
Incrementally Parallelizing Database Transactions
with Thread-Level Speculation1

CHRISTOPHER B. COLOHAN
Carnegie Mellon University, Google, Inc.
ANASTASSIA AILAMAKI
Carnegie Mellon University
J. GREGORY STEFFAN
University of Toronto
and
TODD C. MOWRY
Carnegie Mellon University, Intel Research Pittsburgh

With the advent of chip multiprocessors, exploiting intra-transaction parallelism in database
systems is an attractive way of improving transaction performance. However, exploiting intra-
transaction parallelism is difficult for two reasons: first, significant changes are required to avoid
races or conflicts within the DBMS; and second, adding threads to transactions requires a high
level of sophistication from transaction programmers. In this article we show how dividing a
transaction into speculative threads solves both problems—it minimizes the changes required to
the DBMS, and the details of parallelization are hidden from the transaction programmer. Our
technique requires a limited number of small, localized changes to a subset of the low-level data
structures in the DBMS. Through this method of incrementally parallelizing transactions we can
dramatically improve performance: on a simulated 4-processor chip-multiprocessor, we improve
the response time by 44–66% for three of the five TPC-C transactions.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Concurrency, Transaction pro-
cessing; C.1.2 [Computer Systems Organization]: Processor Architectures—Parallel Architectures; D.3.4
[Programming Languages]: Processors—Compilers

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Thread-level speculation, optimistic concurrency, chip-multiprocessing,
incremental parallelization

1Extension of Conference Paper: This article extends a previous conference publication [Colohan et al. 2005]
in several significant ways, providing valuable additional information for database system programmers and
speculative multithreading researchers: (i) we have expanded on how to use TLS as a programming system, and
how threads are managed; (ii) we provide a more in-depth background and tutorial of previous and concurrent
related work; (iii) we have added a new section examining the intra-transaction dependences and exactly how we
divided each TPC-C transaction into speculative threads; (iv) we measure and discuss the progress of incremental
optimization for all benchmark transactions (not just new-order).

Contact Author’s address: Greg Steffan, Electrical and Computer Engineering, University of Toronto, 10 Kings
College Rd., Toronto, Ontario, Canada M5S 3G4 steffan@eecg.toronto.edu
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20TBD ACM 0000-0000/20TBD/0000-0001 $5.00

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD, Pages 1–48.

2 · Colohan, Ailamaki, Steffan, and Mowry

begin transaction {
Read customer info [customer, warehouse]
Read & increment order # [district]
Create new order [orders, neworder]
for(each item in order){

Get item info [item]
if(invalid item)

abort transaction
Read item quantity from stock [stock]
Decrement item quantity
Record new item quantity [stock]
Compute price
Record order info [order line]

}































































78
%

of
tr

an
sa

ct
io

n
ex

ec
ut

io
n

tim
e

} end transaction

Fig. 1. The NEW ORDER transaction. In brackets are the database tables touched by each operation.

1. INTRODUCTION

We are in the midst of a revolution in microprocessor design: all of the major computer
manufacturers are producing computer systems that feature chip multiprocessors (CMPs)
and simultaneous multithreading (SMT). Examples include Intel’s “Smithfield” (dual-core
Pentium IV’s with 2-way SMT), IBM’s Power 5 (combinable, dual-core, 2-way SMT pro-
cessors), AMD’s Opteron (dual-core), and Sun Microsystems’s Niagara (an 8-processor
CMP). How can database systems exploit this increasing abundance of hardware-supported
threads? Currently, for OLTP workloads, threads are primarily used to increase transac-
tion throughput; ideally, we could also use these parallel resources to decrease transaction
latency. Although most commercial database systems do exploit intra-query parallelism
within a transaction, this form of parallelism is only useful for long running queries, while
OLTP workloads tend to issue multiple short queries. To the best of our knowledge, com-
mercial database systems do not exploit intra-transaction parallelism [IBM Corporation
2004; Miller and Lau 2001; Zuzarte 2005], and for good reason.

Parallelizing a transaction is difficult. First, the DBMS must be modified to support
multiple threads per transaction. Latches (a.k.a. mutexes) must be added to data structures
which are shared between threads in the transaction. These latches add complexity and hin-
der performance. Second, the transaction must be divided into parallel threads. Consider
the NEW ORDER transaction, the prevalent transaction in TPC-C [Gray 1993] (Figure 1),
which simulates the workload of a database server owned by a bank or business selling
widgets. We can parallelize the main loop (which represents 78% of the execution time)
such that each loop iteration runs as a thread. The transaction programmer must understand
when these threads may share data, and add inter-thread locks to avoid problems; e.g., the
thread should use inter-thread locks to ensure that only one thread updates the quantity of
an item in the stock table at a time. Finally, the transaction programmer must test the
new transaction to ensure that the resulting parallel execution is correct and ensure that
no new deadlock conditions or subtle race conditions were introduced, and then repeat the
entire process until satisfactory performance is achieved.

The difficulty in parallelizing a transaction lies in data dependences between threads.
When any two threads may share data, synchronization must be added to preserve program

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 3

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

*p=...

*q=...

...=*p

...=*q

T
im

e

(a) Sequential execution.

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

Violation!

E
po

ch
 1

E
po

ch
 2

*p=...

*q=...

...=*p

	
	
	
	
	

...=*p

...=*q

(b) Parallel execution with TLS.

Fig. 2. How TLS ensures that all reads and writes occur in the original sequential order.

semantics. By adding locks and latches into the source code, the programmer is letting the
system know what invariants must hold to compute the correct result. But the programmer
must be conservative, and protect against all possible sharing patterns. The challenge with
this conservative programming model is that the programmer must add latches and locks to
preserve correctness: if the programmer does not have a deep understanding of the entire
program, then they will likely either unknowingly introduce bugs by omitting essential
locks, or else degrade performance by adding unnecessary locks. Instead we would prefer a
more aggressive programming model that allows the programmer to focus on performance
rather than correctness.

1.1 Incremental Parallelization with Thread-Level Speculation

Thread-Level Speculation (TLS) [Gopal et al. 1998; Hammond et al. 2000; Steffan et al.
2000; Tremblay 1999; Zhang et al. 1999] empowers the programmer to speculatively par-
allelize code while being concerned only with performance rather than correctness. With
TLS, the programmer specifies where to break a transaction into threads, or epochs2 and the
TLS mechanism executes them in parallel while preserving the original sequential seman-
tics of the program. The TLS mechanism preserves sequential semantics by tracking data
dependences between epochs and restarting epochs when their execution diverges from the
original sequential execution.

Figure 2 illustrates the basic operation of TLS, where sequential code (Figure 2(a)) is
divided into epochs which are executed in parallel by the system (Figure 2(b)). The system
is aware of the original sequential order of the epochs, and also observes every read and
write to memory that the epoch performs (i.e. the reads and writes through p and q). The
system observes whether epoch 1 ever writes to a memory location which has already been
read by epoch 2—if so, then epoch 2 has violated sequential semantics, and is rewound
and re-executed with the correct value.

This article describes our experience in incrementally parallelizing database transactions

2We refer to the parallel threads in TLS as epochs to differentiate them from the explicit threads which may also
exist in the system. For example, in a database system each transaction runs on a thread, and we break each of
those transaction threads up into epochs.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

4 · Colohan, Ailamaki, Steffan, and Mowry

Mark loops as
"TLS parallel"

Run transaction

Transaction

Faster?

Be happy

Try different loops

Yes

No

(a) Transaction programmer work flow.

Mark loops as
"TLS parallel"

Run transaction

Transaction

Violation profile

Examine profile and
identify bottlenecks

Remove performance
bottlenecks from DBMS

Yes

No
Fast

Enough?

Be happy

spent mis−speculating?
Significant time

Address other performance
issues, such as load imbalance,

insufficient parallelism.
lack of coverage, or

Yes

No

(b) Database system programmer work flow.

Fig. 3. How the transaction programmer and database system programmer use TLS.

using TLS—in particular, how small changes can be made to the DBMS to avoid the
most problematic data dependences between epochs. The result is a significant latency
improvement for database transactions—on a simulated 4-processor chip-multiprocessor,
the response time is improved by 46–66% for three of the five TPC-C transactions. To
achieve these impressive performance benefits we need to modify both the transaction
code and the code in the DBMS.

Transaction programmers are primarily concerned with creating functional applications.
We do not want to teach transaction programmers new sophisticated programming tech-
niques, nor do we want to introduce new failure modes into their applications. We let the
transaction programmer treat TLS as a switch. This switch can be enabled or disabled for
any loop in the transaction, and the only effect visible to the transaction programmer is
that TLS may provide improved performance when TLS is enabled (Figure 3(a)). TLS
can extract parallelism from within a transaction without changing the original sequen-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 5

tial execution semantics, meaning that TLS will not introduce any new bugs (although the
change in performance may uncover hidden race conditions which already existed in the
original code). The interface to TLS used by the transaction programmer can be as simple
as providing performance hints without having to modify the transaction software.

Database vendors want to provide high performance database systems to customers. At
the same time, existing database systems are very large and complex systems, and so the
database system programmers are reluctant to make changes which modify large portions
of the database system. To apply TLS, the database system programmer engages in an iter-
ative process (Figure 3(b)): starting with a sequential transaction, the DBMS programmer
marks some loops for TLS execution, and then examines the execution profile provided by
the hardware. This profile information indicates which loads and stores in the transaction
caused dependence violations that in turn reduced performance. The DBMS programmer
then optimizes just this performance critical code, and repeats the process. We show that
this tuning process requires modifying only a small fraction of the DBMS code (we only
modified 1200 out of 180,000 lines of code in BerkeleyDB), and yet eliminates the ma-
jority of the data dependences which cause violations. Hence the gains of TLS can be
obtained through a small effort on the part of the database vendor.

1.2 Why Transaction Latency?

You may believe that transaction throughput is all that matters for database systems, and
in particular for OLTP workloads. Why are we attacking transaction latency? First, there
is the obvious reason to improve latency: improving latency makes users happy by im-
proving system response time. The second reason is more subtle: on modern systems,
OLTP workloads such as TPC-C are frequently lock-bound [McWherter et al. 2004]. If
the system is lock-bound, then to improve performance we need to decrease the time spent
waiting for locks. TLS can be used to improve the latency of a transaction that holds con-
tended locks and hence the transaction will release those locks more quickly, resulting in
an improvement in overall transaction throughput [McWherter et al. 2005].

1.3 Related Work

The previous and concurrent work which inspired and influenced our research can be di-
vided into three areas: research in intra-transaction parallelism, research in TLS software
support, and research in TLS hardware support. We now discuss each of these in greater
detail.

1.3.1 Intra-transaction Parallelism. Traditionally, high-performancedatabase systems
have targeted inter-transaction parallelism, or intra-operation parallelism, while this article
introduces new techniques for exploiting intra-transaction parallelism. Previous work on
intra-transaction parallelism has focused on techniques which do not require modifying the
DBMS: With Sagas the programmer is able to define a long-running transaction, known as
a saga, which is composed of several DBMS-visible transactions. By using sagas a long
transaction could execute without holding locks for an extended period of time. To allow a
sagas to abort the transaction programmer would have to create compensating transactions
which undo the side-effects of the individual transactions within the saga. TLS is compli-
mentary to sagas—TLS can be used instead of sagas to allow a long running transaction to
complete faster (and release its locks faster); TLS can also be used in addition to sagas to
improve the response time of the individual transactions within a saga. TLS is easier to use

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

6 · Colohan, Ailamaki, Steffan, and Mowry

since the hardware automates the restarting of epochs, meaning that when using TLS there
is no need for the transaction programmer to write compensating epochs to allow epochs
to abort.

The work on sagas evolved into work on TP-Monitors [Kaufmann and Schek 1996; Rys
et al. 1996], which coordinate the execution of the transactions within a saga and allow
some of those transactions to execute in parallel, improving performance further. This
resulted in work by Shasha et. al., who developed a theoretical basis for automatically
breaking a saga into transactions. Shasha showed that if a conflict graph can be constructed
for a set of transactions, then the transactions can be chopped into smaller transactions
which increases the degree of concurrency in the workload [Shasha et al. 1995]. The
conflict graph is a static analysis, which allows the transactions within a saga to execute
in parallel in the absence of any possible dependences between them. In contrast, TLS is
more optimistic: TLS allows epochs to execute in parallel, and only restarts epochs when
dependences actually occur. As a result, TLS is able to exploit more parallelism, since it
takes advantage of dependence information which is only available at runtime.

1.3.2 TLS Software Support. Most previous TLS research has endeavored to have the
compiler automatically parallelize programs [Ooi et al. 2001; Bhowmik and Franklin 2002;
Vijaykumar 1998; Johnson et al. 2004]. This compiler work grew out of the pioneer-
ing work of Knight and Halstead who developed functional languages with support for
TLS-style execution [Knight 1986; Halstead 1985]. In this work our goal is to parallelize
database transactions. Database transactions and the DBMSs they utilize are not written in
functional languages, and it is not practical to re-implement them in functional languages.
Compiler based techniques tend to assume perfect knowledge about the whole program to
be parallelized, while with databases the transaction is usually compiled separately from
the DBMS, and the interface between the transaction and DBMS is kept deliberately sim-
ple for portability reasons. We found that transactions naturally decompose into threads
which are much larger and more complex than the threads generated by compiler based
techniques.

In this article we use hardware-assisted speculative execution to simplify manual paral-
lelization. Prabhu and Olukotun showed that using TLS to assist in manual parallelization
has great promise, since it works well when applied to SPEC benchmarks on the Hydra
multiprocessor [Prabhu and Olukotun 2003; Hammond et al. 2000]. These results en-
couraged us to apply TLS to the much larger epochs from the outer loops of database
transactions.

Hammond et. al. push the idea of programming with epochs to its logical extreme, mak-
ing the program consist of nothing but epochs; this results in a simpler architecture [Ham-
mond et al. 2004], but requires the programmer to always use epochs [Hammond et al.
2004]. We believe that it is not practical to apply this approach to existing database sys-
tems. As a result the work in this article does not enforce a single programming model:
programmers can use TLS and epochs when they are desirable, and use either traditional
sequential execution or threaded execution as well.

1.3.3 TLS Hardware Support. The basic idea behind TLS is inspired by Kung and
Robinson’s optimistic concurrency control (OCC) work [Kung and Robinson 1981]. In
Kung and Robinson’s paper they propose a mode of execution similar to TLS’s epochs—
transactions execute without using locks, and before committing a check for conflicts is

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 7

performed, and the transaction rewinds if a conflict is detected. OCC was implemented in
software, and achieved reasonable performance by considering only dependences caused
by accesses to the database itself. TLS tracks dependences caused by accesses to both
the database and the meta-data used to maintain the database. This has two benefits: first
TLS is able to extract parallelism from within a single transaction (instead of increasing
parallelism between transactions). This means that when speculation fails less work is un-
done, since only a fragment of the transaction’s execution is rewound. Second, this article
shows that the changes to the DBMS software required for achieving good performance
with TLS are localized, while applying OCC requires changing the fundamental locking
methodology used by the entire DBMS.

The optimistic concurrency control work inspired a hardware implementation called
transactional memory [Herlihy and Moss 1993], which showed how the processor caches
can be used to buffer speculative state. The transactional memory work led to a tech report
which did a preliminary investigation of TLS-style execution [Morrisett and Herlihy 1993].
The hardware design in this article builds on this idea, using the caches to buffer speculative
state.

The first major study of how to implement a complete TLS system in hardware was
the Multiscalar project from Wisconsin [Franklin and Sohi 1996; Sohi et al. 1995]. The
initial Multiscalar featured an architecture optimized purely for TLS-style execution. Pro-
grams were broken up into tasks (equivalent to TLS epochs), and each task was run on
a separate CPU. Register dependences were handled through a fast register forwarding
ring, and memory dependences were resolved through a centralized address resolution
buffer [Franklin and Sohi 1996]. Later this design was refined to use the caches to detect
and buffer memory dependences, in the form of the speculative versioning cache [Gopal
et al. 1998]. The success of the Multiscalar project inspired numerous other TLS research
projects, including the IACOMA project [Prvulovic et al. 2001], the Hydra project [Ham-
mond et al. 2000], and our Stampede project [Steffan and Mowry 1998; Steffan et al. 1997;
Steffan et al. 2000; 2002; Zhai et al. 2002; 2004]. This research also inspired work on a few
software-only TLS designs [Gupta and Nim 1998; Rauchwerger and Padua 1999; Rund-
berg and Stenstrom 2000] and hardware-only TLS designs [Akkary and Driscoll 1998;
Marcuello and González 1999; Rotenberg et al. 1997]. An interesting comparison of many
of these schemes was done by Garzarán et. al. [Garzarán et al. 2003].

One of the ways which we avoid dependences in this article is to delay lock and latch
operations during the execution of an epoch, and optimistically assume there will not be
conflicts before the epoch commits. There are two differences between this technique and
optimistic concurrency control [Kung and Robinson 1981; Herlihy and Moss 1993]: (i)
epochs are much smaller than transactions (in our experiments we have between 2 and
192 epochs per transaction), and (ii) transactions using speculation in our TLS scheme are
able to correctly interact with non-speculative transactions with no changes to the non-
speculative transactions.

This article adds an important capability to prior hardware designs: we use sub-epochs [Colo-
han et al. 2006] to tolerate data dependences between speculative epochs. Sub-epochs
(a.k.a. sub-threads) are a form of checkpointing, and in this article sub-epochs are used
to reduce the penalty due to failed speculation. Using checkpoints in epochs was previ-
ously proposed by Olukotun et. al. [Olukotun et al. 1999]—in their work they found that
checkpoints had little benefit, since they were considering workloads with small epochs.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

8 · Colohan, Ailamaki, Steffan, and Mowry

for(i=1...num items) {
row = stock table.select(items[i]);
row.quantity--;
stock table.update(items[i], row);

}























E
ac

h
ite

ra
tio

n
is

an
ep

oc
h

Row
StockTable::select(ItemId item)
{
num selects++;
return *btree lookup(item);

}

void
StockTable::update(ItemId item, Row row)
{
num updates++;
Row *bt row = btree lookup(item);
*bt row = row;

}

Fig. 4. Simplified main loop from the NEW ORDER transaction.

The large epochs found in our database workloads improve dramatically with the use of
sub-epochs (checkpoints).

1.4 Contributions

This article makes the following contributions: (i) it solves the problem of parallelizing
the central loop of a transaction, which reduces transaction latency and hence decreases
contention for resources used by the transaction; (ii) it provides a methodology for elim-
inating the data dependences which limit parallel performance, describing three specific
techniques for eliminating these dependences and examples of their application; (iii) it
demonstrates the application of these techniques by incrementally parallelizing transac-
tions running on a real DBMS, and by describing this process in detail for several TPC-C
transactions.

2. APPLYING TLS TO DATABASE TRANSACTIONS

In this section we provide an overview of the process of using TLS to incrementally par-
allelize a database transaction. We begin by discussing the issues involved in dividing a
transaction into epochs. We then present the details of managing epochs and the underlying
speculative threads. Finally, we introduce several techniques and tools for tolerating data
dependence violations between epochs, and optimizing the performance of large epochs.

2.1 Dividing a transaction into epochs

Consider the for-loop in Figure 4, which is a highly simplified version of the central loop
of the NEW ORDER transaction from TPC-C. This loop simply finds items in a database

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 9

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1Dependence

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Dependence

E
po

ch
 2

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Dependence

Dependence

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

E
po

ch
 3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

E
po

ch
 1

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

T
im

e

(a) Execution of epochs in parallel results in dependences backwards in time.

���
���
���
���
���
���

���
���
���
���
���
���

r1 = load num_selects;
inc r1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

Violation! ���
���
���
���
���

���
���
���
���
���

r1 = load num_selects;
inc r1

Violation!
�

�

�

�

�

�

���
���
���
���
���
���E

po
ch

 1

E
po

ch
 3

E
po

ch
 2

r1 = load num_selects;
inc r1 Chain Violation!

T
im

e

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

store num_updates = r2
r3 = call btree_lookup
...
copy row, r3

r2 = load num_updates
inc r2

...

call btree_lookup

r1 = load num_selects;

store num_selects = r1
inc r1

Dependence

Dependence

Dependence

Dependence

(b) Backwards dependences cause mis-speculation. Violations recover from mis-
speculation by restarting the epoch.

Fig. 5. TLS execution of the example loop.

table and decrements their quantity field. Let’s assume that the programmer knows that
the elements in the items array are disjoint—this means that if the programmer looked
at just the loop, they would presume that the loop is parallel, and each loop iteration could
be run as a parallel epoch. If a transaction programmer were trying to apply TLS, then this
loop would be a good candidate for parallelization.

But what about the select and update functions? If we look at the definitions of
those functions (also in Figure 4), we observe that they increment the variablesnum selects
and num updates. The increments will cause data dependences between our epochs,
shown in Figure 5(a). Furthermore, the select and update functions call btree lookup,
and we do not know what dependences may exist in the B-tree code.

The data dependences between epochs must be preserved for correct execution. To pre-
serve dependences any load in epoch 2 must load the correct value from the last store

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

10 · Colohan, Ailamaki, Steffan, and Mowry

to that memory location by epoch 1 or any earlier epoch. In Figure 5(a) we show several
backwards dependences, where the load executes before the last store in the previous epoch
executes. When TLS detects a backwards dependence it is known as a dependence viola-
tion, and it restarts the epoch (Figure 5(b))3. In addition to restarting the epoch, all later
epochs are restarted as well through a chain violation since they may have consumed incor-
rect speculative values from the violated epoch. When the violated epoch re-executes, the
backwards dependence that triggered the violation is turned into a forwards dependence,
and hence the correct result is computed.

Dependence violations cause work to be discarded and re-executed, and hence they limit
performance. The following techniques have been proposed in previous work to mitigate
the performance impact of violated data dependences.

Limit epoch sizes. Restarting large epochs throws away a large amount of work, which
is not efficient. Using small epochs limits the amount of wasted work when a violation
occurs.

Choose epochs to avoid dependences. Dependences can be avoided by carefully choos-
ing when to apply TLS at all, and by carefully choosing epoch boundaries [Vijaykumar
1998].

Choose epochs to avoid backwards dependences. Sometimes dependences can not be
avoided completely—in these cases it makes sense to either choose epochs to try and avoid
backwards dependences, or to apply compiler scheduling techniques to the epochs in an at-
tempt to turn backwards dependences into forwards dependences [Vijaykumar 1998; Zhai
et al. 2004].

Use compiler managed synchronization. If a dependence occurs frequently, insert ex-
plicit synchronization between the last store in an epoch and the first load of the next
epoch to avoid a violation [Zhai et al. 2004].

Use hardware managed synchronization. If hardware detects a load-store pair which
causes frequent violations, insert synchronization which ensures that the load does not
issue until the store retires [Steffan et al. 2002].

Use value prediction. Detect which loads frequently cause violations, and use a value
predictor to predict the correct value consumed by the load [Oplinger et al. 1999].

To parallelize database transactions while minimizing transaction programmer effort, we
started with a simple division into epochs: we made each loop iteration in the transaction
into an epoch. The resulting epochs had the following properties:

—The epochs were large. Previous work has studied epochs with various size ranges, in-
cluding 3.9–957.8 dynamic instructions [Vijaykumar 1998], 140–7735 dynamic instruc-
tions [Prabhu and Olukotun 2003], 30.8–2,252.7 dynamic instructions [Steffan et al.
2002], and up to 3,900–103,300 dynamic instructions [Garzarán et al. 2003]. The epochs
studied in this article are quite large, with 7,574–489,877 dynamic instructions.

—There were many violation-causing dependences between epochs. This makes intuitive
sense given the significantly increased sizes of the epochs.

3In this discussion we assume that only backwards dependences can cause violations, because the TLS hard-
ware [Colohan et al. 2006] makes an epoch’s stores (updates) available to later epochs as soon as possible. Using
such a design with aggressive update propagation ensures that the number of violations is minimized, which is
important when the epochs are large (and hence the penalty of a violation is large).

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 11

—The epochs were not amenable to compiler based synchronization techniques. The ma-
jority of dependences were on shared state managed by the DBMS code, and not the
transaction code. The DBMS code is shared by many transactions, and synchroniza-
tion inserted for the benefit of one transaction was not useful for the execution of other
transactions.

—The execution challenged hardware-based prediction and synchronization techniques:
a given epoch in our database transactions has tens to hundreds of potential data de-
pendences which have to be correctly predicted, while any mis-prediction results in the
entire epoch being rewound. Our most accurate hardware-based predictors were unable
to predict and synchronize our transactions effectively.

To overcome these challenges we adopted the following two-pronged approach.

(1) We incrementally modified the DBMS to avoid or remove data dependences which
frequently trigger violations. In this section we examine how removing or avoiding
dependences affects performance; in Section 4 we apply these techniques to the DBMS
to remove dependences.

(2) We extended hardware support to divide each epoch into sub-epochs, so that a single
violation does not cause the entire epoch to be rewound. We give a brief overview
of the operation of sub-epochs in this section; more detail is available in previous
publications [Colohan 2005; Colohan et al. 2006].

2.2 Life Cycle of an Epoch

To parallelize the loop from Figure 4, we need to break the loop up into epochs. The code
which does this is shown in Figure 6. Note that the loop body is untouched, and we have
just inserted template code to exploit TLS functionality. In particular, the inserted template
code in Figure 6 does the following:

① A new function, tfork, is used to create a thread to run each loop iteration as an
epoch.4 Note that the loop is structured so that tfork can fail if there are no CPUs
(or epoch contexts on a CPU) available to run another thread—this allows TLS to
dynamically adapt to the number of available CPUs.

② Each thread receives arguments using a designated portion of the stack known as the
forwarding frame [Steffan et al. 2005].

③ The boundaries of speculative execution are marked with the become speculative
and become nonspeculative functions.

④ Template code ensures that the epochs commit their speculative changes in the original
sequential program order by passing a homefree token—which indicates that the epoch
can no longer be violated by prior epochs—from one thread to the next. When a thread
possesses the homefree token it is said to be homefree and can no longer be violated
by an older epoch.

The execution of our sample loop with these primitives added is illustrated in Figure 7(a).

4Although we are showing new function calls which implement TLS functionality, in our implementation each
of these function calls expands to be a single inline assembly instruction.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

12 · Colohan, Ailamaki, Steffan, and Mowry

/* Structure for passing arguments
* to epochs: */
struct {

int i;
} forward;
forwarding frame(&forward);
forwarding size(sizeof(forward));







































②

for(forward.i=1...num items) {
/* Spawn thread to run next epoch: */
ThreadDescriptor td = tfork(); }①

if(td != 0) {
/* Parent thread--child will
* execute next loop iteration */
int i = forward.i; }②

become speculative(); }③

row = stock table.select(items[i]);
row.quantity--;
stock table.update(items[i], row);











O
ri

gi
na

ll
oo

p
bo

dy

wait for homefree token(); }④

become nonspeculative(); }③

commit speculative writes();
if(td != TFORK FAILED) {

pass homefree token(td); }④

end thread();
}

}
}

Fig. 6. Example loop with TLS primitives

2.3 Moving Code to Avoid Dependences

By making these basic TLS primitives (forking epochs, homefree token passing, specu-
lation boundaries) visible to software, we allow the software to be flexible in its use of
epochs. In Figure 7(b), we show four interesting regions of an epoch’s execution where
transaction code can be placed. The default location for all of the code in the epoch is in
the speculative region (❷ in Figure 7(b))—code placed in the speculative region executes
speculatively, and the TLS mechanism ensures that execution in the speculative region is
equivalent to the original sequential execution. When parallelizing software using TLS
the programmer would first place all code in the speculative region. Profile feedback will
show if a data dependence is causing frequent violations. The programmer can then at-
tempt to move the offending code upwards or downwards into the other regions, which are
described below.

Most loops parallelized with TLS contain a loop index computation. The loop index
computation can be as simple as incrementing an integer, or can involve a linked list

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 13

wait_for_homefree_token
become_nonspeculative
commit_speculative_writes
pass_homefree_token
end_thread

load
store

load
store

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

E
po

ch
 1

tfork
become_speculative tfork

become_speculative

tfork
become_speculative

load

load

E
po

ch
 2

E
po

ch
 3

load
store

load
store

wait_for_homefree_token
become_nonspeculative
commit_speculative_writes
pass_homefree_token
end_thread

T
im

e

wait_for_homefree_token
become_nonspeculative
commit_speculative_writes
pass_homefree_token
end_thread

load
store

load
store

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Violation!

Violation!

Chain Violation!

(a) TLS primitives in action.

tfork

end_thread

become_speculative

wait_for_homefree_token

become_nonspeculative
commit_speculative_writes
pass_homefree_token

❷

❸

❹

❶ pre−fork region

speculative region

post−homefree region

post−commit region

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

(b) Regions of an epoch’s execution.

Fig. 7. Detailed view of an epoch showing TLS primitives and how they break an epoch into regions of execution.

traversal or moving a database cursor. The loop index computation frequently causes a
data dependence between epochs, but the index computation is usually not dependent on
the body of the loop. If the loop index computation has no side effects then it can be moved
up above the speculative region of the loop to the pre-fork region where the loop index is
computed before starting the following epoch (❶ in Figure 7(b)). The tfork call effec-
tively acts like a synchronization primitive between epochs, ensuring that the loop index

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

14 · Colohan, Ailamaki, Steffan, and Mowry

computation for an epoch completes before the next epoch begins. This avoids violations
due to the loop index. If the tfork primitive supports argument passing between threads
(in this article we assume it does) then the loop index value becomes an argument to the
next epoch.

Any code placed in the post-homefree region (the portion of an epoch’s execution after
the homefree token has arrived but before the token is passed on to the next epoch) (❸ in
Figure 7(b)) will not be violated by an earlier thread, since waiting for the homefree token
ensures that earlier threads will have committed all of their speculative writes. If some code
frequently causes violations, and if that code’s execution can be delayed without affecting
correctness, then delaying it until the homefree token has arrived (the post-homefree re-
gion) will avoid violations. An example of this is the generation of log sequence numbers
in a database system: an epoch in a transaction only generates log sequence numbers, and
never consumes them. Because no code in the epoch depends on the generated numbers, it
is safe to delay their generation until the post-homefree region.

If too much code is relocated to the post-homefree region then the homefree token may
become a bottleneck, serializing execution. To avoid this one can move code further down,
after speculation has committed and the homefree token has been passed to the next epoch.
This region of execution is known as the post-commit region (❹ in Figure 7(b)). To delay
execution until after the homefree token has been passed the code must be thread safe, since
it will be executed non-speculatively in parallel with other threads. An example of code
which can be delayed until the post-commit region is any call to free. When a transaction
frees memory its execution will be unchanged if the free is delayed until after the epoch
commits.

In Section 3 we will show numerous examples of how moving code out of the speculative
region and into the pre-fork region, post-homefree region and post-commit region can
avoid violations when parallelizing the DBMS.

2.4 Avoiding Dependences by Escaping Speculation

Dependences between epochs can often be easier to understand if you look at the higher-
level operations being performed, instead of focusing on the individual loads and stores
which cause the dependence. For example, consider two epochs which invoke malloc
and free, as shown in Figure 8(a). Both the malloc and free routines read and modify
shared data structures, namely the free list maintained by the memory allocator. Because
of this, any invocations of malloc or free which occur out of the original sequential
program order will cause violations.

Since we know that the system allocator is thread safe, it is safe to invoke in the post-
commit region. We observe that delaying the freeing of some memory will not affect the
correct execution of the program. Therefore it is safe to avoid any dependences caused by
free by moving the call to free down to the post-commit region (Figure 8(b)).

It is not possible to move the call to malloc downwards, since the epoch can not pro-
ceed until the requested memory is allocated. Instead, we avoid the dependence by escap-
ing the speculation mechanism. Fundamentally, to escape speculation we non-speculatively
allocate the memory when requested, and recover by freeing the memory again if specu-
lation fails. To escape the speculation mechanism, we wrap the malloc function with a
routine which temporarily disables the speculation mechanism while executing malloc.
This wrapper must also carefully check the arguments to malloc (to avoid ridiculously
large or frequent memory allocations, which could cause memory exhaustion), and register

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 15

malloc

free

malloc

free

malloc

free

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

E
po

ch
 1

Violation!

E
po

ch
 2

T
im

e

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

malloc
free

(a) Dependence between malloc and free
causes a violation

���
���
���
���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���E

po
ch

 1

Violation!

E
po

ch
 2

malloc

malloc

free
free

malloc

���
���
���
���
���
���
���
���
���
���

�

�

�

�

�

�

�

�

�

�

malloc

free

homefree

homefree

homefree

(b) Delaying free until after homefree de-
pendence between malloc and free, but
exposes dependence between malloc and
malloc.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

E
po

ch
 1

E
po

ch
 2

malloc

malloc

free
free

malloc

free
homefree

(c) Escaping speculation for malloc eliminates last dependence.

Fig. 8. Removing dependences between malloc and free.

a handler which will call free on the allocated memory if the epoch is later violated.
The code wrapper shown in Figure 9 implements this modified version of malloc. In

particular, this code does the following:

① Provides thorough argument checking. Since this routine is called from a speculative
thread, the parameters could be invalid.

② Acquires a mutex which provides mutual exclusion between epochs within a transac-
tion, to guard against the possibility that malloc was not implemented with intra-
transaction concurrency in mind. Note that most implementations of malloc are
indeed thread safe, so this extra paranoia can be eliminated once the programmer con-
firms this.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

16 · Colohan, Ailamaki, Steffan, and Mowry

void *malloc wrapper(size t size) {

static intra transaction mutex mut; }②

void *ret;

suspend speculation(); }③

check malloc arguments(id); }①

acquire mutex(&mut); }②

ret = malloc(size);

release mutex(&mut); }②

on violation call(free, ret); }④

resume speculation(); }③

return ret;
}

Fig. 9. Wrapper for the malloc function which escapes speculation to avoid dependences.

③ Temporarily escapes speculation. While speculation is escaped, the epoch is non-
speculative and hence all reads will observe committed machine state and all writes
will be immediately visible to the rest of the system (i.e., no buffering occurs). Since
no speculative reads are performed, the reads performed by malloc will not cause
violations.

④ Saves a pointer to the recovery function, free. If the epoch is violated then free
will be called to undo the memory allocation. This is similar to nested top actions in
ARIES [Mohan et al. 1992], since we modify the execution but preserve higher level
semantics.

Escaping speculation simplifies coding: instead of redesigning the memory allocator to
be amenable to TLS execution, we place this simple wrapper around the allocation func-
tion. However, this method requires that the malloc function be an isolated undoable
operation. The malloc function is undoable: calling free undoes the call to malloc.
The malloc function is also isolated: when it is undone via free no other transaction or
earlier epoch is forced to rewind or otherwise alter its execution. We can apply the tech-
nique of escaping speculation to any operation which satisfies the isolated and undoable
properties—in Section 4 we will see further examples of escaping speculation in use.

2.5 Sub-epochs

Data dependences between epochs cause failed speculation, which limits performance. If
the transaction was executing on a dataflow architecture [Arvind and Culler 1986] then
modifying or re-arranging the code to remove data dependences would directly lead to
a performance improvement. Unfortunately, under TLS-style execution performance is
limited not only by dependences, but also by where in the epoch they are located. A de-
pendence located early in an epoch causes only a small amount of execution to be rewound,
while a dependence located late in an epoch causes most of the epoch to be rewound. In
Figure 10 we see that if a programmer eliminates a dependence early in the epoch’s exe-
cution then it may hurt performance by exposing a dependence which occurs later in the
epoch’s execution.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 17

���
���
���
���
���

���
���
���
���
���

load

Violation!

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

load

store �
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Violation!

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

E
po

ch
 1

E
po

ch
 2

E
po

ch
 3

Chain Violation!

Violation!

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���

���
���
���
���
���

�

�

�

�

�

���
���
���
���
���

E
po

ch
 1

store

load

load

store

E
po

ch
 2

load

E
po

ch
 3

Violation!
load

Chain Violation!

Longer!

(b) After eliminating dependence(a) Before eliminating dependence

load load

T
im

e

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

load

store

load

store

load

store

load

store

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

load

store �
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

load
D

ependence

D
ependence

Dependence

Dependence

Dependence

Dependence

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

load

store{
Fig. 10. Eliminating the first dependence in an epoch can hurt performance.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

!
!
!

"
"
"

#
#
#

$
$
$

E
po

ch
 1

a

E
po

ch
 1

b

E
po

ch
 2

a

E
po

ch
 2

b

E
po

ch
 3

a

E
po

ch
 3

b

Chain Violation!
load

store

Violation!

Violation!Violation!

%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%
%&%

'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'
'&'

load

store (&(
(&(
(&(
(&(
(&(
(&(
(&(
(&(
(&(
(&(
(&(
(&(

)
)
)
)
)
)
)
)
)
)
)
)

Violation!

&
&
&
&
&
&
&
&
&
&
&
&

+&+
+&+
+&+
+&+
+&+
+&+
+&+
+&+
+&+
+&+
+&+
+&+E

po
ch

 1

E
po

ch
 2

E
po

ch
 3

Chain Violation!

Shorter!

(b) Execution with sub−epochs.(a) Execution without sub−epochs.

T
im

e

loadloadload load

,
,
,
,

-
-
-
-

.
.
.
.
.
.
.
.

/
/
/
/
/
/
/
/

loadload

store

0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0
0&0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

load

store 2&2
2&2
2&2
2&2
2&2
2&2
2&2
2&2
2&2
2&2
2&2

3&3
3&3
3&3
3&3
3&3
3&3
3&3
3&3
3&3
3&3
3&3

load

Dependence

Dependence

D
ependence

D
ependence

4
4
4
4
4
4
4
4

5
5
5
5
5
5
5
5

load

store

6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6
6&6

7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7
7&7

load

store }
Fig. 11. Sub-epochs reduce the impact of a dependence late in the epoch.

Performance is hurt because on a violation the TLS mechanism rewinds both the mis-
speculated execution which depends on the errant load and all of the correct execution

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

18 · Colohan, Ailamaki, Steffan, and Mowry

which precedes the errant load. When a dependence occurs late in the epoch’s execution
then more correct execution is rewound. We can limit the amount of correct execution re-
wound by using sub-epochs. A sub-epoch can be viewed as a checkpoint of an epoch. Each
epoch is divided into multiple sub-epochs. When a violation is detected, it detects which
sub-epoch contained the dependent load, and only that sub-epoch (and later sub-epochs)
is restarted. Further detail on sub-epochs is available in a previous publication [Colohan
et al. 2006], although we provide a brief summary here.

Figure 11 shows the effect of dividing each epoch into two sub-epochs. Since the er-
rant load occurs shortly after the second sub-epoch starts, very little correct execution is
rewound when the violation is detected. If you compare Figures 10(a) and 11(b) you see
that when using sub-epochs, eliminating the first dependence in Figure 10(a) improves
performance.

If using sub-epochs had no cost, then the best performance would be obtained by starting
a new sub-epoch before every load instruction—this would completely avoid rewinding
correct execution when a violation occurs. We have demonstrated that each sub-epoch
consumes finite hardware resources [Colohan et al. 2006]: each additional sub-epoch adds
state to each cache line and adds complexity to dependence tracking logic. To conserve
these resources we adopt a scheme where new sub-epochs are started periodically during
the execution of an epoch (every n instructions issued), so that the maximum number of
correct instructions discarded due to a violation is less than n.

2.6 Inter-transaction Data Dependences

Up until this point we have discussed the TLS execution of a single transaction. A trans-
action runs on a thread5, which may be further subdivided into epochs. How do the spec-
ulative epochs within a transaction’s thread interact with other threads in the DBMS?

As a thread executes it performs loads and stores to memory, and acquires and releases
mutexes and locks. All other threads in the system interact with the thread by observing the
results of these memory and synchronization operations. To the other threads in the sys-
tem, a thread which has been divided into epochs with TLS looks like any other thread, but
with bursty store behavior—an executing epoch performs no externally visible stores, and
all of the epoch’s stores become visible when the epoch commits. You might imagine that
performing the stores in a batch instead of in their original program order could introduce
concurrency bugs, but modern parallel software already has to tolerate store reordering in
hardware, and uses explicit synchronization for communication, based on release consis-
tency [Gharachorloo et al. 1990].6

When an epoch executes, it speculatively executes all loads assuming that the loaded
values will not change in memory before the epoch commits. If a loaded value is changed
before the epoch commits then it triggers a violation, which restarts the epoch from the
start of the appropriate sub-epoch. The loaded value can be changed by three sources:
(i) by a store performed by an earlier epoch in the same thread; (ii) by a store performed
by any non-speculative thread; or (iii) by an epoch from another thread committing. This

5In this article a thread refers to the unit of parallelism used by software without TLS. A database system typically
maintains a pool of threads, and each thread runs a transaction. TLS adds parallelism by further dividing each
thread into epochs.
6Section 3 contains further details on how synchronization primitives such as mutexes and locks are correctly
handled in TLS execution.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 19

means that stores from the other threads in the system can cause an epoch to be violated.
Does this mean that epochs will be constantly violated by the other threads (running

other transactions) in the system? Not at all. A violation is caused by a data dependence
between the other thread and the epoch. In Section 4 we show software transformations
which eliminate data dependences between epochs in a single thread. These software trans-
formations also serve to eliminate data dependences between threads.

2.7 Summary

We have demonstrated how TLS lets programmers introduce parallelism into a transaction
without having to fully understand what data dependences exist in the DBMS’s code. We
showed that once a transaction has been speculatively parallelized, data dependences be-
tween epochs can be tolerated through code motion, escaping speculation, and sub-epochs.
Finally, we demonstrated how a transaction’s use of TLS does not impact the correctness
of other transactions, although data dependences between other transactions and a transac-
tion using TLS may incur additional violations. In the two sections that follow we show
how TPC-C transactions can be divided into epochs by a transaction programmer, and how
the DBMS programmer can tune the DBMS to improve the resulting performance of the
speculatively-parallel transactions.

3. THE TRANSACTION PROGRAMMER: DIVIDING TRANSACTIONS INTO EPOCHS

To apply TLS to database transactions, the transaction programmer (or compiler) must first
divide the transaction code into epochs. We applied TLS to the transactions from the TPC-
C benchmark [Gray 1993], which represent an important class of commercial workloads.
Since the TPC-C benchmark specification [Transaction Processing Performance Council
2005] describes the transactions in English, the first thing we required was an implemen-
tation. We implemented the five transactions from TPC-C (NEW ORDER, DELIVERY,
STOCK LEVEL, PAYMENT and ORDER STATUS) on top of the BerkeleyDB storage man-
ager [Olson et al. 1999]. The implementation is a straightforward and reasonably efficient
implementation of the transactions as specified, and does not contain extensive perfor-
mance optimizations.

The transaction programmer has limited knowledge of the internals of the DBMS, and
chooses epochs to minimize data dependences which are apparent in the transaction code
they are writing. In Section 4 we will show how to eliminate the most frequent depen-
dences within the DBMS, so that the dependences in the transaction code are all that the
transaction programmer has to consider. For the transactions in this article the transac-
tion programmer interacts with the DBMS through the following four basic operations on
tables.

Select. The select operation locates the specified row in the table and reads it.

Update. The update operation locates the specified row in the table and modifies it.

Insert. The insert operation adds a new row to the table.

Cursors. A cursor is used to scan through a number of items in the table.

From the transaction programmer’s perspective dependences between epochs are caused
by reads and writes performed by the transaction, and by the database operations performed
by the transaction. Database operations can form dependences in two ways: (i) a read-after-
write (RAW) dependence occurs when an epoch performs an update operation (or updates

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

20 · Colohan, Ailamaki, Steffan, and Mowry

a row through a cursor), and a later epoch performs a select operation (or reads a row
through a cursor). (ii) an insert dependence occurs when a later epoch performs a select
operation (or reads a row through a cursor) then an earlier epoch inserts a new row which
changes the result of the later epoch’s select operation.

The TLS mechanism can detect when a RAW or insert dependence on the database data
violates the original sequential order, and will restart the epoch or sub-epoch as appropriate.
To the TLS mechanism database operations look just like any other memory operations.
This is because the database data is mapped into memory whenever it is used. As a result,
the TLS mechanism is able to detect violations caused by database operations using the
same mechanism which lets it detect violations caused by memory operations.

In the following sections we look at each transaction from TPC-C in detail, examining
the dependences which occur due to reads and writes to local variables and due to database
operations.

3.1 NEW ORDER

In Figure 12(a) we show a simplified version of the main loop from NEW ORDER. The
NEW ORDER transaction is the main transaction from the TPC-C workload, representing at
least 45% of executed transactions. NEW ORDER executes on behalf of a customer placing
an order for a list of 5–15 items from a warehouse.

We have chosen to make each loop iteration into an epoch. Since the loop covers 78% of
the transaction’s execution time, parallelizing it should result in a substantial performance
benefit. Examining the code in Figure 12(a), it appears that the only dependence between
epochs is due to reads and writes to the stock table. The benchmark specifies that the
items to be purchased will be chosen randomly from a uniform distribution of 100,000
items. This means that subsequent epochs are very unlikely to access the same item and
cause a data dependence violation.

In Figure 12(b) we show the expected TLS execution: first, the code before the loop
begins is executed. Then the loop is run in parallel, and the only violations are caused by
infrequent data dependences in the stock table. Recall that when a violation occurs a chain
violation causes all later epochs to restart since they may have consumed invalid results
from the violated epoch. Since violations are infrequent, we expect this loop to perform
quite well—in Section 5 we will see that this is true.

3.2 DELIVERY

The DELIVERY transaction (Figure 13(a)) loops through all of the districts in a warehouse
and delivers the oldest outstanding order in each district. This transaction presents two
possibilities for parallelization—the inner and outer loops. We chose to parallelize both
the inner loop and the outer loop separately (we call the outer loop variant DELIVERY

OUTER).
The inner loop represents 63% of the transaction’s execution time. We parallelize this

loop such that each iteration is an epoch. The only dependence between epochs is caused
by the update of the variable ol total. Although it is possible to use accumulator vari-
able expansion7 [Mahlke et al. 1992] to transform the transaction to avoid the ol total

7Accumulator variable expansion is used to eliminate a data dependence caused by a variable which accumulates
a value, such as a sum in a dot product. In the DELIVERY example each epoch would be given a private copy
of the ol total variable to update, and once the loop was complete all of those private variables would be

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 21

// New Order: Customer ordering a list of items from a
// warehouse.

w row = warehouse table.select(w id);
c row = customer table.select(w id, d id, c id);

d row = district table.select(w id, d id);
o id = d row.next o id;
d row.next o id++;
district table.update(w id, d id, d row);

o row.id = c id;
o row.carrier = 0;
order table.insert(w id, d id, o id, o row);
neworder table.insert(w id, d id, o id);

for(i=1...num items) {
i row = item table.select(items[i]);
st row = stock table.select(items[i]);
st row.quantity--;
stock table.update(items[i], st row);

ol row.item = items[i];
ol row.price = i row.price;
orderline table.insert(w id, d id, o id, i, ol row);

}































































Pa
ra

ll
el

iz
e

th
is

lo
op

(a) Simplified transaction source code.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

	
	
	
	
	
	
	
	
	

���
���
���
���
���
���
���

�
�
�
�
�
�
�

�

�

�

�

�

�

�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

T
im

e

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

very infrequent dependence in
stock table

�
�
�
�
�
�

�
�
�
�
�
�

(b) Transaction programmer’s expected execution with TLS.

Fig. 12. The NEW ORDER transaction.

dependence, we assume that the transaction programmer has not optimized it away. When
executed, the dependence causes a violation at the end of each and every epoch, as shown
in Figure 13(b). From this figure one can see that a frequent dependence violation which
causes a small amount of execution to be rewound will have a small impact if TLS is us-
ing a small number of CPUs. As the number of CPUs grows, the fraction of execution
time spent re-executing epochs grows, since the dependence becomes more and more of a

summed to generate the final value.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

22 · Colohan, Ailamaki, Steffan, and Mowry

bottleneck. In Section 5 we shall see that with up to 8 CPUs this is not a critical bottleneck.
The outer loop of the DELIVERY transaction has no dependences, as illustrated in Fig-

ure 13(c). In fact, it is completely parallel. The TPC-C benchmark specification allows
implementors of TPC-C to take advantage of this by running each outer loop iteration
as a separate transaction. We try parallelizing the outer loop using TLS instead of using
separate transactions to explore what happens if TLS is used with very large epochs—the
epochs in this outer loop decomposition contain an average of 490,000 instructions each.

3.3 STOCK LEVEL

The STOCK LEVEL transaction (Figure 14(a)) is a read-only transaction which checks
recently ordered items to see if any items in the warehouse have almost run out. This
transaction contains one loop which dominates the transaction’s execution, representing
98% of the transaction execution time. We can parallelize the main loop so that each
iteration is an epoch.

The main loop of STOCK LEVEL iterates over a table using a cursor8—at the start of
each epoch the cursor is read, and at the end of each epoch the cursor is incremented.
This forms a dependence from the end of each epoch to the start of the next epoch, which
completely serializes execution. To avoid this problem we turn the do-while loop into a
while loop, as shown in Figure 14(b). This makes the critical path caused by the cursor
as short as possible.

The cursor still forms a dependence between the epochs, which causes each epoch to
be violated near the start of its execution, as shown in Figure 14(b). We could add ex-
plicit synchronization to the loop to avoid this violation, but we do not do so since we
wish to demonstrate the performance gains possible with minimal effort by the transaction
programmer. The violations caused by the cursor dependence causes the execution of the
rest of the epochs to be somewhat skewed in time. This skew ensures that the infrequent
dependences on the found items set and low stock variable which occur later in the
epoch are executed in-order, which prevents them from causing additional violations.

3.4 PAYMENT

The PAYMENT transaction (Figure 15(a)) is a short transaction which records a payment
made by a customer. This transaction contains no loops that cover a significant fraction
of execution time. Since the last two operations on the DBMS are independent (updating
the customer table and inserting into the history table) we run them as two parallel
threads, as shown in Figure 15(b). These two threads cover only 30% of the transaction’s
execution, which means that they should not offer a large performance gain.

3.5 ORDER STATUS

The ORDER STATUS transaction (Figure 16(a)) looks up the status of each item ordered
by a customer. This transaction contains two loops which cover 38% of the transaction’s
execution. The majority of the work done in each loop iteration is a cursor lookup and
increment, which forms a dependent chain. Both of these loops are dominated by a depen-
dence on the cursor used in them, so even if run in parallel they will execute in a serialized

8A cursor is a transaction visible pointer to a location in a database table. A cursor is typically used for traversing
the table to scan a range of records in the table. Database systems can also use cursors internally for implementing
B-tree searches.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 23

// Delivery: deliver the oldest order in each district in
// the warehouse.

for(d id=1...DIST PER WAREHOUSE) {
cursor = new order table.new cursor(w id, d id,

OLDEST O ID);
no row = cursor.fetch next();
cursor.delete();
no o id = no row.id;

o row = order table.select(no o id, w id, d id);
o row.carrier id = carrier id;
order table.update(no o id, w id, d id, o row);

ol total = 0;

for(item=1...o row.ol cnt) {
ol row = orderline table.select(w id, d id,

no o id, item);
ol row.date = date();
ol total += ol row.amount;

}



































Pa
ra

ll
el

iz
e

th
is

lo
op

c row = customer table.select(c id);
c row.balance += ol total;
order table.update(c id, c row);

}















































































































































































Pa
ra

ll
el

iz
e

th
is

lo
op

(a) Simplified transaction source code.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

	
	
	
	
	
	
	

���
���
���
���
���
���
���

�
�
�
�
�
�
�

T
im

e

� ������ ���� ����

ol_total

�� ������ �� ����
��� � !" #�#$

%& '�'(
)�)*

(b) Transaction programmer’s expected
execution with TLS.

+,+
+,+
+,+
+,+
+,+
+,+
+,+
+,+
+,+
+,+

-
-
-
-
-
-
-
-
-
-

.,.
.,.
.,.
.,.
.,.
.,.
.,.
.,.
.,.
.,.

/
/
/
/
/
/
/
/
/
/

0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0

1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3
3

T
im

e

(c) Transaction programmer’s expected
execution with TLS—outer loop.

Fig. 13. The DELIVERY transaction.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

24 · Colohan, Ailamaki, Steffan, and Mowry

// Stock Level: examine all items ordered in the last 20
// orders to see if stock is running low.

low stock = 0;
d row = district table.select(w id, d id);
found items = empty set();

cursor = orderline table.new cursor(w id, d id,
o id - 20);

do {
ol row = cursor.data();
item id = ol row.id;
if(!found items.contains(item id)) {

found items.insert(item id);

s row = stock table.select(w id, item id);
if(s row.quantity < threshold) {

low stock++;
}

}
} while(cursor = cursor.next());















































































Pa
ra

ll
el

iz
e

th
is

lo
op

(a) Simplified transaction source code.

Fig. 14. The STOCK LEVEL transaction.

fashion (shown in Figure 16(b)).

3.6 Summary

We have summarized in detail the dependences that occur within TPC-C transactions due
to local variables and database operations, and reasoned about how to go about dividing
each transaction into epochs. We conclude that TLS parallelization is promising for three
of the five TPC-C transactions. In the next section we discuss how the DBMS programmer
can optimize performance by eliminating dependences between epochs.

4. THE DBMS PROGRAMMER: ELIMINATING DEPENDENCES AND PERFOR-
MANCE TUNING THE DBMS

While our transaction-level analysis concludes that TLS parallelization is promising for
three of the five TPC-C transactions, the implementation details of query execution algo-
rithms and access methods in the DBMS reveal more potentially performance-limiting data
dependences: read/write accesses to locks, latches, the buffer pool, logging, and B-tree in-
dexes will cause data dependences between epochs. To eliminate these data dependences
we propose and analyze three techniques:

(1) Partition data structures. A memory allocation operation (malloc) typically uses a
single pool of memory, hence parallel accesses to this shared pool will conflict. Using
a separate pool of memory for each concurrent epoch avoids such conflicts. Many

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 25

ol row = cursor.data();
item id = ol row.id;
if(!found items.contains(item id)) {

found items.insert(item id);

s row = stock table.select(w id, item id);
if(s row.quantity < threshold) {

low stock++;
}

}



































































E
po

ch
1

while(cursor = cursor.next()) {
ol row = cursor.data();
item id = ol row.id;
if(!found items.contains(item id)) {

found items.insert(item id);

s row = stock table.select(w id, item id);
if(s row.quantity < threshold) {

low stock++;
}

}
}















































































E
po

ch
s

2.
..n

(b) Do-while loop transformed into while loop to minimize impact of cursor dependence.

�������������������
�

�������������������
�

	�		�	

������
���
������
���
�

�
������ �������

�

������
���
��
�

������������
������������ ������������ ������

���
��
�

�������
�

������������
������
���
 � �
 �

!�!!�!"
"

#�##�#$
$

%�%%�%&�&&�&

'�''�'(�((�(

)�))�)
)�))�)
)�))�)
)�))�)
)�))�)

**
**
**
**
**

+�++�+,
,

T
im

e

-�--�-
-�--�-
-�--�-

.�..�.
.�..�.
.�..�.

/�//�/
/�//�/
/�//�/

00
00
00

1�11�1
1�11�1
1�11�1

22
22
22

3�33�3
3�33�3
3�33�3
3�3

4�44�4
4�44�4
4�44�4
4�4

infrequent dependence in
found_items set

infrequent dependence
due to low_stock

5�55�5
5�55�5
5�55�5

66
66
66

7�77�7
7�77�7
7�77�7
7�7

8�88�8
8�88�8
8�88�8
8�8

cursor

(c) Transaction programmer’s expected execution with TLS.

Fig. 14. Continued.

other dependences are also due to multiple epochs sharing a resource in memory—
these dependences can be avoided by partitioning that resource.

(2) Escape speculation for isolated undoable operations (IUOs). This mechanism was
introduced in Section 2.4. The TLS mechanism ensures that all attempts to fetch and
pin a page (pin page) in the buffer pool by one epoch complete before any invo-
cations of pin page in the next epoch begin, due to conflicts in the data structures
which maintain LRU information. We prefer to allow pin page operations to com-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

26 · Colohan, Ailamaki, Steffan, and Mowry

// Payment: Record customer’s payment.

w row = warehouse table.select(w id);
w row.ytd += payment amount;
warehouse table.update(w id, w row);

d row = district table.select(w id, d id);
d row.ytd += payment amount;
district table.update(w id, d id, d row);

if(byname) {
// Customer specified by name. Find all of the
// customers who’s name matches, and pick the one
// in the middle:
namecnt = count rows(customer table.select(customer name));
cursor = customer table.new cursor(customer name);
for(i=1...namecnt/2) {

cursor = cursor.next();
}
c row = cursor.data();

} else {
c row = customer table.select(c id);

}
c row.balance += payment amount;
customer table.update(c id, c row);

}

Thread 1

h row.date = date();
h row.amount = payment amount;
history table.insert(w id, d id, c id, h row);

}

Thread 2

(a) Simplified transaction source code.

������
������
������
������
���

������
������
������
������
���

�������
�

T
im

e

(b) Transaction programmer’s expected execution with TLS.

Fig. 15. The PAYMENT transaction.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 27

// Order Status: Find the last order by the customer and
// return the status of each item in the order.

if(byname) {
// Customer specified by name. Find all of the
// customers who’s name matches, and pick the one
// in the middle:
namecnt = count rows(customer table.select(customer name));
cursor = customer table.new cursor(customer name);
for(i=1...namecnt/2) {

cursor = cursor.next();
}
c row = cursor.data();
c id = c row.id;

} else {
c row = customer table.select(c id);

}

cursor = order table.new cursor(c id)

do {
o row = cursor.data();
o id = o row.id;

} while(cursor = cursor.next());















Pa
ra

ll
el

iz
e

th
is

lo
op

i = 0;
cursor = order line table.new cursor(o id);

do {
results[i++] = cursor.data();

} while(cursor = cursor.next());







Pa
ra

ll
el

iz
e

th
is

lo
op

(a) Simplified transaction source code.

���
�

���
�
������������

������������ 	�	
	�	

��
��
��

��
��
��

�
�T

im
e ��

�
��
�

��
�
��
�
������
���
������
���

cursor

������������ ���
���
�� ����

cursor��
�
��
�
������
���
������
���

������

!!"
"#�##�#

#�##�#

$�$$�$
$�$$�$

%%&
&

(b) Transaction programmer’s expected execution with TLS.

Fig. 16. The ORDER STATUS transaction.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

28 · Colohan, Ailamaki, Steffan, and Mowry

plete in any order. An epoch can simply call pin page with speculation escaped:
if the epoch is violated then the fetched page just remains in the buffer pool, and
unpin page can be invoked to release the page. This works because the pin page
operation is undoable and isolated.

(3) Postpone operations until the end of the epoch. Techniques for postponing oper-
ations were introduced in Section 2.3. When a log entry is generated, it is assigned
a log sequence number and increments a global variable. This log sequence number
counter forms a dependence between these two epochs. Our key insight was that an
epoch never uses log sequence numbers—it only generates them. We can generate log
entries during the execution of the epoch, and assign all of the sequence numbers at the
end of the epoch after all previous epochs have completed, and just before committing
the epoch (which makes the new log entries visible to the rest of the system). When an
operation has no impact on the execution of the epoch, and instead only affects other
transactions then it can be delayed until the end of the epoch.

In the remainder of this section we tour the database system’s major components, and
explain how the database system programmer can eliminate or avoid dependences on the
common path in order to increase concurrency for TLS parallelization.

4.1 Resource Management

A large portion of every DBMS is concerned with the management of resources, including
latches, locks, cursors, private and shared memory, and pages in the buffer pool. All of
these resources can be acquired and released. Dependences between epochs occur when
two epochs try to acquire the same resource, or when the data structures which track unused
resources are shared between epochs. In the discussion that follows we examine each of
these resources and develop strategies for executing them in parallel.

4.1.1 Latches. The database system uses latches9 extensively to protect data struc-
tures, and as a building block for locks. Latches are required for correct execution when
multiple transactions are executing concurrently, and ensure that only one thread is access-
ing a given shared data structure at any time. Latches are typically held only briefly—in
Section 4.1.2 we discuss locks, which offer concurrency control for database entities.

Latches form a dependence between epochs because of how they are implemented: a
typical implementation uses a read-test-write cycle on a memory location (which may be
implemented as a test-and-set, load-linked/store-conditional, atomic increment, etc.). This
read-test-write cycle can cause a data dependence violation between epochs (Figure 17(a)).

The TLS mechanism already ensures that any data protected by the latch is accessed
in a serializable order within a transaction, namely the original sequential program order.
However, latches do ensure that mutual exclusion is maintained between transactions, and
TLS does not perform that function. So we cannot simply discard the latches; we must
instead ensure that they preserve mutual exclusion between transactions without causing
violations between the epochs within a transaction.

There are two operations performed on a latch: acquire and release. Let us first consider
release operations. When a latch is released, the latch and the data it protects become
available to other transactions. Since the modifications made by an epoch are buffered
until it commits, we must postpone all release operations until after the epoch has fully

9The term latch is from the field of databases. A latch is equivalent to a mutex in operating systems parlance.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 29

�
�
�
�

�
�
�
�

���
���
���
���

�
�
�
�

Release
...work...
Acquire Violation! Acquire

(a) Latch operations create dependences.

���
���
���
���
���
���

�
�
�
�
�
�

���
���
���
���
���
���
���
���
���

	
	
	
	
	
	
	
	
	

�

�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���
���
���
���

...work...

Acquire
...work...
(enqueue release)

Commit work

...work...
(enqueue release){Large critical section oldest

oldest

latch_cnt++

latch_cnt−−

latch_cnt++

latch_cnt−−

latch_cnt++

Commit work

Release
latch_cnt−−

(b) Aggressive latch acquire. The long critical section that results may cause performance issues.

�
�
�
�
�
�
�
�
�
�
�

Sm
al

l c
ri

tic
al

 s
ec

tio
ns

Acquire
Commit work
Release

Acquire
Commit work
Release

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Acquire
...work...
Release

...work...
(enqueue acquire)

(enqueue release)
...work...
(enqueue acquire)

(enqueue release)
{

{

{

oldest

oldest

(c) Lazy latch acquire. Delaying the acquire shrinks the critical section.

Fig. 17. Adapting latches for use under TLS execution.

committed (the post-commit region of the epoch from Figure 7(b)). Release operations
can be postponed by building a list of pending release operations as the epoch executes,
and then performing all of the releases in the pending list when the epoch commits. If the
epoch is violated, we simply reset this list.

Next we consider acquire operations. During normal execution, when a latch is acquired
it prevents other transactions in the system from changing the associated data. A naı̈ve ap-
proach to handling a latch acquire under TLS is to perform the acquire non-speculatively

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

30 · Colohan, Ailamaki, Steffan, and Mowry

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

Acquire 2
Release 2

Release 1
Acquire 1

Transaction 1 Transaction 2

Acquire 1
Release 1

Acquire 2
Release 2

T
im

e

(a) Latch operations before re-ordering.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Release 2Release 1
Release 2 Release 1

Transaction 1 Transaction 2

Acquire 1Acquire 2
Acquire 1 Acquire 2

T
im

e

Deadlock

(b) Latch operations after re-ordering.

Fig. 18. Delaying latch release operations until after a epoch commits can introduce deadlock.

at the point when it is encountered. This can be implemented by a recursive latch, which
counts the number of acquires and releases, and makes the latch available to other transac-
tions only when the count reaches zero. This aggressive approach, shown in Figure 17(b),
has a major drawback: since latch releases have been delayed until the end of the epoch,
we have increased the overall size of the critical section. In addition, since we have parallel
overlap between multiple critical sections in a single transaction, the latch may be held for
an extended period of time.

To avoid long critical sections, we can also postpone acquires to the post-homefree re-
gion of the epoch as shown in Figure 17(c). This lazy approach has three parts: (i) all latch
acquires are performed at the end of the epoch, (ii) the buffered speculative modifications
are committed, and finally (iii) all latch releases are performed. This method results in
much smaller critical sections, even when acquire and release operations for a given latch
are encountered repeatedly during an epoch. A potential disadvantage of this approach is
that if another transaction changes the protected data, the epoch will violate and restart.10

Both the lazy and aggressive latch schemes have a potential problem: they re-order the
latch release operations relative to the latch acquire operations as specified in the original
program. If multiple latches are acquired by a single epoch, a deadlock may emerge that is
not possible in the sequential execution, as shown in Figure 18. Although such deadlocks
should be rare, there are two strategies to remedy them: avoidance and recovery. Deadlock
can be avoided using two traditional techniques: (i) perform all latch acquires in a single
atomic operation, or (ii) enforce a global latch acquire ordering [Silberschatz et al. 2002],
such as by sorting the acquire queue by latch address. If avoidance is not possible, we can
instead recover from deadlock once detected (perhaps through a time-out) by violating and
restarting one of the deadlocked epochs. Forward progress is guaranteed because there is
always at least one epoch (the oldest) which executes non-speculatively. The key insight
is that restarting an epoch is much cheaper than restarting the entire transaction since there
are many epochs per transaction.

10This is similar to optimistic concurrency control [Kung and Robinson 1981], except that the optimism is at the
granularity of an epoch instead of a transaction. A latch is held optimistically only for the duration of the epoch
(instead of for the entire transaction), and when a conflict occurs only the epoch rewinds (instead of rewinding
the entire transaction).

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 31

4.1.2 Locks. Locks are a more sophisticated form of concurrency control than latches.
Instead of providing simple mutual exclusion, locks allow multiple threads into a critical
section at the same time if the lock types are compatible: multiple readers are allowed
into a critical section at a time, while writers have exclusive access. Locks also provide
deadlock detection, since multiple locks can be held at once and they are meant to be held
for longer periods of time than latches.

We start by parallelizing locks using a lazy locking scheme, similar to the lazy latch
scheme in Section 4.1.1. When an acquire operation is encountered in speculative code,
we cannot simply delay the entire acquire operation until the post-homefree region of the
epoch, since a handle must be returned. Instead, we return an indirect handle, which is a
pointer to an empty handle that is filled in at the end of the epoch when the lock acquire is
actually performed.

To summarize our scheme so far, at the end of an epoch all of the lock acquires encoun-
tered in that epoch are performed, the changes made by the epoch are committed, and then
all of the lock releases encountered in the epoch are performed. This scheme will result
in correct execution, but holding all of the locks used by an epoch simultaneously can be
a performance bottleneck in the database, particularly for the locks used for searching B-
trees. We avoid this problem by recognizing that we can treat read-only and read/write
locks differently: at the end of the epoch we (i) acquire and release all read-only locks in
the order that the acquire and release operations were encountered during the epoch, we
then (ii) perform all read/write lock acquires that were encountered during the epoch, (iii)
commit the epoch’s changes to memory, and then (iv) perform all read/write lock releases
that were encountered during the epoch. Since a B-tree search involves briefly acquiring
a large number of read-only locks, this ensures that those locks are held for minimal time;
we need not hold the read-only locks during the epoch commit because the system view of
an epoch commit is similar to a transaction commit: it either succeeds or fails. By acquir-
ing and releasing the locks we ensure that the epoch commit does not occur in the middle
of a non-read-only critical section in some other transaction.11 If latches were labeled as
read-only or read/write then this optimization could also be applied to latches in addition
to locks.

4.1.3 Cursor Management. Cursors are data structures used to index into and traverse
B-trees. Since they are used quite frequently and their creation is expensive, they are
maintained in pre-allocated stacks. Unused cursors are stored in a free cursor stack. A
dependence between epochs is created when one epoch puts a cursor onto the free cursor
stack and the next epoch removes that cursor from the stack, since both operations ma-
nipulate the free pointer. Preserving this dependence is not required for correct execution:
the second epoch did not need to get the exact same cursor, but instead wanted to get any
cursor from the free stack. We can eliminate this dependence by partitioning the stack,
and hence maintaining a separate stack for each processor. This implies that more cur-
sors will have to be allocated, but that each cursor will only be used by the CPU which
allocated it, increasing cache locality and eliminating dependences between epochs. An
alternative technique would be to escape speculation when allocating cursors, as described
in Section 2.4.

11Our method of executing lock acquires may also possibly cause a deadlock situation. Similarly to latches, we
can recover from a detected deadlock situation by violating and restarting one of the deadlocked epochs.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

32 · Colohan, Ailamaki, Steffan, and Mowry

4.1.4 Memory Allocation. The free cursor pool mentioned above is just a special case
of memory allocation. The general purpose memory allocators (such as malloc) in the
database system introduce dependences between epochs when they update their internal
data structures. To avoid these dependences, we must substitute an allocator designed with
TLS in mind: in the common case, such an allocator should not communicate between
CPUs. Fortunately, this is also a requirement of highly scalable parallel applications. The
Hoard memory allocator [E.D. Berger and K.S. McKinley and R.D. Blumofe and P.R. Wil-
son 2000] is one such allocator, which maintains separate free lists for each CPU, so that
most requests for memory do not communicate. An alternative technique would be to
escape speculation when allocating memory, as described in Section 2.4.

To avoid dependences caused by free operations we delay the execution of free
operations until the post-commit region of the epoch.

4.1.5 Buffer Pool Management. When either a transaction or the DBMS itself need to
read a page of the database, they request that page by invoking the pin page operation on
the buffer pool12. This operation reads the requested page into memory (if it is not already
there), pins it in memory, and returns a pointer to it. Once finished with the page, it is
released by the unpin page operation.

Conceptually, the buffer pool is very similar to the memory allocator, since it manages
memory. However, the buffer pool is different because users explicitly name the memory
they want, and different pin page operations can pin the same page. Therefore, simply
partitioning the page pool between epochs will not suffice. Instead, we exploit the fact that
the order in which pin page operations take place does not matter. If a speculative epoch
fetches the wrong page from disk, we simply must return that page to the free pool. We
implement this by executing the pin page function non-speculatively, so that it really
does get the page and pin it in a way which is visible to the entire system. If the epoch
which called pin page is later violated, we can undo this action by calling unpin page.
(This is similar to the compensating transactions used in Sagas [Garcia-Molina and Salem
1987].)

To execute the pin page function non-speculatively we escape speculation, as de-
scribed in Section 2.4. Relaxing ordering constraints simplifies coding: instead of re-
designing the buffer pool to be amenable to TLS execution, we place a simple wrapper
around the allocation function. However, this method requires that the pin page func-
tion be an isolated undoable operation. The pin page function is undoable: calling
unpin page undoes the call to pin page. The pin page is also isolated: when it
is undone via unpin page no other transaction or earlier epoch is forced to rewind or
otherwise alter its execution.

Similar reasoning shows that the cursor allocation function and malloc are also iso-
lated undoable operations, and so this code template could be applied to these functions
instead of partitioning their free pools. The lock acquire and latch acquire func-
tions also look like isolated undoable operations—but as we found above in Section 4.1.1,
without great care speculatively executing these functions out of original sequential order
can cause performance problems (by increasing critical section sizes) or create deadlock

12The buffer pool is the subset of the database pages which currently reside in memory. The buffer pool manager
(similar to a virtual memory manager in an operating system) is responsible for retrieving needed pages from disk
and writing dirty pages back to disk in response to pin page and unpin page requests.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 33

conditions (by re-ordering lock and latch acquires).
The unpin page operation for the buffer pool is not undoable, since an attempt to

undo it with a pin page operation may cause the page to be mapped at a different address.
Because of this, we treat it similarly to a lock or latch release operation, and enqueue it to
be executed in the post-commit region of the epoch.

4.2 The Log

Every time the database is modified the changes are appended to the log. For recovery to
work properly (using ARIES [Mohan et al. 1992]) each log entry must have a log sequence
number. Unfortunately, incrementing the log sequence number causes a data dependence
between epochs. To avoid this dependence, we modify the logging code to append log
entries for speculative epochs to a per-CPU buffer. In the post-homefree region of the
epoch we loop over this buffer to assign log sequence numbers to log entries, then append
the entire buffer to the log.

4.3 B-Trees

B-trees are used extensively in the database system to index the database. The primary
operations involving the B-tree are reading records, updating existing records, and inserting
new records. Neither reading nor updating records modify the B-tree, and hence will not
cause dependences between epochs. In contrast, insert operations modify the leaf pages
of the B-tree. Therefore if the changes made by two epochs happen to fall on the same
page then the update of the free space count for that page can cause a violation. If such
a violation happens frequently then it may be possible to change the B-tree comparison
function so that subsequent inserts do not fall on the same leaf page.

One strength of TLS parallelization is that infrequent data dependences need not be
addressed, since the TLS mechanism will ensure correctness in such cases. An example
of such an infrequent data dependence is a B-tree page split. Page splits can also cause
many data dependences, but since they happen infrequently (by design), we can afford
to just ignore them. In the rare cases when page splits occur, the TLS mechanism will
ensure their correct sequential execution. The TLS mechanism provides a valuable fall-
back, allowing the programmer to avoid the effort of designing a algorithm for parallel
page-splits.

The B-tree code in BerkeleyDB contains a simple performance optimization: when a
search is requested, it begins the search by inspecting the page located by the previous
search through a “last page referenced” pointer (this assumes some degree of locality in
accesses). Accesses to this pointer cause a data dependence between epochs. Since the
resulting violations can hurt performance, we decided to disable this “last page” optimiza-
tion for TLS execution. Alternatively, one could retain this optimization without causing
violations by maintaining a separate “last page reference” pointer per CPU.

4.4 Statistics Gathering

The database system gathers statistics on its internal operations by incrementing counters.
Every time a counter is incremented in two consecutive epochs a dependence is created.
Since these counters are frequently updated and rarely read, they are parallelized by creat-
ing a private copy of each counter per CPU. When the counter is read the sum of all of the
private values is computed.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

34 · Colohan, Ailamaki, Steffan, and Mowry

4.5 Error Checks

This work indicates that error checking code in the database system can occasionally cause
dependences between epochs. The most important of these is a dependence caused by ref-
erence counting for cursors—a mechanism in the DBMS which tracks how many cursors
are currently in use by a transaction, and ensures that none are in use when the transaction
commits. Since this code is solely for debugging a transaction implementation, it can be
safely removed once the transaction has been thoroughly tested.

4.6 False Sharing

To minimize overhead, the TLS mechanism tracks data dependences at the granularity of
a cache-line. However, accesses to different variables which happen to be allocated on the
same cache line can cause data dependence violations due to false sharing [Torrellas et al.
1990; Eggers and Jeremiassen 1991]. This problem can be remedied by inserting padding
to ensure that variables which are frequently-accessed by different CPUs are not allocated
on the same cache line [Jeremiassen and Eggers 1995].13

5. EXPERIMENTAL RESULTS

In this section we evaluate the incremental parallelization of transactions using TLS, and
show the resulting performance gains.

5.1 Benchmark Infrastructure

Our experimental workload is composed of the five transactions from TPC-C (NEW OR-
DER, DELIVERY, STOCK LEVEL, PAYMENT and ORDER STATUS).14 We have paral-
lelized both the inner and outer loop of the DELIVERY transaction, and denote the outer
loop variant as DELIVERY OUTER. We have also modified the input to the NEW ORDER

transaction to simulate a larger order of between 50 and 150 items (instead of the default
5 to 15 items), and denote that variant as NEW ORDER 150. All transactions are built on
top of BerkeleyDB 4.1.25. Evaluations of techniques to increase concurrency in database
systems typically configure TPC-C to use multiple warehouses, since transactions would
quickly become lock-bound with only one warehouse. In contrast, our technique is able
to extract concurrency from within a single transaction, and so we configure TPC-C with
only a single warehouse. A normal TPC-C run executes a concurrent mix of transactions
and measures throughput15; since we are concerned with latency we run the individual
transactions one at a time. TLS improves the performance of CPU bound transactions: if
a transaction spends the majority of its execution time awaiting buffer pool requests then
the transaction is disk bound and not CPU bound. To ensure we are studying CPU bound
transactions, we configure the DBMS with a large (100MB) buffer pool.16

13Insertion of padding works for most data structures, but is not appropriate for data structures which mirror
disk-resident data, such as B-tree page headers. In this case, changes will have to be made to the B-tree data
structure itself (see Section 4.3).
14Our workload was written to match the TPC-C spec as closely as possible, but has not been validated. The
results we report in this article are speedup results from a simulator and not TPM-C results from an actual system.
In addition, we omit the terminal I/O, query planning, and wait-time portions of the benchmark. Because of this,
the performance numbers in this article should not be treated as actual TPM-C results, but instead should be
treated as representative transactions.
15In a database context, throughput is the rate of transaction execution (transactions executed per minute).
16This is roughly the size of the entire dataset for a single warehouse.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 35

Table I. Simulated memory system parameters.
Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 4-way set-assoc,2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Speculative Victim Cache 64 entry
Miss Handlers 128 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency 10 cycles
to Secondary Cache
Minimum Miss Latency 75 cycles
to Local Memory
Main Memory Bandwidth 1 access per 20 cycles

The parameters for each transaction are chosen according to the TPC-C run rules using
the Unix random function, and each experiment uses the same seed for repeatability. The
benchmark executes as follows: (i) start the DBMS; (ii) execute 10 transactions to warm
up the buffer pool; (iii) start timing; (iv) execute 100 transactions; (v) stop timing.

All code is compiled using gcc 2.95.3 with O3 optimization on a SGI MIPS-based
machine. The BerkeleyDB database system is compiled as a shared library, which is linked
with the benchmark that contains the transaction code.

To apply TLS to this benchmark we started with the unaltered transaction, marked the
main loop within it as parallel, and executed it on a simulated system with TLS support.
The system reports back the load and store program counters of the instructions which
caused speculation to fail, and we use that information to determine the cause (in the source
code) of the most critical performance bottleneck. We then apply the appropriate optimiza-
tion from Section 4 and repeat.

5.2 Simulation Infrastructure

We perform our evaluation using a detailed, trace-driven simulation of a chip-multiprocessor
composed of 4-way issue, out-of-order, superscalar processors similar to the MIPS R14000 [Yea-
ger 1996], but modernized to have a 128-entry reorder buffer. Each processor has its own
physically private data and instruction caches, connected to a unified second level cache by
a crossbar switch. Register renaming, the reorder buffer, branch prediction (GShare [Mc-
Farling 1993] with 16KB, 8 history bits), instruction fetching, branching penalties, and

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

36 · Colohan, Ailamaki, Steffan, and Mowry

Table II. Benchmark statistics.
Sequential Average Epoch Stats

Benchmark Exec. Time Coverage Size Spec. Insts. Threads per
(Mcycles) (Dyn. Instrs.) per Epoch Transaction

NEW ORDER 62 78% 62k 35k 9.7
NEW ORDER 150 509 94% 61k 35k 99.6
DELIVERY 374 63% 33k 20k 10.0
DELIVERY OUTER 374 99% 490k 327k 10.0
STOCK LEVEL 253 98% 17k 10k 191.7
PAYMENT 26 30% 52k 32k 2.0
ORDER STATUS 17 38% 8k 4k 12.7

the memory hierarchy (including bandwidth and contention) are all modeled, and are pa-
rameterized as shown in Table I. The TLS mechanism is implemented using the hardware
design described in a previous publication [Colohan et al. 2006], which includes hardware
support for large epochs and 8 sub-epochs per epoch. Latencies due to disk accesses are
not modeled, and hence these results are most readily applicable to situations where the
database’s working set fits into main memory.

The simulator used to generate these results is a trace driven simulator, which means
that the instruction stream of a sequential run is used to drive a parallel timing simula-
tion. Trace driven simulation allows simulation results to be deterministic and allows us
to model oracle hardware, but also means that accurately measuring interactions between
parallel speculative threads is more challenging. For example, the wrong code paths due to
mis-speculation (both due to TLS and due to branch mis-speculations) are simulated by ex-
ecuting the correct path twice, which may slightly underestimate instruction cache misses.
Recovery code (such as code executed to undo mis-speculated page get or malloc
calls) invoked on a violation is currently not simulated—these functions should take very
little time to execute due to the small amount of work they must perform. When a violation
is detected while speculation is escaped the epoch restarts immediately, instead of delaying
the violation until speculation resumes.

5.3 High Level Benchmark Characterization

We start by characterizing the benchmarks, so we can better understand them. As a starting
point for comparison, we run our original sequential benchmark, which shows the execu-
tion time with no TLS instructions or any other software transformations running on one
CPU of the machine (which is configured with 4 CPUs, cache line replication, and sub-
epoch support enabled). This SEQUENTIAL experiment takes between 17 and 509 million
cycles (Table II) to execute, but this time is normalized to 100 in Figure 19. (Note that
the large percentage of Idle is caused by three of the four CPUs idling in a sequential ex-
ecution.) When we transform the software to support TLS we introduce some software
overheads which are due to new instructions used to manage epochs, and also due to the
changes to the DBMS we made to parallelize it. The TLS-SEQ experiment in Figure 19
shows the performance of this parallelized executable running on a single CPU—the addi-
tional software overhead is reasonable, varying from -5% to 11% (negative overheads are
due to our added code inadvertently improving the performance of the compiler optimizer).

When we apply TLS with our BASELINE hardware configuration with 4 CPUs, 8 sub-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 37

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
3

T
LS

-S
eq

54
*B

as
el

in
e

51
N

o
S

pe
cu

la
tio

n

(a) NEW ORDER

|0
|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
2

T
LS

-S
eq

38
*B

as
el

in
e

35
N

o
S

pe
cu

la
tio

n

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
3

T
LS

-S
eq

68
*B

as
el

in
e

60
N

o
S

pe
cu

la
tio

n

(c) DELIVERY

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

95
T

LS
-S

eq
34

*B
as

el
in

e
33

N
o

S
pe

cu
la

tio
n

(d) DELIVERY OUTER

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
8

T
LS

-S
eq

47
*B

as
el

in
e

36
N

o
S

pe
cu

la
tio

n

(e) STOCK LEVEL

Fig. 19. Overall performance of optimized benchmark on 4 CPUs.

epochs per epoch, 5000 speculative instructions per sub-epoch) we see a significant per-
formance improvement for three of the five transactions, with a 46%–66% reduction in
execution time. The PAYMENT and ORDER STATUS transactions do not benefit from TLS:
as we saw in Section 3 the PAYMENT contains no loops worth parallelizing, and the threads
we chose were limited by a dependence in the locking code which did not affect the other
transactions; the main loop in ORDER STATUS contains an unavoidable dependence on a
cursor operation.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

38 · Colohan, Ailamaki, Steffan, and Mowry

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
5

T
LS

-S
eq

10
2

*B
as

el
in

e
10

0
N

o
S

pe
cu

la
tio

n

(f) PAYMENT

|0
|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

11
1

T
LS

-S
eq

99
*B

as
el

in
e

87
N

o
S

pe
cu

la
tio

n

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(g) ORDER STATUS

Bar Explanation

Sequential No modifications or TLS code added.
TLS-Seq Optimized for TLS, but run on a single CPU.
Baseline Execution on hardware described in this article.
No Speculation Upper bound—modified hardware to treat all speculative writes as

non-speculative.

Fig. 19. Continued.

Is it possible to do better? In the NO SPECULATION experiment we show the perfor-
mance if the same program is run purely in parallel, incorrectly treating all speculative
memory accesses as non-speculative (and hence ignoring all data dependences between
epochs)—this is an upper bound on performance, since it shows what would happen if
speculation never failed and if no cache space was devoted to the storage of speculative
state. This execution does not show linear speedup due to the non-parallelized portions of
execution (Amdahl’s law), and due to a loss of locality and communication costs due to
spreading of execution over four caches. We find that for NEW ORDER, NEW ORDER 150
and DELIVERY OUTER we are very close to this ideal, and further optimization is not
worthwhile. For DELIVERY further improvements are limited by an output dependence in
the ORDER LINE table. The STOCK LEVEL transaction is limited by dependences on the
cursor used to scan the ORDER LINE table.

5.4 Scaling Intra-Transaction Parallelism

In Figure 20 we see the performance of the fully optimized transactions as the number of
CPUs is varied. The SEQUENTIAL bar represents the unmodified benchmark running on
a single core of an 8 core chip multiprocessor, while the 2 CPU, 4 CPU and 8 CPU bars
represent the execution of full TLS-optimized executables running on 2, 4 and 8 CPUs.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 39

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

70
2

C
P

U
s

54
*4

 C
P

U
s

47
8

C
P

U
s

(a) NEW ORDER

|0

|100

10
0

S
eq

ue
nt

ia
l

61
2

C
P

U
s

38
*4

 C
P

U
s

30
8

C
P

U
s

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

|0

|100

10
0

S
eq

ue
nt

ia
l

76
2

C
P

U
s

68
*4

 C
P

U
s

64
8

C
P

U
s

(c) DELIVERY

|0

|100

10
0

S
eq

ue
nt

ia
l

56
2

C
P

U
s

34
*4

 C
P

U
s

26
8

C
P

U
s

(d) DELIVERY OUTER

|0

|100

10
0

S
eq

ue
nt

ia
l

71
2

C
P

U
s

47
*4

 C
P

U
s

45
8

C
P

U
s

(e) STOCK LEVEL

Fig. 20. Performance of optimized benchmark while varying the number of CPUs.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

40 · Colohan, Ailamaki, Steffan, and Mowry

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

99
2

C
P

U
s

10
0

*4
 C

P
U

s
10

0
8

C
P

U
s

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(f) PAYMENT

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

97
2

C
P

U
s

99
*4

 C
P

U
s

11
0

8
C

P
U

s

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(g) ORDER STATUS

Fig. 20. Continued.

Table III. Explanation of graph breakdown.
Category Explanation

Idle Not enough threads were available to keep the CPUs busy.
Failed CPU executed code which was later undone due to a violation (includes all time

spent executing failed code.)
Latch Stall Stalled awaiting latch; latch is used when escaping speculation.
Cache Miss Stalled on a cache miss.
Busy CPU was busy executing code.

Large improvements in transaction latency can be obtained by using 2 or 4 CPUs, although
the additional benefits of using 8 CPUs are small.

Each bar is divided into subdivisions which show what each CPU is doing for each cycle
of execution. The subdivisions are explained in Table III. In Figure 20 we have normalized
all bars to the 8 CPU case so that the subdivisions of each bar can be directly compared.
This means that the SEQUENTIAL breakdown shows one CPU executing and seven CPUs
idling, the 2 CPU breakdown shows two CPUs executing and six CPUs idling, etc.

The NEW ORDER, NEW ORDER 150 and DELIVERY OUTER bars show that very little
time was spent on failed speculation—this means that our performance tuning was suc-
cessful at eliminating performance-critical data dependences for those transactions. The
DELIVERY transaction has some failed speculation due to a dependence in updating the
ORDER LINE table, and the STOCK LEVEL transaction has failed speculation due to a
dependence in the cursor used to scan the ORDER LINE table. As the number of CPUs
increases there is a nominal increase in both failed speculation and time spent awaiting the
latch used to serialize isolated undoable operations: as more epochs are executed concur-
rently, contention increases for both shared data and the latch. As the number of CPUs
increases there is also an increase in time spent awaiting cache misses: spreading the exe-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 41

cution of the transaction over more CPUs decreases cache locality, since the execution is
partitioned over more level 1 caches. We also see a much larger increase in the number of
cache misses for the STOCK LEVEL transaction—a large amount of cache state can be in-
validated when speculation fails, leading to increased cache misses. The negative effects of
cache misses overwhelm any parallel overlap in the ORDER STATUS transaction, resulting
in a slowdown as the number of CPUs increases.

The dominant component of the bars in NEW ORDER and DELIVERY is idle time, for
three reasons. First, in the SEQUENTIAL, 2 CPU and 4 CPU case we show the unused
CPUs as idle to allow direct comparison with the other bars. Second, the loop that we
parallelized in the transaction only covers 78% of the transaction’s execution time for
NEW ORDER, and 63% for DELIVERY: during the remaining time only one CPU is in
use. Third, TPC-C specifies that both transactions will deal with orders which contain
between 5 and 15 items, which means that on average each transaction will have only 10
epochs—this means that as we execute the last epochs in the loop load imbalance will
leave CPUs idling. The effects of all three of these issues are magnified as more CPUs
are added. To see the impact of reducing this idle time, we modified the invocation of the
NEW ORDER transaction so that each order contains between 50 and 150 items (which is
the NEW ORDER 150 transaction). We found that this modification decreases the amount
of time spent idling, and does not significantly affect the trends in cache usage or failed
speculation.

Figure 20 shows a performance trade-off: devoting more CPUs to executing a single
transaction improves performance, but results in increased contention, a decrease in cache
locality, and/or diminishing returns due to a lack of available parallelism, thus resulting
in diminishing returns as more CPUs are added. One of the strengths of using TLS for
intra-transaction parallelism is that it can be enabled or disabled at any time, and the num-
ber of CPUs can be dynamically tuned. The database system’s scheduler can dynamically
increase the number of CPUs available to a transaction if CPUs are idling, or to speed up
a transaction which holds heavily contended locks. If many epochs are being violated,
and thus the intra-transaction parallelism is providing little performance benefit, then the
scheduler could reduce the number of CPUs available to the transaction. If the transaction
compiler simply emitted a TLS parallel version of all loops in transactions then the sched-
uler could use sampling to choose loops to parallelize: the scheduler could periodically
enable TLS for loops which are not already running in parallel, and periodically disable
TLS for loops which are running in parallel. If the change improves performance then the
scheduler can make it permanent.

5.5 Impact of Each Optimization

In Figure 21 we see the results of the optimization process for the benchmarks which sped
up on a four CPU system. In this experiment the breakdown of the bars is normalized
to a four CPU system, and so 3

4
of the SEQUENTIAL bars is Idle, since three of the four

CPUs are idling during the entire execution. The NO OPTIMIZATIONS bars show what
happens if we parallelize the transaction and make no other optimizations—the existing
data dependences in the DBMS prevent any parallelism from being exploited, and the fact
that we have taken a sequential transaction and run it on four CPUs has reduced cache
locality, causing it to slow down between 5 and 8%.

Consider the NEW ORDER transaction in Figure 21(a). The major source of failed spec-
ulation in our newly-parallelized transaction are the reads and writes to latches; hence we

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

42 · Colohan, Ailamaki, Steffan, and Mowry

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
5

N
o

O
pt

im
iz

at
io

ns
10

9
La

zy
 L

at
ch

10
5

La
zy

 L
oc

ks
10

7
IU

O
 M

al
lo

c/
F

re
e

74
IU

O
 B

uf
fe

r
P

oo
l

73
S

pl
it

C
ur

so
r

Q
ue

ue
57

R
em

ov
e

E
rr

or
 C

he
ck

54
F

al
se

 S
ha

rin
g

54
R

em
ov

e
P

er
f O

pt
54

D
el

ay
 L

og
 E

nt
rie

s
54

S
pl

it
Lo

ck
er

 ID

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(a) NEW ORDER

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
6

N
o

O
pt

im
iz

at
io

ns
11

4
La

zy
 L

at
ch

11
0

La
zy

 L
oc

ks
11

0
IU

O
 M

al
lo

c/
F

re
e

59
IU

O
 B

uf
fe

r
P

oo
l

56
S

pl
it

C
ur

so
r

Q
ue

ue
48

R
em

ov
e

E
rr

or
 C

he
ck

39
F

al
se

 S
ha

rin
g

39
R

em
ov

e
P

er
f O

pt
40

D
el

ay
 L

og
 E

nt
rie

s
40

S
pl

it
Lo

ck
er

 ID

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(b) NEW ORDER 150

Fig. 21. Performance impact on the TPC-C transactions of adding each optimization one-by-one on a four CPU
machine.

perform the lazy latch optimization described in Section 4.1.1. This optimization fixes the
first performance bottleneck, and exposes the next bottleneck which is in the lock code.
The first optimization also results in a slight slowdown, since the next bottleneck merely
delays detection of failed speculation (as illustrated in Figure 10)—hence more execution
has to be rewound.

Once we have eliminated latches as a bottleneck in NEW ORDER, the next bottleneck
exposed is in the locking subsystem. We remove the lock bottleneck by implementing lazy
locks from Section 4.1.2. We continue to remove the bottlenecks one by one: applying

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 43

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
8

N
o

O
pt

im
iz

at
io

ns
96

La
zy

 L
oc

ks
11

2
La

zy
 L

at
ch

10
9

S
pl

it
C

ur
so

r
Q

ue
ue

11
0

R
em

ov
e

E
rr

or
 C

he
ck

11
0

IU
O

 M
al

lo
c/

F
re

e
83

IU
O

 B
uf

fe
r

P
oo

l
63

F
al

se
 S

ha
rin

g
66

R
em

ov
e

P
er

f O
pt

69
D

el
ay

 L
og

 E
nt

rie
s

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(c) DELIVERY

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

10
5

N
o

O
pt

im
iz

at
io

ns
12

7
La

zy
 L

at
ch

13
0

S
pl

it
C

ur
so

r
Q

ue
ue

12
1

R
em

ov
e

E
rr

or
 C

he
ck

92
La

zy
 L

oc
ks

72
IU

O
 M

al
lo

c/
F

re
e

35
IU

O
 B

uf
fe

r
P

oo
l

34
F

al
se

 S
ha

rin
g

35
D

el
ay

 L
og

 E
nt

rie
s

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(d) DELIVERY OUTER

Fig. 21. Continued.

the code template from Figure 9 to db malloc and the pin page operation, paralleliz-
ing the free cursor pool, removing dependence causing error checks (Section 4.5), adding
padding to avoid violations due to false sharing (Section 4.6), removing the “last page ref-
erenced” pointer from the B-tree search code (Section 4.3), delaying the generation of log
entries until epochs are ready to commit (Section 4.2), and parallelizing the assignment of
locker ids.

It is tempting to look at Figure 21(a) and conclude that the most important optimization
was parallelizing the buffer pool, since adding this optimization caused the execution time
to drop by 32%. However, this is not the case since the impact of the optimizations is
cumulative. If we take the NO OPTIMIZATIONS build and just enable the buffer pool opti-

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

44 · Colohan, Ailamaki, Steffan, and Mowry

|0

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

10
0

S
eq

ue
nt

ia
l

13
7

N
o

O
pt

im
iz

at
io

ns
14

8
La

zy
 L

at
ch

14
8

La
zy

 L
oc

ks
12

6
S

pl
it

C
ur

so
r

Q
ue

ue
12

8
IU

O
 M

al
lo

c/
F

re
e

10
1

IU
O

 B
uf

fe
r

P
oo

l
57

R
em

ov
e

E
rr

or
 C

he
ck

40
F

al
se

 S
ha

rin
g

 Idle
 Failed
 Latch Stall
 Cache Miss
 Busy

(e) STOCK LEVEL

Fig. 21. Continued.

mization then the normalized performance is 0.98. Instead, Figure 21 implies that the itera-
tive optimization process which we used works well—as the database system programmer
removes performance limiting dependences performance gradually improves (and exposes
new dependences). Removing dependences decreases the time spent on failed execution,
and improves performance.

Figure 21(b) shows the same experiment performed on the larger NEW ORDER 150
transaction. This transaction mirrors the NEW ORDER transaction, except the idling caused
by load imbalance is no longer dominant with more epochs.

Figures 21(c), (d) and (e) show the same experiment for the DELIVERY, DELIVERY OUTER,
and STOCK LEVEL transactions. The order in which each bottleneck dependence be-
comes dominant varies from transaction to transaction. Also, not all of the bottlenecks
found in NEW ORDER need to be removed to get the best performance out of these three
transactions—for the STOCK LEVEL transaction performance actually degrades from 0.40
to 0.47 when the additional code to eliminate bottlenecks experienced by NEW ORDER

is applied. STOCK LEVEL also shows that applying TLS can hurt performance: in the
early rounds of optimization the transaction suffers dramatically from the decreased cache
locality introduced by parallel execution, and there is insufficient parallel overlap to com-
pensate for this effect. Overall, in DELIVERY, DELIVERY OUTER, and STOCK LEVEL the
iterative process works quite well, resulting in significant performance improvements for
each transaction.

We have shown an iterative optimization process in action. When should the iteration
stop? Consider the FAILED segment of the bars in Figure 21. Note that eliminating a
dependence avoids a violation, and hence only improves the performance of the FAILED

portion of execution. The database system programmer chooses to stop when any potential
gains in performance outweigh the perceived difficulty of eliminating the next bottleneck
data dependence.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 45

6. CONCLUSIONS

Chip multiprocessing has arrived, as evidenced by recent products (and announced road
maps) from Intel, AMD, IBM and Sun Microsystems. While the database community has
long embraced parallel processing, the fact that an application must exploit parallel threads
to tap the performance potential of these additional CPU cores presents a major challenge
for desktop applications. Processor architects have responded to this challenge through a
new mechanism—thread-level speculation (TLS)—that enables optimistic parallelization
on chip multiprocessors. Fortunately for the database community, although TLS was orig-
inally designed to overcome the daunting challenge of parallelizing desktop applications,
it also allows us to tap new forms of parallelism within a DBMS that had previously been
too painful to consider.

In this article, we have focused on one such opportunity enabled by TLS: exploiting
intra-transaction parallelism. Our experimental results demonstrate that we can speed up
the latency (not just the throughput) of three of the five transactions in TPC-C by 44–
66% by exploiting TLS on a chip multiprocessor with four CPU cores. TLS allows the
database’s scheduler to use CPU cores to improve latency when throughput is not the pri-
mary concern. In contrast with previous approaches to exploiting intra-transaction paral-
lelism, we place almost no burden on the transaction programmer (they merely demarcate
epoch boundaries). In the future this burden could easily be shifted to the transaction com-
piler. Although changes to the DBMS code are required to achieve this benefit, they af-
fected less than 1200 out of 180,000 lines of code in BerkeleyDB, they were implemented
in roughly a month by a graduate student, and we expect that they would generalize to
other DBMSs. We hope that these promising results will inspire database researchers to
find other opportunities for exploiting untapped parallelism through TLS.

ACKNOWLEDGMENTS

This research has been supported by grants from the National Science Foundation, NASA,
IBM and Intel.

REFERENCES

AKKARY, H. AND DRISCOLL, M. 1998. A dynamic multithreading processor. In MICRO-31.

ARVIND AND CULLER, D. 1986. Dataflow architectures. In Annual Review in Computer Science. Vol. 1.
225–253.

BHOWMIK, A. AND FRANKLIN, M. 2002. A general compiler framework for speculative multithreading. In
Proceedings of the 14th SPAA.

COLOHAN, C., AILAMAKI, A., STEFFAN, J., AND MOWRY, T. 2005. Optimistic Intra-Transaction Parallelism
on Chip Multiprocessors. In Proceedings of the 31st VLDB.

COLOHAN, C., AILAMAKI, A., STEFFAN, J., AND MOWRY, T. 2006. Tolerating Dependences Between Large
Speculative Threads Via Sub-Threads. In Proceedings of the 33rd ISCA.

COLOHAN, C. B. 2005. Applying thread-level speculation to database transactions. Ph.D. thesis, Carnegie
Mellon University. CMU-CS-05-188.

E.D. BERGER AND K.S. MCKINLEY AND R.D. BLUMOFE AND P.R. WILSON. 2000. Hoard: A scalable
memory allocator for multithreaded applications. In Proceedings of the 9th ASPLOS.

EGGERS, S. AND JEREMIASSEN, T. 1991. Eliminating false sharing. In Proceedings of the 1991 International
Conference on Parallel Processing. Vol. I. 377–381.

FRANKLIN, M. AND SOHI, G. 1996. ARB: A hardware mechanism for dynamic reordering of memory refer-
ences. IEEE Transactions on Computers 45, 5 (May).

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

46 · Colohan, Ailamaki, Steffan, and Mowry

GARCIA-MOLINA, H. AND SALEM, K. 1987. Sagas. In Proceedings of the 1987 ACM SIGMOD international
conference on Management of data. ACM Press, 249–259.

GARZARÁN, M., PRVULOVIC, M., LLABERÍA, J., VIÑALS, V., RAUCHWERGER, L., AND TORRELLAS, J.
2003. Tradeoffs in buffering memory state for thread-level speculation in multiprocessors. In Proceedings of
the 9th HPCA.

GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBONS, P., GUPTA, A., AND HENNESSY, J. 1990. Mem-
ory consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of the 17th
Annual International Symposium on Computer Architecture. 15–26.

GOPAL, S., VIJAYKUMAR, T., SMITH, J., AND SOHI, G. 1998. Speculative versioning cache. In Proceedings
of the 4th HPCA.

GRAY, J. 1993. The Benchmark Handbook for Transaction Processing Systems. Morgan-Kaufmann Publishers,
Inc.

GUPTA, M. AND NIM, R. 1998. Techniques for speculative run-time parallelization of loops. In Supercomputing
’98.

HALSTEAD, JR., R. 1985. Multilisp: a language for concurrent symbolic computation. ACM TOPLAS 7, 4,
501–538.

HAMMOND, L., CARLSTROM, B. D., WONG, V., HERTZBERG, B., CHEN, M., KOZYRAKIS, C., AND OLUKO-
TUN, K. 2004. Programming with transactional coherence and consistency (TCC). In Proceedings of the 11th
ASPLOS.

HAMMOND, L., HUBBERT, B., SIU, M., PRABHU, M., CHEN, M., AND OLUKOTUN, K. 2000. The Stanford
Hydra CMP. IEEE Micro Magazine.

HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B. D., DAVIS, J. D., HERTZBERG, B., PRABHU, M. K.,
WIJAYA, H., KOZYRAKIS, C., AND OLUKOTUN, K. 2004. Transactional memory coherence and consistency.
In Proceedings of the 31st ISCA.

HERLIHY, M. AND MOSS, J. 1993. Transactional memory: Architectural support for lock-free data structures.
In Proceedings of the 20th ISCA.

IBM CORPORATION. 2004. IBM DB2 Universal Database Administration Guide: Performance. IBM Corpora-
tion.

JEREMIASSEN, T. E. AND EGGERS, S. J. 1995. Reducing false sharing on shared memory multiprocessors
through compile time data transformations. In PPOPP ’95: Proceedings of the fifth ACM SIGPLAN symposium
on Principles and practice of parallel programming. 179–188.

JOHNSON, T., EIGENMANN, R., AND VIJAYKUMAR, T. 2004. Min-cut program decomposition for thread-level
speculation. In Proc. ACM SIGPLAN 04 Conference on Programming Language Design and Implementation.

KAUFMANN, H. AND SCHEK, H. 1996. Extending TP-monitors for intra-transaction parallelism. In Proceedings
of the 4th PDIS.

KNIGHT, T. 1986. An architecture for mostly functional languages. In Proceedings of the ACM Lisp and
Functional Programming Conference. 500–519.

KUNG, H. AND ROBINSON, J. 1981. On optimistic methods for concurrency control. ACM TODS, 213–226.

MAHLKE, S., CHEN, W., GYLLENHAAL, J., AND HWU, W. 1992. Compiler code transformations for
superscalar-based high-performance systems. In In Proceedings of the International Conference on Super-
computing.

MARCUELLO, P. AND GONZÁLEZ, A. 1999. Clustered speculative multithreaded processors. In Proc. of the
ACM Int. Conf. on Supercomputing.

MCFARLING, S. 1993. Combining branch predictors. Tech. Rep. TN-36, Digital Western Research Laboratory.
June.

MCWHERTER, D., SCHROEDER, B., AILAMAKI, A., AND HARCHOL-BALTER, M. 2004. Priority mechanisms
for OLTP and transactional web applications. In Proceedings of the IEEE International Conference on Data
Engineering.

MCWHERTER, D. T., SCHROEDER, B., AILAMAKI, A., AND HARCHOL-BALTER, M. 2005. Improving pre-
emptive prioritization via statistical characterization of OLTP locking. In Proceedings of the IEEE Interna-
tional Conference on Data Engineering.

MILLER, J. AND LAU, H. 2001. Microsoft SQL Server 2000 Resource Kit. Microsoft Press, Chapter RDBMS
Performance Tuning Guide for Data Warehousing, 575–653.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

Incrementally Parallelizing Database Transactions with Thread-Level Speculation · 47

MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H., AND SCHWARZ, P. 1992. ARIES: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM
TODS.

MORRISETT, G. AND HERLIHY, M. 1993. Optimistic parallelization. Tech. Rep. CMU-CS-93-171, School of
Computer Science, Carnegie Mellon University. October.

OLSON, M., BOSTIC, K., AND SELTZER, M. 1999. Berkeley DB. In Proceedings of the Summer Usenix
Technical Conference.

OLUKOTUN, K., HAMMOND, L., AND WILLEY, M. 1999. Improving the performance of speculatively parallel
applications on the hydra cmp. In 13th Annual ACM International Conference on Supercomputing.

OOI, C. L., KIM, S. W., PARK, I., EIGENMANN, R., FALSAFI, B., AND VIJAYKUMAR, T. N. 2001. Multiplex:
Unifying conventional and speculative thread-level parallelism on a chip multiprocessor. In In Proceedings of
the International Conference on Supercomputing.

OPLINGER, J., HEINE, D., AND LAM, M. 1999. In search of speculative thread-level parallelism. In Proceedings
of PACT ’99.

PRABHU, M. AND OLUKOTUN, K. 2003. Using thread-level speculation to simplify manual parallelization. In
The ACM SIGPLAN 2003 Symposium on Principles & Practice of Parallel Programming.

PRVULOVIC, M., GARZARÁN, M. J., RAUCHWERGER, L., AND TORRELLAS, J. 2001. Removing architectural
bottlenecks to the scalability of speculative parallelization. In Proceedings of the 28th ISCA.

RAUCHWERGER, L. AND PADUA, D. 1999. The LRPD test: Speculative run-time parallelization of loops with
privatization and reduction parallelization. IEEE Transactions on Parallel and Distributed System 10, 2, 160–
172.

ROTENBERG, E., JACOBSON, Q., SAZEIDES, Y., AND SMITH, J. 1997. Trace processors. In Proceedings of
the 30th Annual IEEE/ACM International Symposium on Microarchitecture.

RUNDBERG, P. AND STENSTROM, P. 2000. Low-cost thread-level data dependence speculation on multiproces-
sors. In Fourth Workshop on Multithreaded Execution, Architecture and Compilation.

RYS, M., NORRIE, M., AND SCHEK, H. 1996. Intra-transaction parallelism in the mapping of an object model
to a relational multi-processor system. In Proceedings of the 22nd VLDB.

SHASHA, D., LLIRBAT, F., SIMON, E., AND VALDURIEZ, P. 1995. Transaction chopping: Algorithms and
performance studies. ACM TODS 20, 3, 325–363.

SILBERSCHATZ, A., GALVIN, P., AND GAGNE, G. 2002. Operating System Concepts. John Wiley & Sons, Inc.

SOHI, G., BREACH, S., AND VIJAYKUMAR, T. 1995. Multiscalar processors. In Proceedings of the 22nd ISCA.

STEFFAN, J., COLOHAN, C., AND MOWRY, T. 1997. Architectural support for thread-level data speculation.
Tech. Rep. CMU-CS-97-188, School of Computer Science, Carnegie Mellon University. November.

STEFFAN, J., COLOHAN, C., ZHAI, A., AND MOWRY, T. 2000. A scalable approach to thread-level speculation.
In ISCA 27.

STEFFAN, J., COLOHAN, C., ZHAI, A., AND MOWRY, T. 2002. Improving value communication for thread-
level speculation. In Proceedings of the 8th HPCA.

STEFFAN, J. AND MOWRY, T. 1998. The potential for using thread-level data speculation to facilitate automatic
parallellization. In Proceedings of the 4th HPCA.

STEFFAN, J. G., COLOHAN, C. B., ZHAI, A., , AND MOWRY, T. C. 2005. The stampede approach to thread-
level speculation. 23, 3.

TORRELLAS, J., LAM, M., AND HENNESSY, J. 1990. Shared data placement optimizations to reduce multipro-
cessor cache miss rates. In Proceedings of the 1990 International Conference on Parallel Processing. Vol. II.
266–270.

TRANSACTION PROCESSING PERFORMANCE COUNCIL. 2005. TPC benchmark C standard specification revi-
sion 5.4. http://www.tpc.org.

TREMBLAY, M. 1999. MAJC: Microprocessor architecture for java computing. HotChips ’99.

VIJAYKUMAR, T. 1998. Compiling for the multiscalar architecture. Ph.D. thesis, University of Wisconsin-
Madison.

YEAGER, K. 1996. The MIPS R10000 superscalar microprocessor. IEEE Micro.

ZHAI, A., COLOHAN, C., STEFFAN, J., AND MOWRY, T. 2002. Compiler Optimization of Scalar Value Com-
munication Between Speculative Threads. In Proceedings of the 10th ASPLOS.

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

48 · Colohan, Ailamaki, Steffan, and Mowry

ZHAI, A., COLOHAN, C., STEFFAN, J., AND MOWRY, T. 2004. Compiler optimization of memory-resident
value communication between speculative threads. In International Symposium on Code Generation and
Optimization.

ZHANG, Y., RAUCHWERGER, L., AND TORRELLAS, J. 1999. Hardware for Speculative Parallelization of
Partially-Parallel Loops in DSM Multiprocessors. In Proceedings of the 5th HPCA. 135–141.

ZUZARTE, C. 2005. Personal communication.

Received July 2006;

ACM Journal Name, Vol. TBD, No. TBD, TBD 20TBD.

