On the Power of Truncated SVD for General High-rank Matrix Estimation Problems

Simon S. Du∗, Yining Wang† and Aarti Singh‡

Machine Learning Department, Carnegie Mellon University, USA

February 22, 2017

Abstract

We show that given an estimate \(\hat{A} \) that is close to a general high-rank positive semi-definite (PSD) matrix \(A \) in spectral norm (i.e., \(\| \hat{A} - A \|_2 \leq \delta \)), the simple truncated SVD of \(\hat{A} \) produces a multiplicative approximation of \(A \) in Frobenius norm. This observation leads to many interesting results on general high-rank matrix estimation problems, which we briefly summarize below (\(A \) is an \(n \times n \) high-rank PSD matrix and \(A_k \) is the best rank-\(k \) approximation of \(A \)):

- **High-rank matrix completion**: By observing \(\Omega(\sqrt{n} \max\{\epsilon - 4, k^2\} \mu_0^2 \log n) \) elements of \(A \) where \(\sigma_{k+1}(A) \) is the \((k + 1)\)-th singular value of \(A \) and \(\mu_0 \) is the incoherence, the truncated SVD on a zero-filled matrix satisfies \(\| \hat{A}_k - A \|_F \leq (1 + O(\epsilon)) \| A - A_k \|_F \) with high probability. This improves results in [Hardt, 2014, Hardt and Wooters, 2014] whose sample complexity is not gap-free, [Negahban and Wainwright, 2012] which assumes \(A \) has small Schatten-q norm, and [Zhang et al., 2015, Koltchinskii et al., 2011] which have an extra \(O(\sqrt{n}) \) multiplicative factor in the error bound.

- **High-rank matrix de-noising**: Let \(\hat{A} = A + E \) where \(E \) is a Gaussian random noise matrix with zero mean and \(\nu^2/n \) variance on each entry. Then the truncated SVD of \(\hat{A} \) satisfies \(\| \hat{A}_k - A \|_F \leq (1 + O(\sqrt{\nu/\sigma_{k+1}(A)})) \| A - A_k \|_F + O(\sqrt{k\nu}) \). This generalizes many of existing work on matrix denoising [Donoho et al., 2014, 2013, Gavish and Donoho, 2014, Gavish and Donoho, 2014] where \(A \) is assumed to be exact or nearly low-rank.

- **Low-rank Estimation of high-dimensional covariance**: Given \(N \) i.i.d. samples \(X_1, \cdots, X_N \sim N_n(0, A) \), can we estimate \(A \) with a relative-error Frobenius norm bound? We show that if \(N = \Omega(\max\{\epsilon^{-2}, k^2\} \gamma_k(A)^2 \log N) \) for \(\gamma_k(A) = \sigma_1(A)/\sigma_{k+1}(A) \), then \(\| \hat{A}_k - A \|_F \leq (1 + O(\epsilon)) \| A - A_k \|_F \) with high probability, where \(\hat{A} = \frac{1}{N} \sum_{i=1}^N X_i X_i^\top \) is the sample covariance. This generalizes previous results [Bunea et al., 2015] which applies to covariance \(A \) with small effective rank only, at the cost of worse dependency on \(\epsilon \).

1 Introduction

Let \(A \) be an unknown general high-rank \(n \times n \) PSD data matrix that one wishes to estimate. In many machine learning applications, though \(A \) is unknown, it are relatively easy to obtain a crude estimate \(\hat{A} \) that is close to \(A \) in spectral norm (i.e., \(\| \hat{A} - A \|_2 \leq \delta \)). For example, in matrix completion a simple procedure that

*ssdu@cs.cmu.edu
†yiningwa@cs.cmu.edu
‡aarti@cs.cmu.edu
fills all unobserved entries with 0 and re-scales observed entries produces an estimate that is consistent in spectral norm (assuming the matrix satisfies a spikeness condition, standard assumption in matrix completion literature). In matrix de-noising, an observation that is corrupted by Gaussian noise is close to the underlying signal, because standard Gaussian noise is isotropic and has small spectral norm. In covariance estimation, the sample covariance in low-dimensional settings is close to the population covariance in spectral norm under mild conditions [Bunea et al., 2015].

However, in most such applications it is not sufficient to settle for a spectral norm approximation. For example, in recommendation systems (an application of matrix completion) the zero-filled re-scaled rating matrix is close to the ground truth in spectral norm, but it is an absurd estimator because most of the estimated ratings are zero. It is hence mandatory to require a more stringent measure of performance. One commonly used measure is the Frobenius norm of the estimation error $\|\hat{A} - A\|_F$, which ensures that (on average) the estimate is close to the ground truth in an element-wise sense. A spectral norm approximation \hat{A} is in general not a good estimate under Frobenius norm, because in high-rank scenarios $\|\hat{A} - A\|_F$ can be \sqrt{n} times larger than $\|\hat{A} - A\|_2$.

In this paper, we show that in many cases a powerful multiplicative low-rank approximation in Frobenius norm can be obtained by applying a simple truncated SVD procedure on a crude, easy-to-find spectral norm approximate. In particular, given the spectral norm approximation condition $\|\hat{A} - A\|_2 \leq \delta$, the top-$k$ SVD of \hat{A}_k of \hat{A} multiplicatively approximates A in Frobenius norm; that is, $\|\hat{A}_k - A\|_F \leq C(k, \delta, \sigma_{k+1}(A))\|A - A_k\|_F$, where A_k is the best rank-k approximation of A in Frobenius and spectral norm. To our knowledge, the best existing result under the assumption $\|\hat{A} - A\|_2 \leq \delta$ is due to Achlioptas and McSherry [2007], who showed that $\|\hat{A}_k - A\|_F \leq \|A - A_k\|_F + \sqrt{k}2k^{1/4}\delta\|A_k\|_F$, which depends on $\|A_k\|_F$ and is not multiplicative in $\|A - A_k\|_F$.

Below we summarize applications in several matrix estimation problems, and comment on the proof technique that we employ to prove the main result.

High-rank matrix completion Matrix completion is the problem of (approximately) recovering a data matrix from very few observed entries. It has wide applications in machine learning, especially in online recommendation systems. Most existing work on matrix completion assumes the data matrix is exactly low-rank [Candes and Recht, 2012; Sun and Luo, 2016; Jain et al., 2013]. Candes and Plan [2010], Keshavan et al. [2010] studied the problem of recovering a low-rank matrix corrupted by stochastic noise; Chen et al. [2016] considered sparse column corruption. All of the aforementioned work assumes that the ground-truth data matrix is exactly low-rank, which is rarely true in practice.

Negahban and Wainwright [2012] derived minimax rates of estimation error when the spectrum of the data matrix lies in an ℓ_q ball. Zhang et al. [2015], Koltchinskii et al. [2011] derived oracle inequalities for general matrix completion; however their error bound has an additional $O(\sqrt{n})$ multiplicative factor. These results also require solving computationally expensive nuclear-norm penalized optimization problems whereas our method only requires solving a single truncated singular value decomposition. Hardt and Wootters [2014] used a “soft-deflation” technique to remove condition number dependency in the sample complexity; however, their error bound for general high-rank matrix completion is additive and depends on the “consecutive” spectral gap $\sigma_k(A) - \sigma_{k+1}(A)$, which can be small in practical settings [Balcan et al., 2016]. Eriksson et al. [2012] considered high-rank matrix completion with additional union-of-subspace structures.

In this paper, we show that if the $n \times n$ data matrix A satisfies μ_0-spikeness condition, then for any $\epsilon \in (0, 1)$, the truncated SVD of zero-filled matrix \hat{A}_k satisfies $\|\hat{A}_k - A\|_F \leq (1 + O(\epsilon))\|\hat{A} - A_k\|_F$ if the sample complexity is lower bounded by $\Omega(\frac{n \max(\epsilon^{-4}, k^2)\mu_0^2\|A\|_F^2 \log n}{\sigma_{k+1}(A)^2})$, which can be further simplified to $\Omega(\frac{\mu_0^2 \max(\epsilon^{-4}, k^2)\gamma_k(A)^2}{\nu(A)\log n})$, where $\gamma_k(A) = \sigma_1(A)/\sigma_{k+1}(A)$ is the kth-order condition number and $\nu(A) = \|A\|_F^2/\|A\|_2^2 \leq \text{rank}(A)$ is the stable rank of A. Compared to existing work, our error bound is multiplicative, gap-free, and the estimator is computationally efficient.

1. $n\|A\|_{\max} \leq \mu_0\|A\|_F$; see also Definition 2.1

2. We remark that our analysis does not, however, apply to exact rank-k matrix where $\sigma_{k+1} = 0$. This is because for exact rank-k matrix a bound of the form $(1 + O(\epsilon))\|\hat{A} - A_k\|_F$ requires exact recovery of A, which truncated SVD cannot achieve, but it is
High-rank matrix de-noising Let \(\hat{A} = A + E \) be a noisy observation of \(A \), where \(E \) is a PSD Gaussian noise matrix with zero mean and \(\nu^2/n \) variance on each entry. By simple concentration results we have \(\| \hat{A} - A \|_2 = \nu \) with high probability; however, \(\hat{A} \) is in general not a good approximation of \(A \) in Frobenius norm when \(A \) is high-rank. More specifically, \(\| \hat{A} - A \|_F \) can be as large as \(\sqrt{n} \nu \).

Applying our main result, we show that if \(\nu < \sigma_{k+1}(A) \) for some \(k \ll n \), then the top-\(k \) SVD \(\hat{A}_k \) of \(\hat{A} \) satisfies \(\| \hat{A}_k - A \|_F \leq (1 + O(\sqrt{\nu}/\sigma_{k+1}(A))) \| \hat{A} - \hat{A}_k \|_F + \sqrt{k} \nu \). This suggests a form of bias-variance decomposition as larger rank threshold \(k \) induces smaller bias \(\| \hat{A} - \hat{A}_k \|_F \) but larger variance \(k \nu^2 \). Our results generalize existing work on matrix de-noising [Donoho et al., 2014] [2013] [Gavish and Donoho 2014], which focus primarily on exact low-rank \(A \).

Low-rank estimation of high-dimensional covariance The (Gaussian) covariance estimation problem asks to estimate an \(n \times n \) PSD covariance matrix \(A \), either in spectral or Frobenius norm, from \(N \) i.i.d. samples \(X_1, \cdots, X_N \sim N(0, A) \). The high-dimensional regime of covariance estimation, in which \(N \approx n \) or even \(N \gg n \), has attracted enormous interest in the mathematical statistics literature [Cai et al. 2010] [2012] [2013] [2016]. While most existing work focus on sparse or banded covariance matrices, the setting where \(A \) has certain low-rank structure has seen rising interest recently [Bunea et al. 2015] [Kneip and Sarda 2011]. In particular, [Bunea et al. 2015] shows that if \(n = O(N^\beta) \) for some \(\beta \geq 0 \) then the sample covariance estimator \(\hat{A} = \frac{1}{N} \sum_{i=1}^N X_i X_i^\top \) satisfies

\[
\| \hat{A} - A \|_F = O_P \left(\| A \|_{2r_c(A)} \sqrt{\frac{\log N}{N}} \right),
\]

where \(r_c(A) = \text{tr}(A)/\| A \|_2 \leq \text{rank}(A) \) is the effective rank of \(A \). For high-rank matrices where \(r_c(A) \approx n \), Eq. (1) requires \(N = \Omega(n^2 \log n) \) to approximate \(A \) consistently in Frobenius norm.

In this paper we consider a reduced-rank estimator \(\hat{A}_k \) and show that, if \(\frac{r_c(A)}{N} \max(\epsilon^{-1}, k^2) \gamma_k(A)^2 \log N \leq c \) for some small universal constant \(c > 0 \), then \(\| \hat{A}_k - A \|_F \) admits a relative Frobenius-norm error bound \(O(\sqrt{k}) \| A - A_k \|_F \) with high probability. Our result allows reasonable approximation of \(A \) in Frobenius norm under the regime of \(N = \Omega(n^2 \log n) \), which is significantly more flexible than \(N = \Omega(n^2 \log n) \), though the dependency of \(\epsilon \) is worse than [Bunea et al. 2015]. The error bound is also agnostic in nature, making no assumption on the actual or effective rank of \(A \).

Proof techniques Because both \(\hat{A}_k \) and \(A_k \) are low-rank, \(\| \hat{A}_k - A_k \|_F \) is upper bounded by an \(O(\sqrt{k}) \) factor of \(\| \hat{A}_k - A_k \|_2 \). From the condition that \(\| \hat{A} - A \|_2 \leq \delta \), a straightforward approach to upper bound \(\| \hat{A}_k - A_k \|_2 \) is to consider the decomposition \(\| \hat{A}_k - A_k \|_2 \leq \| \hat{A} - A \|_2 + 2 \| U_k U_k^\top - \hat{U}_k \hat{U}_k^\top \|_2 \| \hat{A}_k \|_2 \), where \(U_k \) and \(\hat{U}_k \) are projection operators onto the top-\(k \) eigenspaces of \(A \) and \(\hat{A} \), respectively. Such a naive approach, however, has two major disadvantages. First, the upper bound depends on \(\| \hat{A}_k \|_2 \), which is additive and may be much larger than \(\| \hat{A} - A \|_2 \). Perhaps more importantly, the quantity \(\| U_k U_k^\top - \hat{U}_k \hat{U}_k^\top \|_2 \) depends on the “consecutive” spectral gap \(\sigma_k(A) - \sigma_{k+1}(A) \), which could be very small for large matrices.

To obtain a multiplicative error bound and remove dependency over consecutive spectral gap \(\sigma_k(A) - \sigma_{k+1}(A) \), the key idea is to consider an “envelope” of spectrum \(\sigma_{m_1}(A) \geq \sigma_k(A) \geq \sigma_{m_2}(A) \) such that \(\sigma_{m_1}(A) \approx (1 + 2c) \sigma_k(A) \) and \(\sigma_{m_2}(A) \approx \sigma_k(A) - 2c \sigma_{k+1}(A) \). This allows the usage of an asymmetric Davis-Kahan Theorem to establish gap-free matrix perturbation bounds. Similar ideas were discussed in [Allen-Zhu and Li 2016] to analyze shift-and-invert and inexact power method for fast SVD computation.

Notations For an \(n \times n \) PSD matrix \(A \), denote \(A = \Sigma U^\top \) as its eigenvector decomposition, where \(U \) is an orthogonal matrix and \(\Sigma = \text{diag}(\sigma_1, \cdots, \sigma_n) \) is a diagonal matrix, with eigenvalues sorted in descending order \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0 \). The spectral norm and Frobenius norm of \(A \) are defined as \(\| A \|_2 = \sigma_1 \) and achievable when combining with projected gradient descent [Jain and Netrapalli 2014].
\(\|A\|_F = \sqrt{\sigma_1^2 + \cdots + \sigma_n^2} \), respectively. Suppose \(u_1, \ldots, u_n \) are eigenvectors associated with \(\sigma_1, \ldots, \sigma_n \).

Define \(A_k = \sum_{i=1}^k \sigma_i u_i u_i^T = U_k \Sigma_k U_k^T \), \(A_{n-k} = \sum_{i=n-k+1}^n \sigma_i u_i u_i^T = U_{n-k} \Sigma_{n-k} U_{n-k}^T \), and \(A_{m_1:m_2} = \sum_{i=m_2+1}^{m_1} \sigma_i u_i u_i^T = U_{m_1:m_2} \Sigma_{m_1:m_2} U_{m_1:m_2}^T \). For a tall matrix \(U \in \mathbb{R}^{n \times k} \), we use \(U = \text{Range}(U) \) to denote the linear subspace spanned by the columns of \(U \). For two linear subspaces \(U \) and \(V \), we write \(W = U \oplus V \) if \(U \cap V = \{0\} \) and \(W = \{ u + v : u \in U, v \in V \} \). For a sequence of random variables \(\{X_n\}_{n=1}^\infty \) and real-valued function \(f : \mathbb{N} \to \mathbb{R} \), we say \(X_n = O_p(f(n)) \) if for any \(\epsilon > 0 \), there exists \(N \in \mathbb{N} \) and \(C > 0 \) such that \(\Pr[|X_n| \geq C \cdot |f(n)|] \leq \epsilon \) for all \(n \geq N \).

2 Multiplicative Frobenius-norm approximation and applications

We first state our main result, which shows that truncated SVD on a weak estimator with small approximation error in spectral norm leads to a strong estimator with multiplicative Frobenius-norm error bound. We remark that truncated SVD in general has time complexity

\[O \left(\min \left\{ n^2 k, m\text{nz} \left(\tilde{A} \right), n \text{poly} \left(k \right) \right\} \right), \]

where \(m\text{nz}(\tilde{A}) \) is the number of non-zero entries in \(\tilde{A} \), and the time complexity is at most linear in matrix sizes when \(k \) is small. We refer readers to [Allen-Zhu and Li, 2016] for details. The proof of the main theorem is placed in Sec. 3.

Theorem 2.1. Suppose \(A \) is an \(n \times n \) PSD matrix with eigenvalues \(\sigma_1(A) \geq \cdots \geq \sigma_n(A) \geq 0 \), and a symmetric matrix \(\tilde{A} \) satisfies \(\|A - \tilde{A}\|_2 \leq \delta = \epsilon^2 \sigma_{k+1}(A) \) for some \(\epsilon \in (0, 1/4) \). Let \(A_k \) and \(\tilde{A}_k \) be the best rank-\(k \) approximations of \(A \) and \(\tilde{A} \). Then

\[\|\tilde{A}_k - A\|_F \leq (1 + 32\epsilon)\|A - A_k\|_F + 102 \sqrt{2k}\epsilon^2 \|A - A_k\|_F. \]

(2)

Remark: Note when \(\epsilon = O(1/\sqrt{k}) \) we obtain an \((1 + O(\epsilon)) \) error bound.

To our knowledge, the best existing bound for \(\|\tilde{A}_k - A\|_F \) assuming \(\|\tilde{A} - A\|_2 \leq \delta \) is due to [Achlioptas and McSherry, 2007], who showed that

\[\|\tilde{A}_k - A\|_F \leq \|A - A_k\|_F + \|\tilde{A} - A\|_2 \leq 2\sqrt{\|A - A_k\|_F \|\tilde{A}_k\|_F}. \]

(3)

Compared to Theorem 2.1, Eq. 3 is not relative because the third term \(2k^{1/3} \sqrt{\|A_k\|_F} \) depends on the \(k \) largest eigenvalues of \(\tilde{A} \), which could be much larger than the remainder term \(\|A - A_k\|_F \). In contrast, Theorem 2.1 together with Remark 2 shows that \(\|\tilde{A}_k - A\|_F \) could be upper bounded by a small factor multiplied with the remainder term \(\|A - A_k\|_F \).

Before we proceed to the applications and proof of Theorem 2.1, we first list several examples of \(A \) with classical distribution of eigenvalues and discuss how Theorem 2.1 could be applied to obtain good Frobenius-norm approximations of \(A \). We begin with the case where eigenvalues of \(A \) have a polynomial decay rate (i.e., power law). Such matrices are ubiquitous in practice [Liu et al., 2015].

Corollary 2.1 (Power-law spectral decay). Suppose \(\|\tilde{A} - A\|_2 \leq \delta \) for some \(\delta \in (0, 1/2) \) and \(\sigma_j(A) = j^{-\beta} \) for some \(\beta > 1/2 \). Set \(k = \lfloor \min \{ C_1 \delta^{1-\beta}, n \} - 1 \rfloor \). If \(k \geq 1 \) then

\[\|\tilde{A}_k - A\|_F \leq C'_1 \max \left\{ \delta^{\frac{2k-1}{2}}, n^{\frac{2k-1}{2}} \right\}, \]

where \(C_1, C'_1 > 0 \) are constants that only depend on \(\beta \).
Lemma 2.1 (Hardt [2014], Lemma A.3) formally establish this observation: is close to a sample complexity of $\sum A^{j} \in O(1)$. The error bound in Corollary 2.1 matches the minimax rate (derived in Negahban and Wainwright [2012]) for matrix completion when the spectrum is constrained in an ℓ_{q} ball, by replacing δ with $\sqrt{n/N}$ where N is the number of observed entries.

Next, we consider the case where eigenvalues satisfy a faster decay rate.

Corollary 2.2 (Exponential spectral decay). Suppose $||\hat{A} - A||_2 \leq \delta$ for some $\delta \in (0, e^{-c})$ and $\sigma_j(A) = \exp\{-cj\}$ for some $c > 0$. Let $k = \lfloor \min\{c^{-1} \log(1/\delta) - c^{-1} \log \log(1/\delta), n\} - 1 \rfloor$. If $k \geq 1$ then

$$\|\hat{A}_k - A\|_F \leq C_2' \cdot \max \left\{ \delta \sqrt{\log(1/\delta)^3}, n^{1/2} \exp(-cn) \right\},$$

where $C_2' > 0$ is a constant that only depends on c.

Both corollaries are proved in the appendix. The error bounds in both Corollaries 2.1 and 2.2 are significantly better than the trivial estimate \hat{A}, which satisfies $\|\hat{A} - A\|_F \leq n^{1/2}\delta$. We also remark that the bound in Corollary 2.1 cannot be obtained by a direct application of the weaker bound Eq. (3), which yields a $\delta^{1/2}$ bound.

We next state results that are consequences of Theorem 2.1 in several matrix estimation problems.

2.1 High-rank matrix completion

Suppose A is a high-rank $n \times n$ PSD matrix that satisfies μ_0-spikeness condition defined as follows:

Definition 2.1 (Spikeness condition). An $n \times n$ PSD matrix A satisfies μ_0-spikeness condition if $n\|A\|_{\max} \leq \mu_0\|A\|_F$, where $\|A\|_{\max} = \max_{1 \leq i, j \leq n} |A_{ij}|$ is the max-norm of A.

Spikeness condition makes uniform sampling of matrix entries powerful in matrix completion problems. If A is exactly low rank, the spikeness condition is implied by an upper bound on $\max_{1 \leq i \leq n} \|e_i^T U_k\|_2$, which is the standard incoherence assumption on the top-k space of A [Candes and Recht, 2012]. For general high-rank A, the spikeness condition is implied by a more restrictive incoherence condition that imposes an upper bound on $\max_{1 \leq i \leq n} \|e_i^T U_{n-k}\|_2$ and $\|A_{n-k}\|_{\max}$, which are assumptions adopted in [Hardt and Wootters, 2014].

Suppose \hat{A} is a symmetric re-scaled zero-filled matrix of observed entries. That is,

$$[\hat{A}]_{ij} = \begin{cases} A_{ij}/p, & \text{with probability } p; \\ 0, & \text{with probability } 1 - p; \end{cases} \quad \forall 1 \leq i \leq j \leq n. \quad (4)$$

Here $p \in (0, 1)$ is a parameter that controls the probability of observing a particular entry in A, corresponding to a sample complexity of $O(n^2p)$. Note that both \hat{A} and A are symmetric so we only specify the upper triangle of \hat{A}. By a simple application of matrix Bernstein inequality [Mackey et al., 2014], one can show \hat{A} is close to A in spectral norm when A satisfies μ_0-spikeness. Here we cite a lemma from [Hardt, 2014] to formally establish this observation:

Lemma 2.1 [Hardt, 2014], Lemma A.3. Under the model of Eq. (4), for $u > 0$ it holds that

$$\Pr\left[\|\hat{A} - A\|_2 \geq u \right] \leq 2n \exp \left\{ -\frac{-u^2/2}{(1/p - 1)\max_{1 \leq i \leq n} \|e_i^T A\|_2^2 + \frac{\mu_0}{p}(1/p - 1)\|A\|_\infty} \right\}.$$

Corollary 2.3. Under the model of Eq. (4) and μ_0-spikeness condition of A, for $t \in (0, 1)$ it holds with probability at least $1 - t$ that

$$\|\hat{A} - A\|_2 \leq O\left(\max \left\{ \sqrt{\frac{\mu_0^2\|A\|_F^2 \log(n/t)}{np}}, \frac{\mu_0\|A\|_F \log(n/t)}{np} \right\} \right).$$
Let \(\hat{A}_k \) be the best rank-\(k \) approximation of \(A \) in Frobenius/spectral norm. Applying Theorem 2.1, we obtain the following result:

Theorem 2.2. Fix \(t \in (0, 1) \). Then with probability \(1 - t \) we have

\[
\| \hat{A}_k - A \|_F \leq O(\sqrt{k}) \cdot \| A - A_k \|_F \quad \text{if} \quad p = \Omega \left(\frac{\mu_0^2 \| A \|_F^2 \log(n/t)}{n\sigma_{k+1}(A)^2} \right).
\]

Furthermore, for fixed \(\epsilon \in (0, 1/4] \), with probability \(1 - t \) we have

\[
\| \hat{A}_k - A \|_F \leq (1 + O(\epsilon)) \| A - A_k \|_F \quad \text{if} \quad p = \Omega \left(\frac{\mu_0^2 \max\{\epsilon^{-4}, k^2\}\| A \|_F^2 \log(n/t)}{n\sigma_{k+1}(A)^2} \right).
\]

As a remark, because \(\mu_0 \geq 1 \) and \(\| A \|_F / \sigma_{k+1}(A) \geq \sqrt{k} \) always hold, the sample complexity in both Eq. (5) is lower bounded by \(\Omega(nk \log n) \), the typical sample complexity in noiseless matrix completion. In the case of high rank \(A \), the results in Theorem 2.2 are the strongest when \(A \) has small stable rank \(r_s(A) = \| A \|_F^2 / \| A \|_F^2 \) and the top-\(k \) condition number \(\gamma_k(A) = \sigma_1(A) / \sigma_{k+1}(A) \) is not too large. For example, if \(A \) has stable rank \(r_s(A) = r \) then \(\| A_k - A \|_F \) has an \(O(\sqrt{k}) \) multiplicative error bound with sample complexity \(\Omega(\mu_0^2 \gamma_k(A)^2 \cdot nr \log n) \); or an \((1 + O(\epsilon)) \) relative error bound with sample complexity \(\Omega(\mu_0^2 \max\{\epsilon^{-4}, k^2\} \gamma_k(A)^2 \cdot nr \log n) \).

2.2 High-rank matrix de-noising

Let \(A \) be an \(n \times n \) PSD signal matrix and \(E \) a symmetric random Gaussian matrix with zero mean and \(\nu^2 / n \) variance. That is, \(E_{ij} \overset{i.i.d.}{\sim} \mathcal{N}(0, \nu^2 / n) \) for \(1 \leq i \leq j \leq n \) and \(E_{ij} = E_{ji} \). Define \(\tilde{A} = A + E \). The matrix de-noising problem is then to recover the signal matrix \(A \) from noisy observations \(\tilde{A} \). We refer the readers to [Gavish and Donoho 2014] for a list of references that shows the ubiquitous application of matrix de-noising in scientific fields.

It is well-known by concentration results of Gaussian random matrices, that \(\| \hat{A} - A \|_2 = \| E \|_2 = O(\nu) \). Let \(\hat{A}_k \) be the best rank-\(k \) approximation of \(A \) in Frobenius/spectral norm. Applying Theorem 2.1 we immediately have the following result:

Theorem 2.3. There exists an absolute constant \(c > 0 \) such that, if \(\nu < c \cdot \sigma_{k+1}(A) \) for some \(1 \leq k < n \), then with probability at least 0.8 we have that

\[
\| \hat{A}_k - A \|_F \leq \left(1 + O \left(\sqrt{\frac{\nu}{\sigma_{k+1}(A)}} \right) \right) \| A - A_k \|_F + O(\sqrt{k} \nu).
\]

Eq. (7) can be understood from a classical bias-variance tradeoff perspective: the first \((1 + O(\sqrt{\nu / \sigma_{k+1}(A)})) \| A - A_k \|_F \) acts as a bias term, which decreases as we increase cut-off rank \(k \), corresponding to a more complicated model; on the other hand, the second \(O(\sqrt{k} \nu) \) term acts as the (square root of) variance, which does not depend on the signal \(A \) and increases with \(k \).

2.3 Low-rank estimation of high-dimensional covariance

Suppose \(A \) is an \(n \times n \) PSD matrix and \(X_1, \ldots, X_N \) are i.i.d. samples drawn from the multivariate Gaussian distribution \(\mathcal{N}_n(0, A) \). The question is to estimate \(A \) from samples \(X_1, \ldots, X_N \). A common estimator is the sample covariance \(\hat{A} = \frac{1}{N} \sum_{i=1}^N X_i X_i^\top \). While in low-dimensional regimes (i.e., \(n \) fixed and \(N \rightarrow \infty \)) the asymptotic efficiency of \(\hat{A} \) is obvious (cf. [Van der Vaart 2000]), its statistical power in high-dimensional regimes where \(n \) and \(N \) are comparable are highly non-trivial. Below we cite results in [Bunea et al. 2015] for estimation error \(\| \hat{A} - A \|_{\xi, \xi} = 2 / F \) when \(n \) is not too large compared to \(N \):
Theorem 2.4. \textit{Fix }$∥\hat{A}∥_F = O_p \left(\|A\|_2 r_e(A) \sqrt{\frac{\log N}{N}} \right)$\textit{ denote the effective rank of the covariance }A. \textit{Then the sample covariance }$\hat{A} = \frac{1}{N} \sum_{i=1}^{N} X_i X_i^\top$\textit{ satisfies}

$$\|\hat{A} - A\|_F = O_p \left(\|A\|_2 r_e(A) \sqrt{\frac{\log N}{N}} \right) \tag{8}$$

and

$$\|\hat{A} - A\|_2 = O_p \left(\|A\|_2 \max \left\{ \sqrt{\frac{r_e(A) \log(2N)}{N}}, r_e(A) \frac{\log(N)}{N} \right\} \right). \tag{9}$$

Let \hat{A}_k be the best rank-k approximation of \hat{A} in Frobenius/spectral norm. Applying Theorem 2.1 together with Eq. (8), we immediately arrive at the following theorem that gives relative-error Frobenius norm bound for $\|\hat{A}_k - A\|_F$:

Theorem 2.4. \textit{Fix }$\epsilon \in (0, 1/4]$ \textit{and }$1 \leq k < n$. \textit{Recall that }$r_e(A) = \text{tr}(A)/\|A\|_2$ \textit{and }$\gamma_k(A) = \sigma_1(A)/\sigma_{k+1}(A)$. \textit{There exists a universal constant }$c > 0$ \textit{such that, if}

$$r_e(A) \max \{\epsilon^{-4}, k^2\} \gamma_k(A)^2 \log(N) \leq c$$

then with probability at least 0.8,

$$\|\hat{A}_k - A\|_F \leq (1 + O(\epsilon)) \|A - A_k\|_F.$$

Theorem 2.4 shows that it is possible to obtain a reasonable Frobenius-norm approximation of \hat{A} by truncated SVD in the asymptotic regime of $N = \Omega(r_e(A)^2 \log N)$, which is much more flexible than Eq. (8) that requires $N = \Omega(r_e(A)^2 \log N)$.

3 Proof of Theorem 2.1

The key idea in the proof of Theorem 2.1 is to find an “envelope” $m_1 \leq k \leq m_2$ in the spectrum of A surrounding k, such that the eigenvalues within the envelope are relatively close. Define

$$m_1 = \text{argmax}_{0 \leq j \leq k} \{ \sigma_j(A) \geq (1 + 2\epsilon) \sigma_{k+1}(A) \};$$

$$m_2 = \text{argmax}_{k \leq j \leq n} \{ \sigma_j(A) \geq \sigma_k(A) - 2\epsilon \sigma_{k+1}(A) \},$$

where we let $\sigma_0(A) = \infty$ for convenience. Let U_m, \hat{U}_m be basis of the top m-dimensional linear subspaces of A and \hat{A}, respectively. Also denote U_{n-m} and \hat{U}_{n-m} as basis of the orthogonal complement of U_m and \hat{U}_m.

Lemma 3.1. \textit{If }$\|\hat{A} - A\|_2 \leq \epsilon^2 \sigma_{k+1}(A)$ \textit{for }$\epsilon \in (0, 1)$ \textit{then }$\|\hat{U}_{n-k}^\top U_{m_1}\|_2, \|\hat{U}_k^\top U_{n-m_2}\|_2 \leq \epsilon$.

Proof. We apply an asymmetric version of Davis-Kahan inequality (Lemma B.1), with $X = A, Y = \hat{A}, i = m_1$ and $j = k$. By Weyl’s inequality, we know that $\sigma_{k+1}(\hat{A}) \leq \sigma_{k+1}(A) + \|\hat{A} - A\|_2 \leq (1 + \epsilon^2) \sigma_{k+1}(A) \leq (1 + \epsilon) \sigma_{k+1}(A)$. Subsequently, $\|\hat{U}_{n-k}^\top U_{m_1}\|_2 \leq \sigma_{m_1}(A)/(1 + \epsilon) \sigma_{k+1}(A) \leq \epsilon$. Similarly, applying Lemma B.1 with $X = \hat{A}, Y = A, i = k$ and $j = m_2$ we have that $\|\hat{U}_k^\top U_{n-m_2}\|_2 \leq \epsilon$.

Let $U_{m_1:m_2}$ be the linear subspace of A associated with eigenvalues $\sigma_{m_1+1}(A), \cdots, \sigma_{m_2}(A)$. Intuitively, we choose a $(k - m_1)$-dimensional linear subspace in $U_{m_1:m_2}$ that is “most aligned” with the top-k subspace \hat{U}_k of \hat{A}. Formally, define

$$W = \text{argmax}_{\dim(W) = k - m_1, W \in U_{m_1:m_2}} \sigma_{k-m_1}(W^\top \hat{U}_k).$$
\(W\) is then a \(d \times (k - m_1)\) matrix with orthonormal columns that corresponds to a basis of \(\mathcal{W}\). \(\mathcal{W}\) is carefully constructed so that it is closely aligned with \(\tilde{U}_k\), yet still lies in \(\mathcal{U}_k\). In particular, Lemma 3.2 shows that \(\sin \angle (\mathcal{W}, \tilde{U}_k) = \| \tilde{U}_k - k \mathcal{W} \|_2\) is upper bounded by \(\epsilon\).

Lemma 3.2. If \(\| \tilde{A} - A \|_2 \leq c^2 \sigma_{k+1}(A)\) for \(\epsilon \in (0, 1)\) then \(\| \tilde{U}_k^T \mathcal{W} \|_2 \leq \epsilon\).

Proof. First note that \(\| \tilde{U}_k^T \mathcal{W} \|_2 \leq \sqrt{1 - \sigma_{k-m_1}(\tilde{U}_k^T \mathcal{W})^2}\) because

\[
\| \tilde{U}_k^T \mathcal{W} \|_2^2 = \sup_{\| x \|_2 = 1} \| \tilde{U}_k^T \mathcal{W} x \|_2 = \sup_{\| x \|_2 = 1} \left\{ \| \mathcal{W} x \|_2^2 - \| \tilde{U}_k^T \mathcal{W} x \|_2^2 \right\}
\leq \sup_{\| x \|_2 = 1} \| \mathcal{W} x \|_2^2 - \inf_{\| x \|_2 = 1} \| \tilde{U}_k^T \mathcal{W} x \|_2^2 = 1 - \sigma_{k-m_1}(\tilde{U}_k^T \mathcal{W})^2.
\]

Subsequently, it suffices to prove that \(\sigma_{k-m_1}(\tilde{U}_k^T \mathcal{W}) \geq \sqrt{1 - \epsilon^2}\). By Weyl’s monotonicity theorem (Lemma B.4), we have that

\[
\sigma_k(\tilde{U}_k^T U_{m_2}) \leq \sigma_{m_1+1}(\tilde{U}_k^T U_{m_1}) + \sigma_{k-m_1}(\tilde{U}_k^T U_{m_1:m_2}).
\]

In addition, \(\sigma_{m_1+1}(\tilde{U}_k^T U_{m_1}) = 0\) because \(\text{rank}(\tilde{U}_k^T U_{m_1}) \leq m_1\) and \(\sigma_{k-m_1}(\tilde{U}_k^T U_{m_1:m_2}) = \sigma_{k-m_1}(\tilde{U}_k^T \mathcal{W})\) because of the definition of \(\mathcal{W}\). Subsequently,

\[
\sigma_{k-m_1}(\tilde{U}_k^T \mathcal{W})^2 \geq \sigma_k(\tilde{U}_k^T U_{m_2})^2 = \inf_{\| x \|_2 = 1} \| U_{m_2} \tilde{U}_k x \|_2^2 = \inf_{\| x \|_2 = 1} \left\{ \| \tilde{U}_k x \|_2^2 - \| U_{m_2} \tilde{U}_k x \|_2^2 \right\}
\geq \inf_{\| x \|_2 = 1} \left\{ \| \tilde{U}_k x \|_2^2 \right\} - \sup_{\| x \|_2 = 1} \left\{ \| U_{m_2} \tilde{U}_k x \|_2^2 \right\} \geq 1 - \epsilon^2.
\]

Here in the last inequality we invoke Lemma 3.1. The proof is then complete.

Define

\[
\tilde{A} = A_{m_1} + \mathcal{W} \mathcal{W}^T A \mathcal{W} \mathcal{W}^T.
\]

The following lemma lists some of the properties of \(\tilde{A}\).

Lemma 3.3. It holds that

1. \(\dim(\text{Range}(\tilde{A})) = k\) and \(\dim(\text{Range}(\mathcal{W})) = k - m_1\);
2. \(U_{m_1} \subseteq \text{Range}(\tilde{A}) \subseteq U_{m_2}\) and \(\text{Range}(\tilde{A} - A_{m_1}) \subseteq U_{m_1:m_2}\), where \(U_{m_2} = U_{m_1} \oplus U_{m_1:m_2}\).
3. \(\| \tilde{U}_k^T \tilde{U} \|_2, \| \tilde{U}_k^T \tilde{U}_{n-k} \|_2 \leq 2\epsilon\), where \(\tilde{U}\) and \(\tilde{U}_{n-k}\) are orthonormal basis of \(\text{Range}(\tilde{A})\) and \(\text{Null}(\tilde{A})\), respectively.

Proof. Properties 1 and 2 are obviously true by the definition of \(\mathcal{W}\) and \(\tilde{A}\). For property 3, note that both \(\| \tilde{U}_k^T \tilde{U} \|_2\) and \(\| \tilde{U}_k^T \tilde{U}_{n-k} \|_2\) are equal to \(\sin \angle (\tilde{U}, \tilde{U}_k)\). Hence it suffices to show that \(\| \tilde{U}_{n-k}^T \tilde{U} \|_2 \leq 2\epsilon\). Invoking Lemmas 3.1 and 3.2 we have that \(\| \tilde{U}_{n-k}^T \tilde{U} \|_2 \leq \| \tilde{U}_{n-k}^T U_{m_1} \|_2 + \| \tilde{U}_{n-k}^T \mathcal{W} \|_2 \leq \epsilon + \epsilon = 2\epsilon\).

Decompose \(\| \tilde{A}_k - A \|_F\) as

\[
\| \tilde{A}_k - A \|_F \leq \| A - \tilde{A} \|_F + \| \tilde{A}_k - \tilde{A} \|_F \leq \| A - \tilde{A} \|_F + \sqrt{2k} \| \tilde{A}_k - \tilde{A} \|_2.
\]

(10)

Here the last inequality holds because both \(\tilde{A}_k\) and \(\tilde{A}\) have rank at most \(k\). Lemmas 3.4 and 3.5 give separate upper bounds for \(\| A - \tilde{A} \|_F\) and \(\| \tilde{A}_k - A \|_2\).

Lemma 3.4. If \(\| \tilde{A} - A \|_2 \leq c^2 \sigma_{k+1}(A)^2\) for \(\epsilon \in (0, 1/4)\) then \(\| A - \tilde{A} \|_F \leq (1 + 32\epsilon) \| A - A_k \|_F\).
Proof. Let \(\mathcal{U}_{m_1:m_2} \) be the \((m_2 - m_1) \)-dimensional linear subspace such that \(\mathcal{U}_{m_2} = \mathcal{U}_{m_1} \oplus \mathcal{U}_{m_1:m_2} \). Define \(A_{m_1:m_2} = U_{m_1:m_2} \Sigma_{m_1:m_2} U_{m_1:m_2}^\top \), where \(\Sigma_{m_1:m_2} = \text{diag}(\sigma_{m_1+1}(A), \ldots, \sigma_{m_2}(A)) \) and \(U_{m_1:m_2} \) is an orthonormal basis associated with \(\mathcal{U}_{m_1:m_2} \). We then have

\[
\|A - \widetilde{A}\|_F^2 = \|A_{n-m_1} - WW^\top AwW^\top\|_F^2
\]

\[
= \|A_{n-m_1}\|_F^2 + \|A_{m_1:m_2} - WW^\top AwW^\top\|_F^2
\]

\[
\leq (a) \|A_{n-m_1}\|_F^2 + \|A_{m_1:m_2} - WW^\top AwW^\top\|_F^2
\]

\[
= (b) \|A - A_{m_2}\|_F^2 + \|A_{m_1:m_2} - WW^\top AwW^\top\|_F^2
\]

\[
= (c) \|A - A_{m_2}\|_F^2 + \|A_{m_1:m_2}\|_F^2 - \|WW^\top AwW^\top\|_F^2
\]

Here in \((a)\) we apply \(\text{Range}(\tilde{A} - A_{m_1}) \subseteq \mathcal{U}_{m_1:m_2} \) and the Pythagorean theorem (Lemma B.2) with \(P = U_{m_1:m_2} \), in \((b)\) we apply \(\mathcal{W} \subseteq \mathcal{U}_{m_1:m_2} \), and in \((c)\) we apply the Pythagorean theorem again with \(P = W \). Note that \(\|WW^\top AwW^\top\|_F^2 = \|W^\top A_{m_1:m_2} W\|_F^2 \). Applying Poincaré separation theorem (Lemma B.3) where \(X = \Sigma_{m_1:m_2} \) and \(P = U_{m_1:m_2}^\top \mathcal{W} \), we have \(\|W^\top A_{m_1:m_2} W\|_F^2 \geq \sum_{j=m_2-k+1}^{m_2} \sigma_j(A_{m_1:m_2})^2 = \sum_{j=m_1+m_2-k+1}^{m_2} \sigma_j(A)^2 \). Subsequently,

\[
\|A - \widetilde{A}\|_F^2 \leq \|A - A_{m_2}\|_F^2 + \sum_{j=m_1+1}^{m_1+m_2-k} \sigma_j(A)^2 \leq \|A - A_{m_2}\|_F^2 + (m_2 - k)\|A_{m_1}\|_F^2
\]

\[
\leq (a') \|A - A_{m_2}\|_F^2 + (m_2 - k)(1 + 2\epsilon)\|A\|_F^2
\]

\[
\leq (b') \|A - A_{m_2}\|_F^2 + (m_2 - k)\left(1 + 2\epsilon \right)\sigma_{m_2}(A)^2
\]

\[
\leq (c') \|A - A_{m_2}\|_F^2 + (m_2 - k)\sigma_{m_2}(A)^2 + 32(m_2 - k)\epsilon\sigma_{m_2}(A)^2
\]

\[
\leq (d') \|A - A_{m_2}\|_F^2 + 32(m_2 - k)\epsilon\sigma_{m_2}(A)^2
\]

\[
\leq (1 + 32\epsilon)\|A - A_k\|_F^2.
\]

Here in \((a')\) we apply the definition of \(m_1 \) that \(\sigma_{m_1+1} \leq (1 + 2\epsilon)\sigma_{m_1+1}(A) \), in \((b')\) we apply the definition of \(m_2 \) that \(\sigma_{m_2}(A) \geq \sigma_k(A) - 2\epsilon\sigma_{k+1}(A) \geq (1 - 2\epsilon)\sigma_{k+1}(A) \), and \((c')\) is due to the fact that \(\left(\frac{1 + 2\epsilon}{1 - 2\epsilon}\right)^2 \leq 1 + 32\epsilon \) for all \(\epsilon \in (0, 1/4] \). Finally, \((d')\) holds because \((m_2 - k)\sigma_{m_2}(A)^2 \leq \sum_{j=m_2-k+1}^{m_2} \sigma_j(A)^2 \) and \(\|A - A_k\|_F^2 = \|A - A_{m_2}\|_F^2 + \sum_{j=k+1}^{m_2} \sigma_j(A)^2 \) \(\Box \)

Lemma 3.5. If \(\|\tilde{A} - A\|_2 \leq 2\epsilon\sigma_{k+1}(A) \) for \(\epsilon \in (0, 1/4] \) then \(\| \hat{A}_k - \widetilde{A} \|_2 \leq 102\epsilon^2 \|A - A_k\|_2 \).

Proof. Recall the definition that \(\mathcal{U} = \text{Range}(\hat{A}) \) and \(\mathcal{U}_\perp = \text{Null}(\hat{A}) \). Consider \(\|v\|_2 = 1 \) such that \(v^\top (\hat{A}_k - \tilde{A})v = \|\hat{A}_k - \tilde{A}\|_2 \). Because \(v \) maximizes \(v^\top (\hat{A}_k - \tilde{A})v \) over all unit-length vectors, it must lie in the range of \((\hat{A}_k - \tilde{A}) \) because otherwise the component outside the range will not contribute. Therefore, we can choose \(v \) that \(v = v_1 + v_2 \) where \(v_1 \in \text{Range}(\hat{A}_k) = \hat{U}_k \) and \(v_2 \in \text{Range}(\hat{A}) = \tilde{U} \). Subsequently, we have that

\[
v = \hat{U}_k \hat{U}_k^\top v + \tilde{U} \tilde{U}^\top \tilde{U}_n-k \tilde{U}_n-k^\top v
\]

\[
= \hat{U} \hat{U}^\top v + \hat{U}_k \hat{U}_k^\top \tilde{U} \tilde{U}_k \tilde{U}_k^\top v.
\]

Consider the following decomposition:

\[
|v^\top (\hat{A}_k - \tilde{A})v| \leq |v^\top (\hat{A}_k - \tilde{A})v| + |v^\top (\hat{A}_k - \tilde{A})v| + |v^\top (A - \tilde{A})v|.
\]
The first term $|v^T (\hat{A} - A)v|$ is trivially upper bounded by $\|\hat{A} - A\|_2 \leq c^2 \sigma_{k+1}(A)$. For the second term, we have

$$v^T (\hat{A}_k - \tilde{A})v = |v^T \hat{U}_{n-k} \Sigma_{n-k} \hat{U}_{n-k}^Tv|$$

$$\leq \left\| \hat{U}_{n-k} \right\|_2 \left\| \Sigma_{n-k} \right\|_2 \left\| \hat{U}_{n-k}^Tv \right\|_2$$

$$\leq \left\| \hat{U}_{n-k} \right\|_2 \left\| \Sigma_{n-k} \right\|_2 \leq 16c^4 \sigma_{k+1}(\hat{A}) \leq 16c^4 (1 + c^2) \sigma_{k+1}(A).$$

Here in (a) we apply Eq. (11); in (b) we apply Property 3 of Lemma 3.3 and (c) is due to Weyl’s inequality (Lemma B.4) that $\sigma_{k+1}(\hat{A}) \leq \sigma_{k+1}(A) + \|\hat{A} - A\|_2 \leq (1 + c^2) \sigma_{k+1}(A)$.

For the third term, note that $\tilde{A} = \hat{U} \hat{U}^T A \hat{U} \hat{U}^T$ because $\text{Range}(\tilde{A}) \subseteq U_{m_2} \subseteq \text{Range}(A)$ by Lemma 3.3. Subsequently,

$$A - \tilde{A} = \tilde{U} \hat{U}^T A \hat{U} \hat{U}^T = \sum_{i=1}^{\min(m_1, m_2)} \hat{U}_i \hat{U}_i^T A \hat{U}_i \hat{U}_i^T + \sum_{i=\min(m_1, m_2) + 1}^{\min(m_1, m_2) + m_2 - m_1} \hat{U}_i \hat{U}_i^T A \hat{U}_i \hat{U}_i^T.

It then suffices to upper bound $|v^T B_1 v|$ and $|v^T B_2 v|$ separately. For B_1 we have

$$|v^T B_1 v| = |v^T \tilde{U}_1 \tilde{U}_1^T A \tilde{U}_1 \tilde{U}_1^T + \tilde{U}_1 \tilde{U}_1^T A \tilde{U}_1 \tilde{U}_1^T + \tilde{U}_1 \tilde{U}_1^T A \tilde{U}_1 \tilde{U}_1^T|

\leq \left\| \tilde{U}_1 \tilde{U}_1^T A \tilde{U}_1 \tilde{U}_1^T \right\|_2 \left\| \tilde{U}_1 \tilde{U}_1^T \right\|_2

\leq 16c^4 \left\| \tilde{U}_1 \right\|_2 \left\| \tilde{U}_1 \right\|_2 \sigma_{m_1+1}(A) \leq 16c^4 (1 + 2c) \sigma_{k+1}(A).

Here in (a’), we apply Eq. (12); in (b’) we apply Property 3 of Lemma 3.3 (c’), it follows the property that $\tilde{U} \in U_{n-m_1}$, and finally (d’) follows from the definition of m_1 that $\sigma_{m_1+1}(A) \leq (1 + 2c) \sigma_{k+1}(A)$.

For B_2, we have that

$$|v^T B_2 v| = |v^T \tilde{U} \tilde{U}^T A \tilde{U} \tilde{U}^T + \tilde{U} \tilde{U}^T A \tilde{U} \tilde{U}^T + \tilde{U} \tilde{U}^T A \tilde{U} \tilde{U}^T|

\leq \left\| A \tilde{U} \tilde{U}^T \right\|_2 \left\| \tilde{U} \tilde{U}^T \right\|_2 \leq c^2 (1 + 8c) \sigma_{k+1}(A).

Combining all inequalities and noting that $c \in (0, 1/4]$, we obtain

$$\|\hat{A}_k - \tilde{A}\|_2 \leq c^2 \sigma_{k+1}(A) + 16c^4 (1 + 2c + c^2) \sigma_{k+1}(A) + 32c^2 (1 + 8c) \sigma_{k+1}(A)

\leq 102c^2 \sigma_{k+1}(A).$$

\[\square\]

4 Discussion

We mention two potential directions to further extend results of this paper.

4.1 Model selection for general high-rank matrices

The validity of Theorem 2.1 depends on the condition $\|\hat{A} - A\|_2 \leq c^2 \sigma_{k+1}(A)$, which could be hard to verify if $\sigma_{k+1}(A)$ is unknown and difficult to estimate. Furthermore, for general high-rank matrices, the model selection problem of determining an appropriate (or even optimal) cut-off rank k requires knowledge.
of the distribution of the entire spectrum of an unknown data matrix, which is even more challenging to obtain.

One potential approach is to impose a parametric pattern of decay of the eigenvalues (e.g., polynomial and exponential decay), and to estimate a small set of parameters (e.g., degree of polynomial) from the noisy observations \hat{A}. Afterwards, the optimal cut-off rank k could be determined by a theoretical analysis, similar to the examples in Corollaries 2.1 and 2.2. Another possibility is to use repeated sampling techniques such as bootstrap in a stochastic problem (e.g., matrix de-noising) to estimate the “bias” term $\| \hat{A} - A_k \|_F$, as the variance term $\sqrt{k} \nu$ is known or easy to estimate.

4.2 Minimax rates for polynomial spectral decay

Consider the class of PSD matrices whose eigenvalues follow a polynomial (power-law) decay:

$$\Theta(\beta,n) = \{ A \in \mathbb{R}^{n \times n} : A \succ 0, \sigma_j(A) = j^{-\beta} \}.$$ We are interested in the following minimax rates for completing or de-noising matrices in $\Theta(\beta,n)$:

Question 1 (Completion of $\Theta(\beta,n)$). Fix $n \in \mathbb{N}, p \in (0,1)$ and define $N = pn^2$. For $M \in \Theta(\beta,n)$, let $A_{ij} = M_{ij}$ with probability p and $\hat{A}_{ij} = 0$ with probability $1 - p$. Also let $\Lambda(\mu_0,n) = \{ M \in \mathbb{R}^{n \times n} : n\|M\|_{\text{max}} \leq \mu_0 \|M\|_F \}$ be the class of all non-spiky matrices. Determine

$$R_1(\mu_0,\beta,n,N) := \inf_{\hat{A} \rightarrow M} \sup_{M \in \Theta(\beta,n) \cap \Lambda(\mu_0,n)} \mathbb{E} \| \hat{M} - M \|_F^2.$$

Question 2 (De-noising of $\Theta(\beta,n)$). Fix $n \in \mathbb{N}, \nu > 0$ and let $\hat{A} = M + \nu/\sqrt{n}Z$, where Z is a symmetric matrices with i.i.d. standard Normal random variables on its upper triangle. Determine

$$R_2(\nu,\beta,n) := \inf_{\hat{A} \rightarrow M} \sup_{M \in \Theta(\beta,n)} \mathbb{E} \| \hat{M} - M \|_F^2.$$

Compared to existing settings on matrix completion and de-noising, we believe $\Theta(\beta,n)$ is a more natural matrix class which allows for general high-rank matrices, but also imposes sufficient spectral decay conditions so that spectrum truncation algorithms result in significant benefits. Based on Corollary 2.1 and its matching lower bounds for a larger ℓ_p class [Negahban and Wainwright, 2012], we make the following conjecture:

Conjecture 4.1. For $\beta > 1/2$ and ν not too small, we conjecture that

$$R_1(\mu_0,\beta,n,N) \approx C(\mu_0) \cdot \left[\frac{n^2}{N} \right]^{2\beta-1} \text{ and } R_2(\nu,\beta,n) \approx \left[\nu^2 \right]^{2\beta-1},$$

where $C(\mu_0) > 0$ is a constant that depends only on μ_0.

References

A Proof of corollaries

Proof. of Corollary 2.1 We first verify the condition that \(\delta \leq c^2 \sigma_{k+1}(A) \) for \(c = 1/4 \) and the particular choice of \(k \). Because \(k \leq \lfloor C_1 \delta^{-1/\beta} \rfloor - 1 \), we have that \(\sigma_{k+1}(A) \geq (C_1 \delta^{-1/\beta})^{-\beta} \). By carefully chosen \(C_1 \) (depending on \(\beta \)) the inequality \(\sigma_{k+1}(A) \geq \delta/16 \) holds.

If \(k = n - 1 \) then by Theorem 2.1 \(\|A_k - A\|_F \leq O(\sqrt{n} \cdot n^{-\beta}) = O(n^{-1/2} \cdot n^{-\beta}) \). In the rest of the proof we assume \(k = \lfloor C_1 \delta^{-1/\beta} \rfloor - 1 \). We then have
\[
\|A - A_k\|_F = \sqrt{\sum_{j=k+1}^{n} \sigma_j(A)^2} = \sqrt{\sum_{j=k+1}^{n} j^{-2\beta}} \leq \sqrt{\int_k^{\infty} x^{-2\beta} dx} = \sqrt{\frac{k^{-(2\beta-1)}}{2\beta-1}} \leq C(\beta) \delta^{\frac{2\beta}{2\beta-1}}.
\]

Here \(C(\beta) > 0 \) is a constant that only depends on \(\beta \). In addition,
\[
\sqrt{k} \|A - A_k\|_2 \leq \sqrt{k} \cdot k^{-\beta} = k^{-(\beta-1/2)} \leq \tilde{C}(\beta) \delta^{\frac{2\beta}{2\beta-1}}.
\]

Applying Theorem 2.1 we complete the proof of Corollary 2.1. \(\square \)

Proof. of Corollary 2.2 We first verify the condition that \(\delta \leq c^2 \sigma_{k+1}(A) \) for \(c = 1/4 \) and the particular choice of \(k \). Because \(k \leq \lfloor c^{-1} \log(1/\delta) - c^{-1} \log(1/\delta) \rfloor - 1 \), we have that \(\sigma_{k+1}(A) \geq \delta \log(1/\delta) \). Hence, for \(\delta \in (0, e^{-16}) \) it holds that \(\sigma_{k+1}(A) \geq \delta/16 \).

If \(k = n - 1 \) then by Theorem 2.1 \(\|A_k - A\|_F \leq O(\sqrt{n} \cdot \exp\{-cn\}) \). In the rest of the proof we assume \(k = \lfloor C_2 \log(1/\delta) \rfloor - 1 \). We then have
\[
\|A - A_k\|_F = \sqrt{\sum_{j=k+1}^{n} \sigma_j(A)^2} = \sqrt{\sum_{j=k+1}^{n} \exp\{-2cj\}} \leq \sqrt{\frac{\exp\{-2ck\}}{1 - e^{-2c}}} \leq C(c) \delta \log(1/\delta),
\]

where \(C(c) > 0 \) is a constant that only depends on \(c \). In addition,
\[
\sqrt{k} \|A - A_k\|_2 \leq \sqrt{k} \cdot \exp\{-ck\} \leq \delta \log(1/\delta) \cdot \sqrt{c^{-1} \log(1/\delta)} \leq \tilde{C}(c) \delta \sqrt{\log(1/\delta)^3}.
\]

Applying Theorem 2.1 we complete the proof of Corollary 2.2. \(\square \)
B Technical lemmas

Lemma B.1 (Asymmetric Davis-Kahan inequality). Fix \(i \leq j \leq n\) and suppose \(X, Y\) are symmetric \(n \times n\) matrices, with eigen-decomposition \(X = P_i \Lambda_i P_i^\top + P_{n-i} \Lambda_{n-i} P_{n-i}^\top\) and \(Y = Q_j \Xi_j Q_j^\top + Q_{n-j} \Xi_{n-j} Q_{n-j}^\top\). If \(\sigma_i(X) > \sigma_{j+1}(Y)\) then

\[
\|Q_{n-j}^\top P_i\|_2 \leq \frac{\|X - Y\|_2}{\sigma_i(X) - \sigma_{j+1}(Y)}.
\]

Proof. Consider

\[
\|Q_{n-j}^\top (X - Y)P_i\|_2 = \|Q_{n-j}^\top P_i \Lambda_i - Q_{n-j}^\top \Xi_{n-j} P_i\|_2 \geq \|Q_{n-j}^\top P_i\|_2 (\sigma_i(X) - \sigma_{j+1}(Y))
\]

Because \(\sigma_i(X) > \sigma_{j+1}(Y)\), we have that

\[
\|Q_{n-j}^\top P_i\|_2 \leq \frac{\|Q_{n-j}^\top (X - Y)P_i\|_2}{\sigma_i(X) - \sigma_{j+1}(Y)} \leq \frac{\|X - Y\|_2}{\sigma_i(X) - \sigma_{j+1}(Y)}.
\]

Lemma B.2 (Pythagorean theorem). Fix \(n \geq m\). Suppose \(X\) is a symmetric \(n \times n\) matrix and \(P\) is an \(n \times m\) matrix satisfying \(P^\top P = I\). Then \(\|X\|_F^2 = \|X - PP^\top XPP^\top\|_F^2 + \|PP^\top XPP^\top\|_F^2\).

Proof. Expanding \(\|X\|_F^2\) we have that

\[
\|X\|_F^2 = \|(X - PP^\top XPP^\top) + PP^\top XPP^\top\|_F^2
\]

\[
= \|X - PP^\top XPP^\top\|_F^2 + \|PP^\top XPP^\top\|_F^2 + 2\text{tr} \left((X - PP^\top XPP^\top)PP^\top XPP^\top \right)
\]

It suffices to prove that the trace term is zero:

\[
\text{tr} \left((X - PP^\top XPP^\top)PP^\top XPP^\top \right) = \text{tr} \left(XPP^\top XPP^\top \right) - \text{tr} \left(PP^\top XPP^\top PP^\top XPP^\top \right)
\]

\[
\leq \text{tr} \left(PP^\top XPP^\top \right) - \text{tr} \left(PP^\top XPP^\top XP \right)
\]

\[
= 0.
\]

Here (*) is due to \(P^\top P = I\).

Lemma B.3 (Poincaré separation theorem). Fix \(n \geq m\). Suppose \(X\) is a symmetric \(n \times n\) matrix, \(P\) is an \(n \times m\) matrix that satisfies \(P^\top P = I\), and \(Y = P^\top XP\). Let \(\sigma_1(X) \geq \cdots \geq \sigma_n(X)\) and \(\sigma_1(Y) \geq \cdots \geq \sigma_m(Y)\) be the eigenvalues of \(X\) and \(Y\) in descending order. Then

\[
\sigma_i(X) \geq \sigma_i(Y) \geq \sigma_{n-m+i}(X), \quad i = 1, \cdots, m.
\]

Lemma B.4 (Weyl’s monotonicity theorem). Suppose \(X, Y\) are \(n \times n\) symmetric matrices, and let \(\sigma_1(X) \geq \cdots \geq \sigma_n(X)\), \(\sigma_1(Y) \geq \cdots \geq \sigma_n(Y)\) and \(\sigma_1(X + Y) \geq \cdots \geq \sigma_n(X + Y)\) denote the eigenvalues of \(X, Y\) and \(X + Y\) in descending order. Then

\[
\sigma_{i+j-1}(X + Y) \leq \sigma_i(X) + \sigma_j(Y), \quad 1 \leq i, j \leq n, i + j - 1 \leq n.
\]

In particular, setting \(i = 1\) one obtains the commonly used Weyl’s inequality: \(|\sigma_j(X + Y) - \sigma_j(X)| \leq \|Y\|_2\).