Graph-based Dependency Parsing
Chu-Liu-Edmonds and Camerini (k-best)

Swabha Swayamdipta Sam Thomson

Carnegie Mellon University

November 13, 2014
I ate the fish with a fork.

TurboParser output from
http://demo.ark.cs.cmu.edu/parse?sentence=I%20ate%20the%20fish%20with%20a%20fork.
A parse is an arborescence (aka directed rooted tree):

- Directed [Labeled] Graph
- Acyclic
- Single Root
- Connected and Spanning: \(\exists \) directed path from root to every other word
Arc-Factored Model

Every possible labeled directed edge e between every pair of nodes gets a score, $\text{score}(e)$.
Arc-Factored Model

Every possible labeled directed edge e between every pair of nodes gets a score, $\text{score}(e)$.

$$G = \langle V, E \rangle =$$

![Diagram](image)

$(O(n^2)$ edges)

Example from *Non-projective Dependency Parsing using Spanning Tree Algorithms* McDonald et al., EMNLP ’05
Arc-Factored Model

Best parse is:

\[A^{(1)} = \arg \max_{A \subseteq G} \sum_{e \in A} \text{score}(e) \]

Example from *Non-projective Dependency Parsing using Spanning Tree Algorithms* McDonald et al., EMNLP '05
Arc-Factored Model

Best parse is:

\[
A^{(1)} = \arg \max_{A \subseteq G} \sum_{e \in A} \text{score}(e)
\]

s.t. A an arborescence

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP '05
Arc-Factored Model

Best parse is:

\[A^{(1)} = \arg \max_{A \subseteq G} \sum_{e \in A} \text{score}(e) \quad \text{s.t. } A \text{ an arborescence} \]

The Chu-Liu-Edmonds algorithm finds this argmax.

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP '05
Some parses are **projective**: edges don’t cross

Most English sentences are projective, but non-projectivity is common in other languages (e.g. Czech, Hindi)

Non-projective sentence in English:

```
root John saw a dog yesterday which was a Yorkshire Terrier
```

and Czech:

```
root O to nové většinou nemá ani zájem a taky na to většinou nemá peníze
```

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Examples from *Non-projective Dependency Parsing using Spanning Tree Algorithms* McDonald et al., *EMNLP ‘05*
Dependency Parsing Approaches

- Chart (Eisner, CKY)
 - Only produces projective parses
 - $O(n^3)$
Dependency Parsing Approaches

- Chart (Eisner, CKY)
 - Only produces projective parses
 - $O(n^3)$

- Shift-reduce
 - “Pseudo-projective” trick can capture some non-projectivity
 - $O(n)$ (fast!), but inexact
Dependency Parsing Approaches

- Chart (Eisner, CKY)
 - *Only* produces projective parses
 - $O(n^3)$
- Shift-reduce
 - “Pseudo-projective” trick can capture some non-projectivity
 - $O(n)$ (*fast!*) but inexact
- Graph-based (MST)
 - Can produce projective *and* non-projective parses
 - $O(n^2)$ for arc-factored
Chu and Liu ’65, On the Shortest Arborescence of a Directed Graph, Science Sinica

Edmonds ’67, Optimum Branchings, JRNBS
Every non-ROOT node needs exactly 1 incoming edge
Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge
Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

▶ Greedily pick an incoming edge for each node.
Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

▶ Greedily pick an incoming edge for each node.
▶ If this forms an arborescence, great!
Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

▶ Greedily pick an incoming edge for each node.
▶ If this forms an arborescence, great!
▶ Otherwise, it will contain a cycle C.
Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

▶ Greedily pick an incoming edge for each node.
▶ If this forms an arborescence, great!
▶ Otherwise, it will contain a cycle C.
▶ Arborescences can’t have cycles, so we can’t keep every edge in C. One edge in C must get kicked out.
Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

▶ Greedily pick an incoming edge for each node.
▶ If this forms an arborescence, great!
▶ Otherwise, it will contain a cycle C.
▶ Arborescences can’t have cycles, so we can’t keep every edge in C. One edge in C must get kicked out.
▶ C also needs an incoming edge.
Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

▶ Greedily pick an incoming edge for each node.
▶ If this forms an arborescence, great!
▶ Otherwise, it will contain a cycle C.
▶ Arborescences can’t have cycles, so we can’t keep every edge in C. One edge in C must get kicked out.
▶ C also needs an incoming edge.
▶ Choosing an incoming edge for C determines which edge to kick out
Chu-Liu-Edmonds

Consists of two stages:

- Contracting
- Expanding
For each non-ROOT node v, set $\text{bestInEdge}[v]$ to be its highest scoring incoming edge.

If a cycle C is ever formed:

- Contract the nodes in C into a new node v_C
- Edges incoming to any node in C now get destination v_C
- Edges outgoing from any node in C now get source v_C
- For each node u in C, and for each edge e incoming to u from outside of C:
 - Add $\text{bestInEdge}[u]$ to $\text{kicksOut}[e]$, and
 - Set the score of e to be $\text{score}[e] - \text{score}[\text{bestInEdge}[u]]$.

Repeat until every non-ROOT node has an incoming edge and no cycles are formed.
An Example - Contracting Stage

```
<table>
<thead>
<tr>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
</tr>
<tr>
<td>V3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>i</td>
</tr>
</tbody>
</table>
```

- **ROOT**
- **V1**: a:5, d:11, g:10
- **V2**: b:1, f:5, i:8
- **V3**: c:1, e:4, h:9

Diagram:
- **V1** to **ROOT**, **V2** to **ROOT**, **V3** to **ROOT**
- **V1** to **V2**, **V2** to **V3**, **V3** to **V1**
- **ROOT** to **V1**, **ROOT** to **V2**, **ROOT** to **V3**
An Example - Contracting Stage

<table>
<thead>
<tr>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
</tr>
<tr>
<td>V3</td>
</tr>
<tr>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>i</td>
</tr>
</tbody>
</table>
An Example - Contracting Stage

<table>
<thead>
<tr>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>i</td>
</tr>
</tbody>
</table>
An Example - Contracting Stage

<table>
<thead>
<tr>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
</tr>
<tr>
<td>V2</td>
</tr>
<tr>
<td>V3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>i</td>
</tr>
</tbody>
</table>

Graph:
- Root
- V1: d: 11, g: 10
- V2: f: 5, i: 8 - 11
- V3
- V4: a: 5 - 10, b: 1 - 11, c: 1
An Example - Contracting Stage

![Diagram with nodes and edges labeled with values.]

<table>
<thead>
<tr>
<th>bestInEdge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>g</td>
</tr>
<tr>
<td>V2</td>
<td>d</td>
</tr>
<tr>
<td>V3</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kicksOut</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>g</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>
An Example - Contracting Stage
An Example - Contracting Stage
An Example - Contracting Stage

- $a : -5 \rightarrow -1$
- $b : -10 \rightarrow -1$
- $c : 1 \rightarrow 5$
- $f : 5$
- $i : -3$
- $e : 4$
- $h : -1$

bestInEdge

<table>
<thead>
<tr>
<th></th>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>g</td>
</tr>
<tr>
<td>V2</td>
<td>d</td>
</tr>
<tr>
<td>V3</td>
<td>f</td>
</tr>
<tr>
<td>V4</td>
<td>h</td>
</tr>
<tr>
<td>V5</td>
<td></td>
</tr>
</tbody>
</table>

kicksOut

<table>
<thead>
<tr>
<th></th>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>g, h</td>
</tr>
<tr>
<td>b</td>
<td>d, h</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>

- g, h
- d, h
- f
An Example - Contracting Stage

![Diagram showing a tree structure with nodes and edges labeled with values.]

bestInEdge

<table>
<thead>
<tr>
<th>V1</th>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
</tr>
</tbody>
</table>

kicksOut

<table>
<thead>
<tr>
<th></th>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>g, h</td>
</tr>
<tr>
<td>b</td>
<td>d, h</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>
An Example - Contracting Stage

```
V5

b: -9

V1
V2
V3
V4
V5

bestInEdge

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>g</td>
</tr>
<tr>
<td>V2</td>
<td>d</td>
</tr>
<tr>
<td>V3</td>
<td>f</td>
</tr>
<tr>
<td>V4</td>
<td>h</td>
</tr>
<tr>
<td>V5</td>
<td>a</td>
</tr>
</tbody>
</table>

kicksOut

<table>
<thead>
<tr>
<th></th>
<th>g, h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d, h</td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>
```
After the contracting stage, every contracted node will have exactly one \texttt{bestInEdge}. This edge will kick out one edge inside the contracted node, breaking the cycle.

- Go through each \texttt{bestInEdge} e in the \textit{reverse} order that we added them
- lock down e, and remove every edge in \texttt{kicksOut}(e) from \texttt{bestInEdge}.
An Example - Expanding Stage

<table>
<thead>
<tr>
<th></th>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>g</td>
</tr>
<tr>
<td>V2</td>
<td>d</td>
</tr>
<tr>
<td>V3</td>
<td>f</td>
</tr>
<tr>
<td>V4</td>
<td>h</td>
</tr>
<tr>
<td>V5</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>g, h</td>
</tr>
<tr>
<td>b</td>
<td>d, h</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>d</td>
</tr>
</tbody>
</table>
An Example - Expanding Stage

\[
\begin{align*}
V1 & \quad a \quad g \\
V2 & \quad d \\
V3 & \quad f \\
V4 & \quad a \quad h \\
V5 & \quad a \\
\end{align*}
\]

\[
\begin{align*}
a & \quad g, h \\
b & \quad d, h \\
c & \quad f \\
d & \quad f \\
e & \quad f \\
f & \quad g \\
g & \quad d \\
h & \\
i &
\end{align*}
\]
An Example - Expanding Stage

Graph

- **ROOT**
 - $a: -5$
 - $b: -10$
 - $c: 1$

- **V4**
 - $f: 5$
 - $i: -3$
 - $e: 4$
 - $h: -1$

- **V3**

Tables

bestInEdge

<table>
<thead>
<tr>
<th>Node</th>
<th>bestInEdge</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>a, g</td>
</tr>
<tr>
<td>V2</td>
<td>d</td>
</tr>
<tr>
<td>V3</td>
<td>f</td>
</tr>
<tr>
<td>V4</td>
<td>a, h</td>
</tr>
<tr>
<td>V5</td>
<td>a</td>
</tr>
</tbody>
</table>

kicksOut

<table>
<thead>
<tr>
<th>Node</th>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>g, h</td>
</tr>
<tr>
<td>b</td>
<td>d, h</td>
</tr>
<tr>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>g</td>
<td>g, h</td>
</tr>
<tr>
<td>h</td>
<td>g</td>
</tr>
<tr>
<td>i</td>
<td>d</td>
</tr>
</tbody>
</table>
An Example - Expanding Stage

Graph Representation:
- **Nodes:** ROOT, V1, V2, V3, V4, V5
- **Edges:**
 - ROOT to V4: $a = -5$
 - V4 to V3: $b = -10$
 - V3 to V4: $c = 1$
 - V4 to V2: $f = 5$
 - V3 to V2: $h = -1$
 - V2 to V1: $i = -3$
 - V1 to V2: $e = 4$
 - V2 to V4: g
 - V4 to V3: h

Table:

<table>
<thead>
<tr>
<th>Node</th>
<th>bestInEdge</th>
<th>kicksOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>a, g</td>
<td>g, h</td>
</tr>
<tr>
<td>V2</td>
<td>d</td>
<td>d, h</td>
</tr>
<tr>
<td>V3</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>V4</td>
<td>a, h</td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
An Example - Expanding Stage

![Diagram of an example expanding stage with nodes labeled V1, V2, V3, ROOT, and edges labeled with weights such as a:5, b:1, c:1, d:11, g:10, e:4, h:9, f:5, i:8. There are tables labeled bestInEdge and kicksOut showing node V1 connected by a and g, V2 connected by b and d, V3 connected by c and f, and V4 and V5 with connections as indicated.]
An Example - Expanding Stage

- **V1**: a: 5, b: 1, c: 1
- **V2**: d: 11, e: 4, f: 5, i: 8
- **V3**: g: 10, h: 9

Best In Edge
- **V1**: a, g
- **V2**: d
- **V3**: f
- **V4**: a, h
- **V5**: a

Kicks Out
- a: g, h
- b: d, h
- c: f
- d: f
- e: f
- f:
- g:
- h: g
- i: d
def Get1Best(⟨V, E⟩, ROOT):
 """ returns best arborescence as a map from each node to its parent """
 for v in V \ ROOT:
 bestInEdge[v] ← arg max_u∈V score[(u, v)]
 if bestInEdge contains a cycle C:
 # build a new graph in which C is contracted into a single node
 v_C ← new Node
 V' ← V ∪ {v_C} \ C
 E' ← ∅
 for e = (t, u) in E:
 if t ∉ C and u ∉ C:
 e' ← e
 elif t ∈ C and u ∉ C:
 e' ← new Edge (v_C, u)
 score[e'] ← score[e]
 elif u ∈ C and t ∉ C:
 e' ← new Edge (t, v_C)
 kicksOut[e'] ← bestInEdge[u]
 score[e'] ← score[e] − score[kicksOut[e']]

 # remember the original
 E' ← E' ∪ {e'}
 A ← Get1Best(⟨V', E'⟩, ROOT)
 return {real[e'] | e' ∈ A} ∪ (CE \ {kicksOut[A[v_C]]})

return bestInEdge
Efficient implementation:

Tarjan '77, Finding Optimum Branchings, Networks

Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.
Efficient (wrong) implementation:

Tarjan '77, Finding Optimum Branchings*, Networks
*corrected in Camerini et al. '79, A note on finding optimum branchings, Networks

Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.
Efficient (wrong) implementation:

Tarjan '77, Finding Optimum Branchings, *Networks*

corrected in Camerini et al. '79, A note on finding optimum branchings, Networks

Not recursive. Uses a **union-find** (a.k.a. **disjoint-set**) data structure to keep track of collapsed nodes.

Even more efficient:

Gabow et al. '86, Efficient Algorithms for Finding Minimum Spanning Trees in Undirected and Directed Graphs, Combinatorica

Uses a **Fibonacci heap** to keep incoming edges sorted. Describes how to constrain **ROOT** to have only one outgoing edge.
Efficient (wrong) implementation:

Tarjan '77, Finding Optimum Branchings, Networks

corrected in Camerini et al. '79, A note on finding optimum branchings, Networks

Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.

Even more efficient:

Gabow et al. '86, Efficient Algorithms for Finding Minimum Spanning Trees in Undirected and Directed Graphs, Combinatorica

Uses a Fibonacci heap to keep incoming edges sorted.

Describes how to constrain ROOT to have only one outgoing edge.

There is a version where you don’t have to specify ROOT
Camerini
The Goal

Find *exact* k-*best* parses of a sentence given the weights of the graph
The Goal

Find *exact k-best* parses of a sentence given the weights of the graph

But why?
The Goal

Find *exact* k-best parses of a sentence given the weights of the graph

But why?

- Model might not be correct, rerank k-best parses
- Constrained models (think global features)
State of the art

- MSTParser and MaltParser produce an *approximate* k-best list
- TurboParser has no k-best feature
Central Idea

1. We know how to get $A_{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A_{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e.
4. We have an algorithm to find e.
5. Now consider two possibilities:
 - e is banned (this includes the 2nd best solution)
 - e is required (this includes the 1st best solution, $A_{(1)}$)
6. Partition the whole search space into two smaller subspaces.

Let $\text{reqd} =$ set of edges that must be included and $\text{banned} =$ set of edges that must be excluded.
1. We know how to get $A^{(1)}$, the 1-best arborescence.
Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e.
1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e. We have an algorithm to find e.
1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e. We have an algorithm to find e.
4. Now consider two possibilities:
 - e is banned (this includes the 2nd best solution)
 - e is required (this includes the 1st best solution, A)
1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e. We have an algorithm to find e.
4. Now consider two possibilities:
 - e is banned (this includes the 2nd best solution)
 - e is required (this includes the 1st best solution, A)
5. Partition the whole search space into two smaller subspaces.

Partition the solution space
Let $reqd = \text{set of edges that must be included}$ and $banned = \text{set of edges that must be excluded}$.

Partitioning the solution space

\[
\text{reqd} = \emptyset \\
\text{banned} = \emptyset
\]
Partitioning the solution space

\[\text{reqd} = \emptyset \]
\[\text{banned} = \emptyset \]
Partitioning the solution space

\[
\begin{align*}
\text{reqd} &= \emptyset \\
\text{banned} &= \{e_0\}
\end{align*}
\]
Partitioning the solution space

\[\text{ban } e_0 \]

- reqd = \(\emptyset \)
 - banned = \(\{ e_0 \} \)

- reqd = \(\emptyset \)
 - banned = \(\emptyset \)

- reqd = \(\{ e_0 \} \)
 - banned = \(\emptyset \)
Partitioning the solution space

reqd = ∅
banned = ∅

reqd = ∅
banned = {e₀}

reqd = ∅
banned = {e₀, e₁}

reqd = {e₁}
banned = {e₀}

reqd = {e₀}
banned = {e₀, e₂}

reqd = {e₀}
banned = {e₁}

reqd = {e₁}
banned = {e₀, e₁}

reqd = {e₀, e₂}
banned = ∅

ban e₀

req e₂

ban e₂
Partitioning the solution space

reqd = ∅
banned = ∅

reqd = ∅
banned = {e₀}

reqd = {e₁}
banned = {e₀}

reqd = {e₀}
banned = {e₁}

reqd = ∅
banned = {e₀, e₁}

reqd = {e₀}
banned = {e₂}

reqd = {e₀}
banned = {e₁, e₂}

reqd = {e₀, e₁}
banned = {e₂}
Partitioning the solution space

reqd = ∅
banned = ∅

reqd = ∅
banned = {e₀}

reqd = ∅
banned = {e₁, e₂}

reqd = {e₀}
banned = {e₁}

reqd = {e₁}
banned = {e₀}

reqd = {e₀}
banned = ∅

reqd = {e₁}
banned = ∅

reqd = {e₀}
banned = {e₁}

reqd = {e₀, e₁}
banned = {e₂}

reqd = {e₁}
banned = ∅

reqd = {e₀, e₁}
banned = ∅
Outline of the rest of the talk

- Find best arborescence A s.t. $\text{reqd} \subseteq A \subseteq E \setminus \text{banned}$
 Algorithm $\text{GetConstrained1Best}(G, \text{ROOT, reqd, banned})$

- Find an edge $e \in A \setminus \text{reqd}$ that defines the next partition.
 Algorithm $\text{FindEdgeToBan}(G, \text{ROOT, A, reqd, banned})$

- Smart way to search the subspace of solutions
 Algorithm $\text{GetKBest}(G, \text{ROOT, k})$
Algorithm \texttt{GetConstrained1Best}(G, \text{ROOT}, \text{reqd}, \text{banned})

Throw out edges before you feed the graph into \texttt{Get1Best}:

- Throw out every edge in \texttt{banned}
- Throw out every edge that \textit{competes} with any edge in \texttt{reqd}
- Run \texttt{Get1Best}

Runtime

$O(n^2)$
Outline of the rest of the talk

- Find best arborescence A s.t. $\text{reqd} \subseteq A \subseteq E \setminus \text{banned}$

 Algorithm $\text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd}, \text{banned})$

- Find an edge $e \in A \setminus \text{reqd}$ that defines the next partition.

 Algorithm $\text{FindEdgeToBan}(G, \text{ROOT}, A, \text{reqd}, \text{banned})$

- Smart way to search the subspace of solutions

 Algorithm $\text{GetKBest}(G, \text{ROOT}, k)$
Algorithm \textbf{FindEdgeToBan}(G, \text{ROOT}, A, \text{reqd}, \text{banned})

- Input \((A, \text{reqd}, \text{banned})\),
- For every edge \(e\) in \(A \setminus \text{reqd}\), find the next best alternative edge, \(\text{alt}(e)\)
 - this alternative cannot be in \text{banned}
 - the source of this alternative must not be lower down in the tree \(A\)
- Return \text{eBan}, the edge \(e\) in \(A \setminus \text{reqd}\) with the highest scoring alternative
- Return \(\text{diff} = \text{score(eBan)} - \text{alt(eBan)}\)

Return variables \text{eBan}, \text{diff}

\textbf{Runtime}
\(O(n^2)\)
Example run FindEdgeToBan

\[\text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset) \]

diff = +\infty, eBan = \emptyset
Example run \texttt{FindEdgeToBan}

\texttt{FindEdgeToBan}(G, \text{ROOT}, A(1), \text{reqd} = \emptyset, \text{banned} = \emptyset)

diff = +\infty, \text{eBan} = \emptyset
Example run FindEdgeToBan

\[\text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset) \]

diff = +\infty, eBan = \emptyset
Example run \texttt{FindEdgeToBan}

\texttt{FindEdgeToBan}(G, \texttt{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)

\begin{equation*}
\text{alt}(d) = b \\
\text{diff} = 10, \text{eBan} = d
\end{equation*}
Example run FindEdgeToBan

FindEdgeToBan(\(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset\))

\[
\begin{align*}
\text{alt}(d) &= b \\
\text{diff} &= 10, \text{ eBan} = d
\end{align*}
\]
Example run \textbf{FindEdgeToBan}

\textbf{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)

\[
\begin{align*}
\text{alt}(d) &= b \\
\text{diff} &= 10, \text{eBan} = d
\end{align*}
\]
Example run **FindEdgeToBan**

\[\text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset) \]

\[\text{alt}(d) = b \]

\[\text{diff} = 10, \ e\text{Ban} = d \]
Example run \textbf{FindEdgeToBan}

\textbf{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)

\[
\text{alt}(f) = e
\]

\[
\text{diff} = 1, \text{ eBan} = f
\]
Example run FindEdgeToBan

$\text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)$

$\text{alt}(f) = e$

$\text{diff} = 1, \text{eBan} = f$
Example run FindEdgeToBan

FindEdgeToBan\((G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)\)

alt\((f) = e \)

diff = 1, eBan = f
Example run \texttt{FindEdgeToBan}

\texttt{FindEdgeToBan(G, ROOT, A^{(1)}, reqd = \emptyset, banned = \emptyset)}

\[
\begin{align*}
\text{alt}(f) &= e \\
\text{diff} &= 1, \text{ eBan} = f
\end{align*}
\]
Example run FindEdgeToBan

FindEdgeToBan\((G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)\)

\[
\begin{align*}
\text{ROOT} & \quad b : -9 \\
V5 & \quad a : -4 \\
\text{alt}(a) & = c \\
\text{diff} & = 0, \ e\text{Ban} = a
\end{align*}
\]
Example run \textbf{FindEdgeToBan}

\textbf{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)

\begin{align*}
Alt(a) &= c \\
\text{diff} &= 0, \ e\text{Ban} = a
\end{align*}
Outline of the rest of the talk

- Find best arborescence A s.t. $\text{reqd} \subseteq A \subseteq E \setminus \text{banned}$
 Algorithm $\text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd}, \text{banned})$
- Find an edge $e \in A \setminus \text{reqd}$ that defines the next partition.
 Algorithm $\text{FindEdgeToBan}(G, \text{ROOT}, A, \text{reqd}, \text{banned})$
- Smart way to search the subspace of solutions
 Algorithm $\text{GetKBest}(G, \text{ROOT}, k)$
Algorithm \text{GetKBest}(G, \text{ROOT}, k)

- For every partition, save the following tuple: \((wt, eBan, A, reqd, banned)\)
 - \(A = \text{GetConstrained1Best}(G, \text{ROOT}, reqd, banned)\) corresponds to the \textit{best} solution in the partition
 - \(\text{diff}, eBan = \text{FindEdgeToBan}(G, \text{ROOT}, A, reqd, banned)\)
 - \(wt = \text{score}(A) - \text{diff}\)
- Maintain a priority queue, \(Q\) containing all tuples sorted by \(wt\)
- \(Q\) determines which path to traverse in the search space
def GetKBest(G, ROOT, k):
 """ returns k-best arborescences """
 reqd ← ∅ banned ← ∅
 A^(1) ← Get1Best(⟨G.V, G.E⟩, ROOT)
 diff, eBan ← FindEdgeToBan(G, ROOT, A^(1), reqd, banned)
 Q.push((score(A^(1)) − diff, eBan, A^(1), reqd, banned))
 for j in 2 . . . k:
 (wt, eBan, ⌐A, reqd, banned) ← Q.pop()
 if wt == −∞:
 return A^(1), . . . , A^(j−1)
 reqd ← reqd ∪ {eBan}
 banned ← banned ∪ {eBan}
 A^(j) ← GetConstrained1Best(G, ROOT, reqd, banned′)
 diff, eBan ← FindEdgeToBan(G, ROOT, ⌐A, ⌐reqd, banned)
 Q.push((score(⌐A) − diff, eBan, ⌐A, ⌐reqd, banned))
 diff, eBan ← FindEdgeToBan(G, ROOT, ⌐A, reqd, banned)
 Q.push((wt − diff, eBan, ⌐A, reqd, banned))
 return A^(1), . . . , A^(k)

Runtime
O(kn^2)
GetKBest example: 1-best

\[A^{(1)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \emptyset) \]
GetKBest example: 1-best

\[A^{(1)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \emptyset) \]

\[
\begin{array}{ccc}
\text{ROOT} & \quad & \\
\downarrow & \quad & \\
\text{V1} & \rightarrow & \text{V2} \\
\downarrow & \quad & \\
\text{V2} & \rightarrow & \text{V3} \\
\end{array}
\]

\[
\begin{array}{ccc}
a & \rightarrow & b \\
\quad & \quad & \\
5 & \rightarrow & 1 \\
\downarrow & \quad & \\
d & \rightarrow & c \\
\quad & \quad & \\
11 & \rightarrow & 1 \\
\downarrow & \quad & \\
g & \rightarrow & f \\
\quad & \quad & \\
10 & \rightarrow & 5 \\
\downarrow & \quad & \\
h & \rightarrow & i \\
\quad & \quad & \\
9 & \rightarrow & 8 \\
\downarrow & \quad & \\
e & \rightarrow & \\
\quad & \quad & \\
4 & \rightarrow & \\
\downarrow & \quad & \\
d & \rightarrow & \\
\quad & \quad & \\
11 & \rightarrow & \\
\downarrow & \quad & \\
g & \rightarrow & \\
\quad & \quad & \\
10 & \rightarrow & \\
\downarrow & \quad & \\
Q & \rightarrow & \\
\quad & \quad & \\
\end{array}
\]

\[
(\text{diff} = 0, \text{eBan} = a) \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)
\]
GetKBest example: 1-best

\[A^{(1)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \emptyset) \]

\[
\begin{align*}
V1 & \quad d : 11 \\
V2 & \quad f : 5 \\
V3 & \quad e : 4 \\
\text{ROOT} & \quad a : 5 \\
\end{align*}
\]

\[
\begin{align*}
h : 9 \\
g : 10 \\
i : 8 \\
b : 1 \\
c : 1
\end{align*}
\]

\[
Q = (21, a, A^{(1)}, \emptyset, \emptyset)
\]

\[
(\text{diff} = 0, \text{eBan} = a) \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \emptyset)
\]
GetKBest example: 2-best

\[A^{(2)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \{a\}) \]
GetKBest example: 2-best

\[A^{(2)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \{a\}) \]

\[Q \leftarrow (21, a, A^{(1)}, \emptyset, \emptyset) \]

\[(\text{diff} = 1, \ e\text{Ban} = f) \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \{a\}, \text{banned} = \emptyset) \]
GetKBest example: 2-best

\[
A^{(2)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \{a\})
\]

\[
Q
\]

\[
\left(21, a, A^{(1)}, \emptyset, \emptyset\right) \quad \left(20, f, A^{(1)}, \{a\}, \emptyset\right)
\]

\[
\text{(diff = 1, eBan = f)} \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \{a\}, \text{banned} = \emptyset)
\]
GetKBest example: 2-best

\[A^{(2)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \{a\}) \]

\[
\begin{aligned}
\text{root} & : 5 \\
\text{b} & : 1 \\
\text{c} & : 1 \\
\text{v1} & : 11 \\
\text{d} & : 10 \\
\text{g} & : 10 \\
\text{e} & : 4 \\
\text{h} & : 9 \\
\end{aligned}
\]

\[
\begin{array}{c|c}
\text{Q} & \\
(21, a, A^{(1)}, \emptyset, \emptyset) & (20, f, A^{(1)}, \{a\}, \emptyset)
\end{array}
\]

\[
\begin{aligned}
(\text{diff} = 1, \text{eBan} = f) & \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \{a\}, \text{banned} = \emptyset) \\
(\text{diff} = 2, \text{eBan} = h) & \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \{a\})
\end{aligned}
\]
GetKBest example: 2-best

\[A^{(2)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \emptyset, \text{banned} = \{a\}) \]

\[
\begin{array}{c|c}
\text{Q} & (21, a, A^{(1)}, \emptyset, \emptyset) \\
& (20, f, A^{(1)}, \{a\}, \emptyset) \\
& (19, h, A^{(2)}, \emptyset, \{a\})
\end{array}
\]

\[
(d_{\text{diff}} = 1, \ \text{eBan} = f) \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \{a\}, \text{banned} = \emptyset)
\]

\[
(d_{\text{diff}} = 2, \ \text{eBan} = h) \leftarrow \text{FindEdgeToBan}(G, \text{ROOT}, A^{(1)}, \text{reqd} = \emptyset, \text{banned} = \{a\})
\]
GetKBest example : 3-best

\[A^{(3)} \leftarrow \text{GetConstrained1Best}(G, \text{ROOT}, \text{reqd} = \{a\}, \text{banned} = \{f\}) \]
Conclusion

- Graph-based formulation for dependency parsing
- 1-best algorithm by Chu-Liu-Edmonds
- k-best algorithm by Camerini