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Abstract

We consider the problem of learning a sparse
multi-task regression, where the structure in
the outputs can be represented as a tree with
leaf nodes as outputs and internal nodes as
clusters of the outputs at multiple granular-
ity. Our goal is to recover the common set
of relevant inputs for each output cluster.
Assuming that the tree structure is avail-
able as prior knowledge, we formulate this
problem as a new multi-task regularized re-
gression called tree-guided group lasso. Our
structured regularization is based on a group-
lasso penalty, where groups are de�ned with
respect to the tree structure. We describe a
systematic weighting scheme for the groups
in the penalty such that each output variable
is penalized in a balanced manner even if the
groups overlap. We present an e�cient op-
timization method that can handle a large-
scale problem. Using simulated and yeast
datasets, we demonstrate that our method
shows a superior performance in terms of
both prediction errors and recovery of true
sparsity patterns compared to other methods
for multi-task learning.

1. Introduction

Many real world problems in data mining and scien-
ti�c discovery amount to �nding a parsimonious and
consistentmapping function from high dimensional in-
put factors to a structured output signal. For exam-
ple, in a genetic problem known as expression quan-
titative trait loci (eQTL) mapping, one attempts to
discover an association function from a small set of
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causal variables known assingle nucleotide polymor-
phisms (SNPs) out of a few million candidates, to a
set of genes whose expression levels are interdepen-
dent in a complex manner. In computer vision, one
tries to relate the high-dimensional image features to
a structured labeling of objects in the image. An ef-
fective approach to this kind of problems is to formu-
late it as a regression problem from inputs to outputs.
In the simplest case where the output is a univari-
ate continuous or discrete response (e.g., a gene ex-
pression measurement for a single gene), techniques
such as lasso (Tibshirani , 1996) or L 1-regularized lo-
gistic regression (Ng, 2004; Wainwright et al. , 2006)
have been developed to identify a parsimonious subset
of covariates that determine the outputs. However, in
the problem of multi-task regression, where the output
is a multivariate vector with an internal sparsity struc-
ture, the estimation of the regression parameters can
potentially bene�t from taking into account this spar-
sity structure in the estimation process. This will allow
the strongly related output variables to be mapped to
the input factors in a synergistic way, which is not
possible in the standard lasso.

In a univariate-output regression setting, sparse re-
gression methods that extend lasso have been proposed
to allow the recovered relevant inputs to re
ect the un-
derlying structural information among the inputs. For
example, group lasso assumed that the groupings of
the inputs are available as prior knowledge, and used
groups of inputs instead of individual inputs as a unit
of variable selection (Yuan & Lin , 2006). Group lasso
achieved this by applying an L 1 norm of the lasso
penalty over groups of inputs, while using anL 2 norm
for the input variables within each group. This L 1=L2

norm for group lasso has been extended to a more
general setting to encode prior knowledge on various
sparsity patterns, where the key idea is to allow the
groups to have an overlap. The hierarchical selection
method (Zhao et al., 2008) assumed that the input
variables form a tree structure, and designed groups
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Figure 1. Tree regularization for multiple-output regres-
sion. (a) An example of a multiple-output regression when
the correlation structure in output variables forms a tree.
(b) Groups of regression coe�cients associated with each
node of the tree in (a) in tree-guided group lasso.

so that the child nodes enter the set of relevant inputs
only if its parent node does. The situations with arbi-
trary overlapping groups have been considered as well
(Jacob et al., 2009; Jenatton et al., 2009).

Many of these ideas related to group lasso in a
univariate-output regression may be directly applied
to multi-task regression problems. TheL 1=L2 penalty
of group lasso has been used to recover inputs that
are jointly relevant to all of the outputs, or tasks, by
applying the L 2 norm to outputs instead of groups of
inputs as in group lasso (Obozinski et al., 2008; 2009).
Although the L 1=L2 penalty has been shown to be
e�ective in a joint covariate selection for multi-task
learning, it does not assume any structure among the
outputs. The extensions of group lasso with over-
lapping groups (Zhao et al., 2008; Jacob et al., 2009;
Jenatton et al., 2009) may be directly applicable in a
multi-task learning to incorporate prior knowledge on
structures. However, the overlapping groups in their
regularization methods can cause an imbalance among
di�erent outputs, because the regression coe�cients
for an output that appears in a large number of groups
are more heavily penalized than for other outputs with
memberships to fewer groups. Although a weighting
scheme that weights each group di�erently in the reg-
ularization function has been proposed to correct for
this imbalance, this ad hoc approach can still lead to
inconsistent estimates (Jenatton et al., 2009).

In this paper, we consider a particular case of a sparse
multi-task regression problem when the outputs can
be grouped at multiple granularity. We assume that
this multi-level grouping structure is encoded as a tree
over the outputs, where each leaf node represents an
individual output variable and each internal node in-
dicates the cluster of the output variables that corre-
spond to the leaf nodes of the subtree rooted at the
given internal node. As illustrated in Figure 1(a), the
outputs in each cluster are likely to be in
uenced by

a common set of inputs. In order to achieve this type
of structured sparsity at multiple levels of the hierar-
chy among the outputs, we propose a novel regularized
regression method calledtree-guided group lassothat
applies group lasso to groups of output variables de-
�ned in terms of a hierarchical clustering tree. We
assume this tree is available as prior knowledge, and
de�ne groups at multiple granularity along the tree to
encourage a joint covariate selection within each clus-
ter of outputs. Our approach can handle any types of
trees with an arbitrary height.

In particular, we describe a novel weighting scheme
that systematically weights each group in the tree-
guided group-lasso penalty such that clusters of
strongly correlated outputs are more encouraged to
share common covariates than clusters of weakly corre-
lated outputs. As was noted in Jenatton et al. (2009),
an arbitrary assignment of values for the group weights
can lead to an inconsistent estimate. Our approach is
the �rst method for achieving a structured sparsity
that o�ers a systematic weighting scheme and penal-
izes regression coe�cients corresponding to each group
in a balanced manner even when the groups overlap.

Our work is primarily motivated by the genetic associ-
ation mapping problem, where the goal is to identify a
small number of SNPs (inputs) out of millions of SNPs
that in
uence phenotypes (outputs) such as gene ex-
pression measurements. Many previous studies have
found that multiple genes in the same biological path-
ways are often co-expressed. Furthermore, evidence
has been found that these genes within a module may
share a common genetic basis for the variations in their
expression levels (Zhu et al., 2008; Chen et al., 2008).
Although the hierarchical agglomerative clustering al-
gorithm has been a popular method for visualizing the
clustering structure in the genes, statistical methods
that can take advantage of this clustering structure to
identify causal genetic variants associated with gene
modules were unavailable. In our experiments, using
both simulated and yeast datasets, we demonstrate
that our proposed method can be successfully applied
to select genetic variants a�ecting multiple genes.

2. Background on Sparse Regression
and Multi-task Learning

Assume a sample ofN instances, each represented by a
J -dimensional input vector and a K -dimensional out-
put vector. Let X denote the N � J input matrix,
whose column corresponds to observations for thej th
input x j = ( x1

j ; : : : ; xN
j )T . Let Y denote the N � K

output matrix, whose column is a vector of observa-
tions for the k-th output yk = ( y1

k ; : : : ; yN
k )T . For each
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of the K output variables, we assume a linear model:

yk = X � k + � k ; 8k = 1 ; : : : ; K; (1)

where � k is a vector of J regression coe�cients
(� 1

k ; : : : ; � J
k )T for the k-th output, and � k is a vector

of N independent error terms having mean 0 and a
constant variance. We center theyk 's and x j 's such
that

P
i yi

k = 0 and
P

i x i
j = 0, and consider the model

without an intercept.

When J is large and the number of inputs relevant
to the output is small, lasso o�ers an e�ective fea-
ture selection method for the model in Equation (1)
(Tibshirani , 1996). Let B = ( � 1; : : : ; � K ) denote the
J � K matrix of regression coe�cients for all K out-
puts. Then, lasso obtainsB̂ lasso by solving the follow-
ing optimization problem:

B̂ lasso = argmin
X

k

(yk � X � k )T � (yk � X � k )

+ �
X

j

X

k

j� j
k j;

where � is a tuning parameter that controls the
amount of sparsity in the solution. Setting � to a large
value leads to a smaller number of non-zero regression
coe�cients. Clearly, the standard lasso above o�ers
no mechanism to explicitly couple the estimates of the
regression coe�cients for correlated output variables.

In multi-task learning, where the goal is to select in-
put variables that are relevant to at least one task, an
L 1=L2 penalty has been used to take advantage of the
relatedness of the outputs. AnL 2 norm is applied to
the regression coe�cients � j for all outputs for each
input j , and theseJ L 2 norms are combined through
an L 1 norm to encourage sparsity across input vari-
ables. The L 1=L2-penalized multi-task regression is
de�ned as the following optimization problem:

B̂ L 1 =L 2 = argmin
X

k

(yk � X � k )T � (yk � X � k )

+ �
X

j

k� j k2 (2)

The L 1 part of the penalty plays the role of select-
ing inputs relevant to at least one task, and the L 2

part combines information across tasks. Since theL 2

penalty does not have the property of encouraging
sparsity, if the j th input is selected as relevant, all
of the elements of� j take non-zero values. Thus, the
estimate B̂ L 1 =L 2 is sparse only across inputs but not
across outputs.

3. Tree-Guided Group Lasso for Sparse
Multiple-output Regression

The L 1=L2-penalized regression assumes that all of
the outputs in the problem share the common set
of relevant input variables, and has been shown to
be e�ective in this scenario (Obozinski et al., 2008;
2009). However, in many real-world applications, dif-
ferent outputs are related in a complex manner such as
in gene expression data, where subsets of genes form
functional modules. In this case, it is not realistic to
assume that all of the tasks share the same set of rele-
vant inputs as in the L 1=L2-regularized regression. A
subset of highly related outputs may share a common
set of relevant inputs, whereas weakly related outputs
are less likely to be a�ected by the same inputs.

We assume that the relationships among the outputs
can be represented as a treeT with the set of vertices
V of sizejV j, as shown in Figure1(a). In this tree T,
each of theK leaf nodes is associated with an output
variable, and the internal nodes of the tree represent
groupings of the output variables located at the leaves
of the subtree rooted at the given internal node. Each
internal node near the bottom of the tree shows that
the output variables of its subtree are highly corre-
lated, whereas the internal node near the root repre-
sents relatively weaker correlations among the outputs
in its subtree. This tree structure may be available as
prior knowledge, or can be learned from data using
methods such as a hierarchical agglomerative cluster-
ing algorithm. Furthermore, we assume that each node
v 2 V is associated with weightwv , representing the
height of the subtree rooted atv.

Given this tree T over the outputs, we generalize the
L 1=L2 regularization in Equation ( 2) to a tree regular-
ization as follows. We expand theL 2 part of the L 1=L2

penalty into a group-lasso penalty, where the group is
de�ned based on treeT as follows. Each nodev 2 V
of tree T is associated with groupGv whose members
consist of all of the output variables (or leaf nodes)
in the subtree rooted at nodev. For example, Figure
1(b) shows the groups associated with each node of
the tree in Figure 1(a). Given these groups of outputs
that arise from tree T, tree-guided group lasso can be
written as

B̂ Tree = argmin
X

k

(yk � X � k )T � (yk � X � k )

+ �
X

j

X

v2 V

wv k� j
G v

k
2
; (3)

where � j
G v

is a vector of regression coe�cients f � j
k :

k 2 Gv g. Each group of regression coe�cients� j
G v

is
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weighted with wv that re
ects the strength of correla-
tion within the group.

In order to de�ne the weights wv 's, we �rst associate
each internal nodev of the tree T with two quantities
sv and gv that satisfy the condition sv + gv = 1, and
then, de�ne wv 's in Equation (3) in terms of sv 's and
gv 's as we describe below. Thesv represents the weight
for selecting the output variables associated with each
of the children of node v separately, and the gv rep-
resents the weight for selecting them jointly. We �rst
consider a simple case with two outputs (K = 2) with
a tree of three nodes that consists of two leaf nodes (v1

and v2) and one root node (v3), and then, generalize
this to an arbitrary tree. When K = 2, the penalty
term in Equation ( 3) can be written as

X

j

X

v2 V

wv k� j
G v

k
2

=
X

j

h
s3

�
j� j

1 j + j� j
2 j

�

+ g3

� q
(� j

1)2 + ( � j
2)2

�i
;

where the weights are given asw1 = s3, w2 = s3,
and w3 = g3. This is similar to the elastic-net penalty
(Zou & Hastie, 2005), where � j

1 and � j
2 can be selected

either jointly or separately according to the weights s3

and g3.

Given an arbitrary tree T, we recursively apply the
similar operation starting from the root node towards
the leaf nodes as follows:

X

j

X

v2 V

wv k� j
G v

k
2

= �
X

j

Wj (vroot ); (4)

where

Wj (v) =

8
>>>><

>>>>:

sv �
X

c2 Children( v)

jWj (c)j + gv � k� j
G v

k
2

if v is an internal node,X

m 2 G v

j� j
m j if v is a leaf node.

It can be shown that the following relationship holds
betweenwv 's and (sv , gv )'s.

wv =

8
>><

>>:

gv

Y

m 2 Ancestors( v)

sm if v is an internal node

Y

m 2 Ancestors( v)

sm if v is a leaf node.

The above weighting scheme extends the elastic-net-
like penalty hierarchically. Thus, at each internal node
v, a high value of sv encourages a separate selection
of inputs for the outputs associated with the given
node v, whereas high values ofgv encourages a joint
covariate selection across the outputs. Ifsv =1 and

(a) (b) (c) (d) (e) (f)

Figure 2. Unit contour surface for f � j
1 ; � j

2 ; � j
3g in various

penalties, assuming the tree structure of output variables
in Figure 1. (a) Lasso, (b) L 1=L2 , (c) tree-guided group
lasso with g1 = 0 :5 and g2 = 0 :5, (d) g1 = 0 :7 and g2 = 0 :7,
(e) g1 = 0 :2 and g2 = 0 :7, and (f) g1 = 0 :7 and g2 = 0 :2.

gv = 0 for all v 2 V , then only separate selections
are performed, and the tree-guided group lasso penalty
reduces to the lasso penalty. On the other hand, if
sv =0 and gv = 1 for all v 2 V , the penalty reduces
to the L 1=L2 penalty in Equation ( 2) that performs
only a joint covariate selection for all outputs. The
unit contour surfaces of various penalties for� j

1, � j
2,

and � j
3 with groups as de�ned in Figure 1 are shown

in Figure 2.

Example 1. Given the tree in Figure 1, the tree-
guided group-lasso penalty for thej th input in Equa-
tion ( 4) is given as follows:

Wj (vroot ) = Wj (v5)

= gv5 � k� j
G v 5

k
2

+ sv5 � (jWj (v4)j + jWj (v3)j)

= gv5 � k� j
G v 5

k
2

+ sv5 �
�

gv4 k� j
G v 4

k
2

+ sv4 (jWj (v1)j + jWj (v2)j)
�

+ sv5 j� j
3 j

= gv5 � k� j
G v 5

k
2

+ sv5 � gv4 k� j
G v 4

k
2

+ sv5 � sv4 (j� j
1 j + j� j

2 j) + sv5 j� j
3 j:

Proposition 1. For each of the kth output, the sum
of the weightswv for all nodesv 2 V in T whose group
Gv contains thekth output as a member equals one. In
other words, the following holds:

X

v:k2 G v

wv =
Y

m 2 Ancestors (vk )

sm

+
X

l 2 Ancestors (vk )

gl

Y

m 2 Ancestors (v l )

sm = 1 :

Proof. We assume an ordering of the nodesf v : k 2
Gv g along the path from the leaf vk to the root vroot ,
and represent the ordered nodes asv1; : : : ; vM . Since
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we havesv + gv = 1 for all v 2 V , we have

X

v:k2 G v

wv =
MY

m =1

sm +
MX

l =1

gl

MY

m = l +1

sm

= s1

MY

m =2

sm + g1

MY

m =2

sm +
MX

l =2

gl

MY

m = l +1

sm

= ( s1 + gl ) �
MY

m =2

sm +
MX

l =2

gl

MY

m = l +1

sm

=
MY

m =2

sm +
MX

l =2

gl

MY

m = l +1

sm = : : : = 1

Even if each output k belongs to multiple groups as-
sociated with internal nodesf v : k 2 Gv g and appears
multiple times in the overall penalty in Equation ( 4),
Proposition 1 states that the sum of weights over all
of the groups that contain the given output variable
is always one. Thus, the weighting scheme in Equa-
tion ( 4) guarantees that the regression coe�cients for
all of the outputs are penalized equally. In contrast,
group lasso with overlapping groups inJenatton et al.
(2009) used arbitrarily de�ned weights, which was em-
pirically shown to lead to an inconsistent estimate.
Another main di�erence between our method and the
work in Jenatton et al. (2009) is that we take advan-
tage of groups that contain other groups along the tree
structure, whereas they tried to remove such groups as
redundant in Jenatton et al. (2009).

Our proposed penalty function di�ers from the tree-
structured penalty in Zhao et al. (2008) in that the
trees are de�ned di�rently and contain di�erent in-
formation. In the tree in our work, leaf nodes rep-
resent variables (or tasks) and internal nodes corre-
sponed to clustering information. On the other hand,
in Zhao et al. (2008), the variables themselves form
a tree structure, where both leaf and internal nodes
correspond to variables. Thus, the tree inZhao et al.
(2008) does not correspond to clustering structure but
plays the role of prescribing which variables should
enter the set of relevant variables �rst before other
variables.

4. Parameter Estimation

In order to estimate the regression coe�cients in tree-
guided group lasso, we use an alternative formulation
of the problem in Equation (3) that was previously

introduced for group lasso (Bach, 2008), given as

B̂ Tree = argmin
X

k

(yk � X � k )T � (yk � X � k )

+ �
� X

j

X

v2 V

wv k� j
G v

k
2

� 2
: (5)

Since theL 1=L2 norm in the above equation is a non-
smooth function, it is not trivial to optimize it directly.
We make use of the fact that the variational formu-
lation of a mixed-norm regularization is equal to a
weighted L 2 regularization (Argyriou et al. , 2008) as
follows:

� X

j

X

v2 V

wv k� j
G v

k
2

� 2
�

X

j

X

v2 V

w2
v k� j

G v
k

2

2

dj;v
;

where
P

j

P
v dj;v = 1 ; dj;v � 0; 8j; v , and the equality

holds for

dj;v =
wv k� j;v k

2P
j

P
v2 V wv k� j;v k

2

: (6)

Thus, we can re-write the problem in Equation (5) so
that it contains only smooth functions, as follows:

B̂ Tree = argmin
X

k

(yk � X � k )T � (yk � X � k )

+ �
X

j

X

v2 V

w2
v k� j

G v
k

2

2

dj;v
(7)

subject to
X

j

X

v

dj;v = 1 ; dj;v � 0; 8j; v;

where we introduced additional variables dj;v 's that
need to be estimated. We solve the problem in the
above equation by optimizing � k 's and dj;v 's alter-
nately over iterations until convergence. In each it-
eration, we �rst �x the values for � k 's, and update
dj;v 's, where the update equations fordj;v 's are given
as in Equation (6). Then, we hold dj;v 's as constant,
and optimize for � k 's. We di�erentiate the objective
in Equation ( 7) with respect to � k 's, set it to zero, and
solve for � k 's to obtain the update equation:

� k =
�

X T X + � D
� � 1

X T yk ;

whereD is a J � J diagonal matrix with
P

v2 V w2
v =dj;v

in the j th element along the diagonal.

Finally, the regularization parameter � can be selected
using a cross-validation.
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Figure 3. An example of regression coe�cients estimated from a simula ted dataset. (a) Tree structure of the output
variables, (b) true regression coe�cients, (c) lasso, (d) L 1=L2 , (e) tree-guided group lasso. The rows represent outputs,
and the columns inputs.

5. Experiments

We demonstrate the performance of our method on
simulated datasets and a yeast dataset of genotypes
and gene expressions, and compare the results with
those from lasso and theL 1=L2-regularized regression
that do not assume any structure among outputs. We
evaluate these methods based on two criteria, test er-
ror and sensitivity/speci�city in detecting true rele-
vant covariates.

5.1. Simulation Study

We simulate data using the following scenario anal-
ogous to genetic association mapping. We simulate
(X ; Y ) with K = 60, J = 200 and N = 150 for the
training set as follows. We �rst generate the inputs X
by sampling each element inX from a uniform distri-
bution over f 0; 1; 2g that corresponds to the number
of mutated alleles at each genetic locus. Then, we set
the values ofB by �rst selecting non-zero entries and
�lling these entries with a pre-de�ned value. We as-
sume a hierarchical structure of height four over the
outputs, and select the non-zero elements ofB so that
they correspond to the groupings in the sparsity struc-
ture given by this tree. The tree is shown in Figure
3(a), where we only draw the top three levels to avoid
clutter. Figure 3(b) shows the selected non-zero ele-
ments as white pixels with outputs as rows and inputs
as columns. Given theX and B , we generateY with
noise distributed asN (0; 1:0).

We �t lasso, the L 1=L2-regularized regression, and our
method to the dataset simulated with signal strengths
of the non-zero elements ofB set to 0.4, and show
the results in Figures 3(c)-(e), respectively. Since
lasso does not have any mechanism to borrow strength
across di�erent tasks, false positives are distributed
randomly across the matrix B̂ lasso in Figure 3(c).
On the other hand, the L 1=L2-regularization method
blindly combines information across the outputs re-
gardless of the sparsity structure. As a result, once
an input is selected as relevant for an output, it gets
selected for all of the other outputs, which tends to
create a vertical stripes of non-zero values as shown
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Figure 4. ROC curves for the recovery of true non-zero
regression coe�cients. Results are averaged over 50 sim-
ulated datasets. (a) � j

k = 0 :2, (b) � j
k = 0 :4, and (c)

� j
k = 0 :6.
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Figure 5. Prediction errors of various regression methods
using simulated datasets. Results are averaged over 50
simulated datasets. (a) � j

k = 0 :2, (b) � j
k = 0 :4, and (c)

� j
k = 0 :6.

in Figure 3(d). When the true hierarchical structure
in Figure 3(a) was available as prior knowledge, it is
visually clear from Figure 3(e) that our method is able
to suppress false positives and recover the true under-
lying sparsity structure signi�cantly better than other
methods.

In order to systematically evaluate the performance of
di�erent methods, we generate 50 simulated datasets,
and show in Figure 4 receiver operating characteris-
tic (ROC) curves for the recovery of the true sparsity
pattern averaged over these datasets. Figures4(a)-(c)
represent results from di�erent signal strengths in B
of sizes 0.2, 0.4, and 0.6, respectively. Our method
clearly outperforms lasso and theL 1=L2 regulariza-
tion method. Especially when the signal strength is
weak in Figure 4(a), the advantage of incorporating
the prior knowledge of the tree as a sparsity structure
is signi�cant.
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We compare the performance of the di�erent meth-
ods in terms of prediction errors, using additional 50
samples as test data, and show the results in Figures
5(a)-(c) for signal strengths of sizes 0.2, 0.4, and 0.6,
respectively. We �nd that our method has a lower
prediction error than the methods that do not take
advantage of the structure in the outputs.

We also consider the scenario where the true tree struc-
ture in Figure 3(a) is not known a priori . In this case,
we learn a tree by running a hierarchical agglomer-
ative clustering on the K � K correlation matrix of
the outputs, and use this tree and the weightshv 's as-
sociated with each internal node in our method. The
weight hv of each internal nodev returned by the hier-
archical agglomerative clustering indicates the height
of the subtree rooted at the node, or how tightly its
members are correlated. After normalizing the weights
(denoted ash0

v ) of all of the internal nodes such that
the root is at height one, we assigngv = 1 � h0

v and
sv = h0

v . Since the tree obtained in this manner rep-
resents a noisy realization of the true underlying tree
structure, we discard the nodes for weak correlations
near the root of the tree by thresholdingh0

v at � = 0 :9
and 0.7, and show the prediction errors in Figure5 as
T0.9 and T0.7. Even when the true tree structure is
not available, our method is able to bene�t from tak-
ing into account the output structure, and gives lower
prediction errors.

5.2. Analysis of Yeast Data

We analyze the genotype and gene expression data
of 114 yeast strains (Zhu et al., 2008) using various
sparse regression methods. We focus on the chromo-
some 3 with 21 SNPs and 3684 genes. Although it is
well established that genes form clusters in terms of
expression levels that correspond to functional mod-
ules, the hierarchical clustering structure over corre-
lated genes is not directly available as prior knowledge.
Instead, we learn the tree structure and node weights
from the gene expression data by running the hier-
archical agglomerative clustering algorithm as we de-
scribed in the previous section. We use only the inter-
nal nodes with heightsh0

v < 0:7 or 0:9 in our method.
The goal of the analysis is to identify SNPs (inputs)
whose variations induce signi�cant variations in gene
expression levels (outputs) over di�erent strains. By
applying our method that incorporates information on
gene modules at multiple granularity along the hierar-
chical clustering tree, we expect to be able to iden-
tify SNPs that in
uence groups of genes that are co-
expressed.

In Figure 6(a), we show the K � K correlation ma-

(a) (b) (c) (d) (e)

Figure 6. Results for the yeast dataset. (a) Correla-
tion matrix of the gene expression data, where rows and
columns are reordered after applying agglomerative hier-
archical clustering. Estimated regression coe�cients are
shown for (b) lasso, (c) L 1=L2 , (d) tree-guided group lasso
with � = 0 :9, and (e) with � = 0 :7.
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Figure 7. Prediction errors for the yeast dataset.

trix of the gene expressions after reordering the rows
and columns according to the results of running the
hierarchical agglomerative clustering algorithm. The
estimated B is shown for lasso, theL 1=L2-regularized
regression and our method with � = 0 :9 and 0.7 in
Figures 6(b)-(e), respectively, where the rows repre-
sent genes and the columns SNPs. The lasso estimates
are extremely sparse and do not reveal any interest-
ing structure in SNP-gene relationships. We believe
that the association signals are very weak as is typi-
cally the case in a genetic association study, and that
lasso is unable to detect such weak signals since it does
not borrow strength across genes. The estimates from
the L 1=L2-regularized regression in Figure6(c) are not
sparse across genes, and tend to form vertical stripes
of non-zero regression coe�cients. Our method in Fig-
ures6(d)-(e) reveals clear groupings in the patterns of
associations between genes and SNPs. Our method
performs signi�cantly better in terms of prediction er-
rors as can be seen in Figure7.

Given the estimates ofB in Figure 6, we look for an
enrichment of GO categories among the genes with
non-zero regression coe�cients for each SNP. A group
of genes that form a module often participate in the
same pathways, leading to an enrichment of a GO
category among the members of the module. Since
we are interested in identifying SNPs in
uencing gene
modules and our method re
ects this joint association
through the hierarchical clustering tree, we hypothe-
size that our method would reveal a more signi�cant
GO enrichment in the estimated non-zero elements in
B . Because the estimates of theL 1=L2-regularized
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Figure 8. Enrichment of GO category in estimated regres-
sion coe�cients for the yeast dataset. (a) Biological pro-
cess, (b) molecular function, and (c) cellular component.

method are not sparse across genes, we threshold the
absolute values of the estimatedB at 0.005, 0.01, 0.03,
and 0.05, and search for GO enrichment only for those
genes with� j

k above the threshold. On the other hand,
for our method, we use all of the genes with non-zero
elements inB for each SNP.

In Figure 8, we show the number of SNPs with signif-
icant enrichments at di�erent p-value cuto�s for sub-
categories within each of the three broad GO cate-
gories, biological processes, molecular functions, and
cellular components. For example, within biological
processes, SNPs were found to be enriched for GO
terms such as mitocondrial translation, amino acid
biosynthetic process, and carboxylic acid metabolic
process. Regardless of the thresholds for selecting
signi�cant associations in the L 1=L2 estimates, our
method generally �nds more signi�cant enrichment.

6. Conclusions

In this paper, we considered a feature selection prob-
lem in a multiple-output regression setting when the
groupings of the outputs can be de�ned hierarchically
using a tree. We proposed tree-guided group lasso that
�nds a sparse estimate of regression coe�cients while
taking into account the structure among outputs given
by a tree. We demonstrated our method using simu-
lated and yeast datasets.
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