-theta cycle learning. In the

Theoretical model section, we explained in detail how the phase gradient could enable the

learning of backward connections and subsequently showed in the Synaptic learning model

that the phase gradient and inter-theta cycle mechanisms independently learned forward

and backward connections (Figure 27 ). However, in the simulation of replay, we found that

only inter-theta cycle learning (not the theta phase gradient) was required for the generation

of backward and shortcut replay events.

Thus, we have presented a potential network mechanism for backward replay. It was

previously proposed that backward replay would result from a decaying remnant signal in

recently active neurons due to changes in the intrinsic properties of place cells (Foster and

Wilson, 2006) or the short-term modification of synaptic connections (Buzsáki, 1989; Diba

and Buzsáki, 2007). In brief, the proposal was that if an animal runs the path A→B→C

and then pauses, because a neuron representing C fired most recently it is the most ex-

citable and therefore fires first, followed by B and then A. However, the recent observations

that backward replay can occur over spatially and temporally remote trajectories (Davidson

et al., 2009; Gupta et al., 2010) imply that such a mechanism is insufficient. In the models

simulated here, backward associations were stored in synaptic connections between neu-

rons, thereby allowing remote backward sequences to be represented during replay events.

In addition, associations stored in this way enabled the expression of single replay events

composed of both forward and backward sequences, as observed in recent experimental
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work (Davidson et al., 2009; Gupta et al., 2010).

The details of synaptic learning during each theta cycle are currently unknown. It has

been proposed that the encoding and recall of experience occurs during separate phases of

each theta cycle, mediated in part by the neurotransmitter acetylcholine (Hasselmo et al.,

2002; Hasselmo, 2006). Thus, it is possible that synaptic learning is susceptible only to

neural activity occurring within a single theta cycle. If this is the case, inter-theta cycle

learning would not be possible and the backward connections required to produce back-

ward and shortcut replay events in the model described here would not be created. Future

experimental work investigating synaptic learning between hippocampal place cells during

behavior will help determine whether the creation of backward associations via inter-theta

cycle learning is possible.

In summary, we built a model of hippocampal CA3, which incorporated several aspects

of hippocampal physiology and anatomy: the theta phase gradient, anatomical longitudinal

connections, inter-theta cycle learning, and theta phase precession. We showed that these

phenomena (in particular, inter-theta cycle learning) enabled the synaptic learning of for-

ward and backward connections and the replay of local and non-local forward, backward,

and shortcut sequences. Thus, the hippocampus contains hardware and software that could

support the construction and mental navigation of a cognitive map of the environment.
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9 Conclusion

9.1 Summary

In this thesis, I have studied hippocampal neural activity during awake rest and awake be-

havior, revealing two new potential contributions of hippocampal sequences to cognitive

function.

First, the spatial paths represented by neural sequences during awake rest (replay se-

quences) reflected the learning, maintenance, and presence of a cognitive map of the envi-

ronment. Although only a subset of possible paths in the environment were experienced by

animals, I found that replay sequences represented all possible paths in the environment:

paths in the opposite direction than experience and shortcut paths that were never tra-

versed. Furthermore, parts of the environment that were less frequently experienced were

more frequently replayed. These findings demonstrate that replay does not simply reflect the

consolidation of experience and suggests a role for replay in maintaining and traversing an

internal representation or cognitive map of the environment. The concept of cognitive maps

is of particular interest in cognitive science because the mechanisms by which the brain

constructs internal representations of the world may provide valuable insights into how we

learn, understand, and interact with our environment. These maps may also support higher

order cognitive functions such as planning, self-projection, and creativity.

Second, during active behavior the spatial paths represented by hippocampal theta se-

quences suggested the involvement of these sequences in the cognitive chunking of ex-

perience. Previous work has shown that the represented path rigidly begins just behind

the animal and ends just ahead of the animal, implying that spatial experience is uniformly

represented. I found that the path represented was flexible and depended on the animal’s

behavior and the structure of the environment. When animals were accelerating, the rep-

resented path shifted ahead of the animal, potentially to aid in planning and in anticipation

of an upcoming location. Conversely, when animals were slowing down, the path shifted
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behind the animal, potentially in review of what was just experienced. The observed shift

in represented path relative to the animal’s location, allowed for the possibility that theta

sequences non-uniformly represented the environment. I found that this was in fact the

case, with sequences over-representing segments of the environment between important

landmarks on the maze. Thus, theta sequences offer a potential mechanism for the cogni-

tive chunking of experience: a process by which information is recoded into computationally

efficient and useful units, allowing for more information to be processed at once. This re-

organization of information is thought to enhance brain function (for example, by increasing

memory capacity and improving planning efficiency). Thus, as with the concept of cognitive

maps, the neural mechanisms underlying cognitive chunking is an exciting topic in cognitive

science.

In the last part of the thesis, I simulated a network of hippocampal place cells to explore

how known hippocampal physiology could support the learning of forward and backward

synaptic connections. Such connections could allow the hippocampus to produce the for-

ward, backward, and shortcut replays that I found on the 2T task, and may be the basis of

cognitive maps in the hippocampus. The simulations revealed that inter-theta cycle learn-

ing was a key component for learning backward connections, and when included in the

simulation, it allowed the network to produce the three types of replay sequences observed

experimentally. While it hasn’t been shown that synaptic learning occurs across theta cy-

cles, our simulations show that if it were to occur, the hippocampus could learn backward

connections and produce backward replays. Future experimental work could test this in-

triguing possibility.

More generally, the work in this thesis demonstrates that information represented by the

hippocampus reflects a role not only in memory, but also in the manipulation of experiential

information in potential support of higher order cognitive functions (i.e., cognitive maps and

cognitive chunking). Furthermore, this work shows how decoding the information repre-

sented by populations of spiking neurons in behaving animals can reveal insights about the
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contribution of brain structures to cognition.

9.2 Future work

Replay sequences

The work in this thesis and other recent observations raise questions about the functional

significance of replay sequences and the behavioral factors that influence the content that

is represented. Important topics of future research on replay sequences are outlined below.

1. The representation of novel paths. As discussed above, I found that novel shortcut

paths were represented by replay sequences. These were relatively rare occurrences and

this finding needs to be replicated in novel experimental paradigms to determine if this is a

general property of hippocampal replay (Dragoi and Tonegawa, 2011). This is important as

it has implications for the role of replay in more generalized learning (e.g., creating cognitive

maps) as opposed to strictly memory consolidation.

2. What is backward replay? Work in this thesis has shown that backward replay oc-

curs over paths in an environment that have only been experienced in the forward direction.

However, it is unclear whether backward replay is the representation of an experienced

path in the reverse direction, or the representation of a new path in the environment that is

physically available to the animal. Understanding what backward replay is will help us un-

derstand the role it plays in hippocampal function. Experiments that simultaneously record

replay events in the hippocampus and a separate structure with direction-specific represen-

tations (e.g., head direction cells), could help answer this question. Brandon et al. (2011)

observed that head direction cells in the postsubiculum do not show replay, but it is possible

that examining the behavioral content of replay firing patters in structures such as parietal

cortex (Qin et al., 1997; Nitz, 2006), may provide insight into the identity of backward replay.

3. Construction versus traversal of a map. If the representation of novel paths is a

general property of replay, what purpose is it serving? Given that replay sequences occur
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at the time scale required for spike timing dependent plasticity, these replays could play

a role in constructing a cognitive map of the environment. On the other hand, novel path

replay may reflect the traversal of an already existing map (Samsonovich and Ascoli, 2005),

potentially to explore available paths that are useful to the animal. Another possibility is that

replay is traversing a map that exists in one structure (e.g., hippocampus) in order to store

the information in another structure, such as cortex.

4. Awake versus sleep replay. Backward replay has been observed during the awake

state, but not during sleep sharp wave ripples. Early evidence has suggested that only for-

ward sequences are present during sleep (Skaggs and McNaughton, 1996). It is important

to continue to investigate differences in the content of replay during awake and sleep states

(O’Neill et al., 2006; Karlsson and Frank, 2009), as that would suggest there are functional

differences. It is possible that sleep replay is a more literal reflection of experience, serv-

ing mainly a memory consolidation function, whereas awake replay represents all possible

paths, reflecting a general learning or search function.

5. Sensory influence on awake replay. It has been shown that sleep and particu-

larly awake replay, both preferentially represent the animal’s location in the environment

(Jarosiewicz and Skaggs, 2004; O’Neill et al., 2006). During the awake state, animals have

access to sensory input which could influence the content of replay, thereby contributing to

the preferential replay of spatial information at the animal’s location (O’Neill et al., 2006).

This thesis and other work have demonstrated that the paths represented during awake

replay are not always tied to the animal’s location in the environment, but it is possible that

visual or other sensory cues from remote locations contribute to the representations. Future

studies that manipulate the animal’s sensory environment by presenting various cues when

animals are awake but restful, could test whether sensory input influences the content of

replay.

6. Relationship with behavior. How does the content of replay influence the animal’s

behavior? It has been shown that disrupting sharp wave ripples during sleep affects perfor-
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mance on spatial tasks (Girardeau et al., 2009; Ego-Stengel and Wilson, 2010). However,

it is unclear if and how the specific content of replay affects the animal’s future behavior.

For example, is it necessary for the hippocampus to represent novel shortcut paths in an

environment in order for the animal to realize the path is available?

Theta sequences

The study of neural sequences at a population level during each theta cycle is relatively new

and there are important questions to address in future work, with the goal of understanding

the role that these sequences play in experience encoding and recall. Specific topics of

interest are outlined below.

1. Changes in represented path during learning. When animals are first placed in a

novel environment, it is possible that the hippocampus is primarily encoding experience,

rather than performing both encoding and recall functions. As animals gain experience

in the environment, animals may begin to recall information from past experiences to aid in

navigation. It will be important to examine how the path represented during theta sequences

evolves with learning in a novel environment. One hypothesis is that the amount of space

represented ahead of the animal increases with learning, potentially reflective of increased

information recall.

2. Evolution of neural chunking. Does neural chunking arise immediately in a novel en-

vironment or does it gradually commence over time? If neural chunking by theta sequences

is a reflection of cognitive chunking, studying how neural chunking arises may help us un-

derstand the mechanisms underlying cognitive chunking.

3. Behavioral versus neural chunking. In the 2T maze experiment behavioral and neural

chunking occurred in parallel, potentially due to the physically segmented structure of the

maze, with turns and stopping points. An important next step is to develop experimental

paradigms in which there are sensory or task related segments, instead of physical seg-

ments. Such experiments could help reveal whether behavioral and neural chunking are
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separable and therefore independent processes. On tasks in which behavioral and neural

chunking is not separable, looking at the evolution of each type of chunking could provide

insight into a possible causal relationship between these two processes.

4. Attentional and sensory influences on theta sequences. I found that when animals

entered a segment of the maze, initially the representation was more ahead of the animal

and towards the end of the segment, the representation was more behind the animal. One

speculation is that upon entering the segment, the animal’s attention is further ahead of the

animal, which shifts the representation forward, potentially via sensory cues. This observa-

tion is consistent with the finding of forward representations during vicarious trial and error

(VTE) events, as animals deliberate options at a choice point (Johnson and Redish, 2007).

Experiments that manipulate the animal’s attention and sensory environment can help us

understand the factors influencing the content of theta sequences.

5. Short versus long sequences. Investigating the relationship between the path repre-

sented by theta sequences and the animal’s acceleration and velocity revealed that some

sequences, which generally represented shorter paths in the environment, were influenced

by the animal’s behavior. However, other sequences representing longer paths either did

not have a strong relationship with behavior, or had the opposite relationship with behavior

compared to the shorter sequences. This raises the question as to whether there are mul-

tiple classes of theta sequences. Future studies could look for other differences between

the shorter and longer sequences. One question of particular interest is whether the identi-

fication of type 1 and type 2 theta cycles (Kramis et al., 1975) can distinguish between the

shorter and longer sequences.
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