Multi-View Thin Structure Reconstruction via 3D Lines and Points (#12)

Montiel Abello [mabello] | Sudharshan Suresh [sudhars1]

Introduction and Motivation

- Scenes with thin structures and edges are poorly reconstructed by multi-view stereo algorithms, due to appearance variation.
- We propose the integration of line segments into the SfM point-cloud via a radial sampling technique.
- We then perform dense reconstruction and mesh texturing on this combined point-cloud.
- Results highlight the recovery of thin structures, along with enhanced visibility of edges.

Pipeline

![Pipeline Diagram]

Figure 1. Incorporating thin structure modeling into a multi-view reconstruction pipeline

Global SfM

- To generate a sparse model of the 3D structure of the scene, we use the SfM library from openMVG.
- Given an unordered set of images with camera intrinsics specified, openMVG estimates the global pose \(P_i \) of each camera, and global position of features points \(X^T \).
- openMVG optimizes the following cost function:

\[
\min_{x_1, \ldots, x_N} \sum_{j=1}^{M} \sum_{i=1}^{N} \left(x_i^T - K_i P_i x_j \right)^2
\]

where \(x_i^j \) is the image coordinate of the \(j \)th feature point in the \(i \)th camera.

Figure 2. Image of scene and optimized sparse 3D points

Line-based 3D Model

- From the SfM output, we get the ordered image sequence sparse point cloud and visibility information.
 \[
 I = \{I_1, \ldots, I_N\}, \quad X = \{X_1, \ldots, X_K\}
 \]
- We use Line3D++, a pipeline to abstract 3D scene information using line segments.
- We run a line segment detector on every image, establish correspondences across images with supporting views.

\[
S_{f}(i,j) = \frac{2|X(i)\cdot X(j)|}{|X(i)| + |X(j)|}
\]

- Generate 3D hypothesis based on plausible correspondences; cluster the 2D segments based on them.
- Refine estimate to get final 3D line model.

Figure 3. Optimized 3D line segments

Thin Structure Sampling Strategy

- For each line segment represented by points \(P_1 \) and \(P_2 \), we sample \(N = \text{round} (mL) \) points on the cylinder of radius \(r \) around the segment, where \(L = \|P_1 - P_2\|_2 \) and \(m \) is a scaling factor.
- We do this by sampling \(N \) angles \(\theta_i \in [-\pi, \pi] \) and \(N \) lengths \(s_i \in [0, L] \) and computing the corresponding 3D points.

Figure 4. Points sampled around line segment

Dense Reconstruction

We use openMVS to convert our sparse point cloud to a dense 3D mesh. The components of the pipeline are:

- Densify the sparse point cloud with patch match algorithm
- Use visibility information in a graph-cut algorithm to reconstruct a mesh from the densified points
- Refine the mesh by subdividing triangles based on size and visibility information
- Texture the mesh using the original images

Figure 5. Optimized 3D line segments

Results

We evaluate our method on our nsh_a_floor dataset. The reconstructions recover many structures and edges that are lost in the standard pipeline.

Figure 6. Final textured meshes from the (top) standard pipeline and (bottom) our pipeline. We improve reconstruction of thin structures - we recover the end of the object, along with a better reconstructed frame.

Future Work

- Fitting splines to clustered line segments will better model curved surfaces
- Separate treatment of thin and regular structures will allow for optimum parameter tuning during dense reconstruction
- Evaluation on scenes with objects of varying shape and size

Acknowledgement: We thank Zimo Li for his advice with the project.