Localized Imaging and Mapping for Underwater Fuel Storage Basins

Jerry Hsiung, Andrew Tallaksen, Lawrence Papincak, Sudharshan Suresh, Heather Jones, William Whittaker, Michael Kaess

March 22, 2018
Spent Nuclear Fuel (SNF) Storage

Current SNF storage sites

SNF is stored in water pool to shield its radioactive properties

Source: United States Department of Energy
Human Inspection is infeasible

Source: TWI Ltd.
Current SNF Inspection Methods

Source: Unit 4 Spent Fuel Pool Inspection 2012, Fukushima Daiichi
Existing Inspection Examples

Storage Conditions of Reactive Metal Fuel in L-Basin at the Savannah River Site

Defense Nuclear Facilities Safety Board
Technical Report

January 2013

Source: Defence Nuclear Facilities Safety Board

Savannah Rivers Site’s ageing cracked SNF containers
Remotely Operated Sensor Package

A robot-mounted sensor pod will provide localised inspection, enabling operators to pinpoint sensor reading locations relative to 3D structure.
Remotely Operated Inspection System

Localised Data Collection

Model Reconstruction
Underwater Mapping

- Underwater & real-time data collection
- 3D reconstruction using image sequences (Structure from Motion)
Today’s Talk...

Localised Data Collection

Model Reconstruction
Inspection Sensor Pod

- Inertial Measurement Unit (IMU) (250Hz)
- GigE Machine Vision Cameras (10Hz)
- Lumen subsea light
- Bar30 pressure sensor
Time-Synchronisation of Sensors

- Each sensor uses its own clock to time stamp data
- Essential to ensure accurate sensor fusion for localisation
- Sensors record at various rates
- Clock drifts!

![Diagram showing IMU (250Hz), Left Camera (10Hz), Right Camera (10Hz) over Time]
Hardware Synchronisation

Right Cam

Left Cam

IMU (Front)

(Master Clock)

Left Camera

Right Camera

Clock Signal

IMU
Waterproof enclosure

- Tether Wires
- Waterproof Enclosure (polycarbonate)
- Enclosure End Cap (aluminium)
Odometry Algorithms

- Inertial Odometry is commonly used but it drifts.
- Visual Odometry are effective but for small motions (DSO, ORB-SLAM).

J Engel et al.
“DSO”

R Mur-Artal et al.
“ORB-SLAM”
Visual-Inertial Odometry (VIO) Algorithm

› Combines the bests from visual and inertial information
› Utilizes synchronised sensor information
Stereo Triangulation for VIO

The corresponding points are triangulated into the 3D world
Camera moves...

IMU Integration
A sequence of camera movements
Details of the VIO system

- A VIO system consists of a frontend and a backend parts
- Data association Frontend
 Optimisation Backend

- IMU Measurements
- Stereo Camera Frames
- Frontend (Data Association)
- Visual Features
- Backend (Optimisation)
- State Estimate
Data Association Frontend

- Shi-Tomashi Corner Detector
- Lukas-Kanade Optical Flow feature tracking algorithm (up to 200Hz)
Data Association Frontend

Left Camera Frame

Right Camera Frame
A sequence of camera movements

IMU Integration

Camera Trajectory
Optimisation Backend

Camera Trajectory

Visual Features

Camera Trajectory

Source: F. Dellaert and M. Kaess, "Factor graphs for robot perception"
Optimisation Using Graphs

Graph

X1 X2 \ldots Xn
Graph Optimisation

- Specifies the relationships between variables and measurements

$X = \text{Camera States}$

(Position, Orientation, ...)

Visual Measurement

IMU Measurement

Time
Graph Optimisation

Solution is given by the optimal estimate that best explains all sensor measurements

Also known as **Maximum a Posterior Estimate (MAP)**
VIO Datasets Trials

<table>
<thead>
<tr>
<th>Absolute Trajectory Error (ATE)</th>
<th>RMSE</th>
<th>Mean</th>
<th>Median</th>
<th>Std</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positional (m)</td>
<td>0.131</td>
<td>0.123</td>
<td>0.118</td>
<td>0.044</td>
<td>0.025</td>
<td>0.238</td>
</tr>
<tr>
<td>Translational (m)</td>
<td>0.037</td>
<td>0.032</td>
<td>0.027</td>
<td>0.020</td>
<td>0.001</td>
<td>0.164</td>
</tr>
<tr>
<td>Rotational (°)</td>
<td>0.652</td>
<td>0.506</td>
<td>0.407</td>
<td>0.411</td>
<td>0.016</td>
<td>3.729</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Pose Error (RPE)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EuRoC VH_01 Dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EuRoC V2_01 Dataset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed

Groundtruth
Summary

- A localised inspection solution is essential to ensure an efficient, consistent, and accurate inspection process.
- A visual-inertial odometry algorithm is presented to allow accurate localisation in an underwater environment.
- A time-synchronised sensor pod is required for the data to be sent instantaneously and concurrently.
- With localisation information and synchronised data, 3D models can be reconstructed.
Thank you!

› Andrew Tallaksen
› Lawrence Papincak
› Sudharshan Suresh
› Heather Jones
› William Whittaker
› Michael Kaess