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1. Appendix - Detailed Analysis and Proofs
This supplementary material contains the detailed proofs
and analysis of the theoretical results presented in the pa-
per.

Additional Notation: We first introduce additional nota-
tion not used in the paper that is useful in some proofs. In
particular, we define dtω,π the distribution of states at time t
if we executed π from time step 1 to t−1, starting from dis-
tribution ω at time 1, and dω,π = (1 − γ)

∑∞
t=1 γ

t−1dtω,π
the discounted distribution of states over the infinite hori-
zon if we follow π, starting in ω at time 1.

1.1. Relating Performance to Error in Model

This subsection presents a number of useful lemmas for
relating the performance (in terms of expected total cost)
of a policy in the real system to the predictive error in the
learned model from which the policy was computed.

Lemma 1.1. Suppose we learned an approximate model T̂
instead of the true model T and let V̂ π represent the value
function of π under T̂ . Then for any state distribution ω:

Es∼ω[V π(s)− V̂ π(s)]
= γ

1−γE(s,a)∼Dω,π [Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

Proof.

Es∼ω[V π(s)− V̂ π(s)]
= Es∼ω,a∼πs [C(s, a) + γEs′∼Tsa [V π(s′)]
−C(s, a)− γEs′∼T̂sa [V̂ π(s′)]]

= γEs∼ω,a∼πs [Es′∼Tsa [V π(s′)]− Es′∼T̂sa [V̂ π(s′)]]
= γEs∼ω,a∼πs [Es′∼Tsa [V π(s′)]− Es′∼Tsa [V̂ π(s′)]

+Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]
= γEs∼d2ω,π [V π(s)− V̂ π(s)]

+γE(s,a)∼D1
ω,π

[Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

This gives us a recurence. Solving this recurence proves
the lemma.

Corollary 1.1. Suppose for all s, a: C(s, a) ∈
[Cmin, Cmax], or for all s: V̂ π(s) ∈ [V̂min, V̂max], then:

Es∼ω[V π(s)− V̂ π(s)]
≤ γ(V̂max−V̂min)

2(1−γ) ||E(s,a)∼Dω,π [Tsa − T̂sa]||1
≤ γ(Cmax−Cmin)

2(1−γ)2 E(s,a)∼Dω,π [||Tsa − T̂sa||1]

Proof. Let ∆T = E(s,a)∼Dω,π [Tsa − T̂sa]. Note that∑
s′ ∆T (s′) = 0, so that for any constant c ∈ R,∑
s′ c∆T (s′) = 0. Then by the previous lemma we have

that for any constant c ∈ R:

Es∼ω[V π(s)− V̂ π(s)]
= γ

1−γ
∑
s′ ∆T (s′)V̂π(s′)

= γ
1−γ

∑
s′ ∆T (s′)(V̂π(s′)− c)

≤ γ
1−γ ||∆T ||1 sups |V̂π(s)− c|

In particular, if V̂π(s) ∈ [V̂min, V̂max] for all s, we can
choose c = V̂max−V̂min

2 to guarantee that sups |V̂π(s) −
c| ≤ V̂max−V̂min

2 . Thus Es∼ω[V π(s) − V̂ π(s)] ≤
γ(V̂max−V̂min)

2(1−γ) ||∆T ||1. If C(s, a) ∈ [Cmin, Cmax] for all

(s, a), then this implies V̂π(s) ∈ [V̂min, V̂max] for all s for
V̂min = Cmin

1−γ and V̂max = Cmax
1−γ . Plugin in those values

for V̂min and V̂max, and the fact that || · ||1 is convex with
Jensen’s inequality, proves the second result. The proof
also applies in the continuous case by replacing the sum
over s′ by an integral over the state space in the first and
second equality.

Lemma 1.2. Suppose we learned an approximate model T̂
instead of the true model T and let V̂ π represent the value
function of π under T̂ . Then for any state distribution ω
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and policies π, π′:

Jω(π)− Jω(π′)
= Es∼ω[V̂ π(s)− V̂ π′(s)]

+ γ
1−γE(s,a)∼Dω,π [Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

+ γ
1−γE(s,a)∼Dω,π′ [Es′∼T̂sa [V̂ π

′
(s′)]− Es′∼Tsa [V̂ π

′
(s′)]]

Proof.

Jω(π)− Jω(π′)
= Es∼ω[V π(s)− V π′(s)]
= Es∼ω[(V̂ π(s)− V̂ π′(s)) + (V π(s)− V̂ π(s))
−(V π

′
(s)− V̂ π′(s))]

Applying lemma 1.1 to Es∼ω[V π(s) − V̂ π(s)] and
−Es∼ω[V π

′
(s)− V̂ π′(s)] proves the lemma.

Suppose that C(s, a) ∈ [Cmin, Cmax] for all s, a and let
Crng = Cmax − Cmin and H = γCrng

(1−γ)2 .

Corollary 1.2. Suppose we learned an approximate model
T̂ and solved it approximately to obtain π. For any pol-
icy π′, let επ

′

oc = Es∼ω[V̂ π(s)− V̂ π′(s)] denote how much
larger is the expected total cost of π in the learned model T̂
compared to π′ for start distribution ω. Then for any policy
π′:

Jω(π)− Jω(π′) ≤ επ′oc +HE(s,a)∼D[||Tsa − T̂sa||1]

for D = 1
2Dω,π + 1

2Dω,π′

Proof. Using lemma 1.2, we first note that the term
Es∼ω[V̂ π(s) − V̂ π

′
(s)] = επ

′

oc . The other two terms
can be bounded by 1

2HE(s,a)∼Dω,π [||Tsa − T̂sa||1] and
1
2HE(s,a)∼Dω,π′ [||Tsa − T̂sa||1] respectively, following
similar steps as in the proof of corollary 1.1. Combining
those two terms proves the corollary.

This corollary forms the basis of much of our analysis
of the Batch and DAgger algorithms. In fact, this corol-
lary already provides a performance bound for Batch, al-
beit with a major caveat: it bounds test performance of
the learned policy π as a function of an error notion in
the learned model T̂ that cannot be minimized or con-
trolled by the algorithm. That is, when collecting data
under exploration distribution ν and fitting the model T̂
based on this data, Batch could be making the quantity
E(s,a)∼D[||Tsa− T̂sa||1] arbitrarily close to its maxima (i.e.
2) in order to achieve low expected error under the train-
ing distribution ν. Even if there exists a model T ′ ∈ T
where E(s,a)∼D[||Tsa − T ′sa||1] is small, Batch would not
pick this model if it has larger error under ν compared to
other models in the class T . As is, this bound only says
that: if by chance Batch ends up picking a model that has
low error under distribution D, then it must find a policy π
not much worse than π′. Instead we would like to be able

to say something much stronger of the form: if there exists
a model with low error on training data, then we must find
a policy that performs well compared to other policies π′.
To do so, we must bound the term E(s,a)∼D[||Tsa− T̂sa||1]
by a training error term that the algorithm is minimizing.
A first issue is bounding the L1 distance by a loss we can
minimize from observed samples. We present several pos-
sibilities for this in the next section. Then the remaining
part will simply involve performing a change of distribu-
tion to bound the error under distribution D in terms of the
error under the training distribution.

1.2. Relating L1 distance to observable losses

This subsection presents a number of useful lemmas for
relating the predictive error in L1 distance that we would
ideally need to minimize to other losses that are easier to
minimize when learning a model from sampled transitions.
These results prove Lemma 3.1 in the paper.

1.2.1. RELATION TO CLASSIFICATION LOSS

We first show how theL1 distance can be related to a classi-
fication loss when learning deterministic transition models
in MDPs with finitely many states. Namely, given a model
T̂ which predicts next state ŝ′sa when doing action a in state
s, then we define the 0-1 classification loss of T̂ when ob-
serving transition (s, a, s′) as:

`0−1(T̂ , s, a, s′) = I(s′ 6= ŝ′sa),

for I the indicator function. We show below that the L1

distance is related to this classification loss by the follow-
ing:

E(s,a)∼D[||Tsa−T̂sa||1] = 2E(s,a)∼D,s′∼Tsa [`0−1(T̂ , s, a, s′)]

This is proven in the following lemma:

Lemma 1.3. Suppose T̂ is a deterministic transition func-
tion (i.e. for any s, a, T̂sa has probability 1 on a par-
ticular next state ŝ′sa), e.g. a multiclass classifier. Then
for any joint state-action distribution D, E(s,a)∼D[||Tsa −
T̂sa||1] = 2E(s,a)∼D,s′∼Tsa [`0−1(T̂ , s, a, s′)].

Proof.

E(s,a)∼D[||Tsa − T̂sa||1]
= E(s,a)∼D[

∑
s′ |Tsa(s′)− T̂sa(s′)|]

= E(s,a)∼D[1− Tsa(ŝ′sa) +
∑
s′ 6=ŝ′sa

Tsa(s′)]
= 2E(s,a)∼D[Ps′∼Tsa(s′ 6= ŝ′sa)]
= 2E(s,a)∼D,s′∼Tsa [I(s′ 6= ŝ′sa)]]

Additionally, any surrogate loss ` that upper bounds the 0-1
loss that are often used when learning classifiers (e.g. hinge
loss when learning SVMs) could be used to upper bound
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the L1 distance. In this case, we have E(s,a)∼D[||Tsa −
T̂sa||1] ≤ 2E(s,a)∼D,s′∼Tsa [`(T̂ , s, a, s′)] from the fact that
`(T̂ , s, a, s′) ≥ `0−1(T̂ , s, a, s′). This proves the statement
εL1

prd ≤ 2εcls
prd in Lemma 3.1 of the paper.

1.2.2. RELATION TO NEGATIVE LOG LIKELIHOOD

We now show that for arbitrary MDPs and set of models,
we can minimize the negative log likelihood to minimize a
bound on the L1 distance. Namely, for any model T̂ , define
the negative log likelihood loss on transition (s, a, s′) as:

`nlh(T̂ , s, a, s′) = − log(T̂sa(s′)).

Then this loss can be related to the L1 distance as follows:

E(s,a)∼D[||Tsa − T̂sa||1]

≤
√

2E(s,a)∼D,s′∼Tsa [`nlh(T̂ , s, a, s′)− `nlh(T, s, a, s′)].

This is shown in the lemma below:

Lemma 1.4. For any joint state-action dis-
tribution D, E(s,a)∼D[||Tsa − T̂sa||1] ≤√

2E(s,a)∼D,s′∼Tsa [`nlh(T̂ , s, a, s′)− `nlh(T, s, a, s′)].

Proof. We know that ||Tsa − T̂sa||1 = 2||Tsa − T̂sa||tv
for ||Tsa − T̂sa||tv the total variation distance between Tsa
and T̂sa. Additionally, Pinsker’s inequality tells us that

||Tsa − T̂sa||tv ≤
√

KL(Tsa||T̂sa)
2 for KL(Tsa||T̂sa) =

Es′∼Tsa [log(Tsa(s′)

T̂sa(s′)
)] the Kullback-Leibler divergence.

Thus we have ||Tsa − T̂sa||1 ≤
√

2 KL(Tsa||T̂sa). Hence:

E(s,a)∼D[||Tsa − T̂sa||1]

≤ E(s,a)∼D[
√

2 KL(Tsa||T̂sa)]

≤
√

2E(s,a)∼D[KL(Tsa||T̂sa)]

=
√

2E(s,a)∼D,s′∼Tsa [`nlh(T̂ , s, a, s′)− `nlh(T, s, a, s′)]

where the second inequality follows from the Jensen’s in-
equality since

√
· is concave.

This proves the statement εL1
prd ≤

√
2εKL

prd in Lemma 3.1of
the paper.

1.2.3. RELATION TO SQUARED LOSS IN THE MEAN

Another interesting special case not discussed in the paper
is for continuous MDPs with additive gaussian noise and
known covariance matrix where we seek to learn to predict
the mean next state. In this case, we can relate the L1 dis-
tance to a squared loss in predicting the mean next state.
Namely, suppose that for all s, a, Tsa and T̂sa are gaussian
distributions, both with covariance matrix Σ � 0. Let µsa
and µ̂sa denote the mean of Tsa and T̂sa respectively. We

define the squared loss of T̂ on transition (s, a, s′) as:

`sq(T̂ , s, a, s′) = ||µ̂sa − s′||22.
This loss can be related to the L1 distance between Tsa and
T̂sa as follows:

E(s,a)∼D[||Tsa − T̂sa||1]

≤ c
√

E(s,a)∼D,s′∼Tsa [`sq(T̂ , s, a, s′)− `sq(T, s, a, s′)],

for c =
√

2
πσmin(Σ) and σmin(Σ) the minimum singular

value of the noise covariance matrix Σ. This is proven in
the two lemmas below:

Lemma 1.5. Suppose X1 and X2 are 2 independent gaus-
sian random variables such that X1 ∼ N(µ1,Σ) and
X2 ∼ N(µ2,Σ) and denote G1 and G2 the pdf of X1 and

X2. Then ||G1 − G2||1 ≤
√

2
πσmin(Σ) ||µ1 − µ2||2, for

σmin(A) the minimum singular value of matrix A.

Proof. We have that ||G1 − G2||1 = 2[P (X1 ∈ A) −
P (X2 ∈ A)] for A = {x|G1(x) ≥ G2(x)}. It can be
seen that G1(x) ≥ G2(x) when θ>(x − µ1) ≤ τ , for

θ> = (µ2−µ1)>Σ−1

||Σ−1/2(µ2−µ1)||2
, τ = ||Σ−1/2(µ2−µ1)||2

2 and Σ−1/2

denote the matrix square root of Σ−1 (which exists since
Σ−1 if symmetric positive definite). Thus A = {x|θ>(x−
µ1) ≤ τ}. Define random variables Z1 = θ>(X1 − µ1)
and Z2 = θ>(X2 − µ1). Then we have that Z1 ∼ N(0, 1)
(i.e. a standard normal distribution) and Z2 ∼ N(2τ, 1).
Thus:

||G1 −G2||1
= 2[P (X1 ∈ A)− P (X2 ∈ A)]
= 2[P (Z1 ≤ τ)− P (Z2 ≤ τ)]
= 4Φ(τ)− 2

For Φ the cdf of a standard normal variable. Because τ ≥ 0
and Φ(x) is concave for x ≥ 0, then we can upperbound
Φ(τ) with a first-order taylor series expansion about 0.
Let φ denote the pdf of a standard normal distribution and
σmax(A) the maximum singular value of a matrix A, then
we obtain:

4Φ(τ)− 2
≤ 4(Φ(0) + τφ(0))− 2
= 4τφ(0)

=
√

2
π ||Σ

−1/2(µ1 − µ2)||2
≤

√
2
πσmax(Σ−1/2)||µ1 − µ2||2

=
√

2
πσmin(Σ) ||µ1 − µ2||2

Lemma 1.6. Suppose that for all s, a, Tsa and
T̂sa are gaussian distributions, both with covari-
ance matrix Σ � 0. Then for any joint state-
action distribution D, E(s,a)∼D[||Tsa − T̂sa||1] ≤
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πσmin(Σ)E(s,a)∼D,s′∼Tsa [`sq(T̂ , s, a, s′)− `sq(T, s, a, s′)],
for σmin(Σ) the minimum singular value of matrix Σ.

Proof. From Lemma 1.5, we directly have that
E(s,a)∼D[||Tsa − T̂sa||1] ≤

√
2

πσmin(Σ)E(s,a)∼D[||µsa −
µ̂sa||2]. Using the fact that ||µsa − µ̂sa||22 =
Es′∼Tsa [||µ̂sa − s′||22 − ||µsa − s′||22] and that

√
· is

concave with Jensen’s inequality proves the lemma.

1.3. Analysis of the Batch Algorithm

We now present the detailed analysis of the Batch Algo-
rithm. As mentioned previously after corollary 1.2, this
corollary already provides a performance bound for Batch,
with the caveat that its performance is related to an error
notion in the model that is not minimized by the algori-
htm, and could be made arbitrarily large when Batch at-
temps to minimize error under the training distribution ν.
As is, it only states that Batch gets good performance if by
chance it picks a model with low error under the distribu-
tion D = 1

2Dω,π̂ + 1
2Dω,π′ . To bound performance with

respect to the model error Batch is minimizing, the proof
will simply involve using Cor. 1.2, applying a change of
distribution, as well as bounding the L1 distance with al-
ternate loss Batch can minimize from sample transitions
using the results from the previous section.

Let’s define επ
′

oc = Es∼µ[V̂ π̂(s)− V̂ π′(s)], for V̂ π̂ and V̂ π
′

the value functions of π̂ and π′ under learned model T̂ re-
spectively. The term επ

′

oc measures how much better of a
solution π′ is compared to π̂ (in terms of expected total
cost) on the optimal control problem we solved (with the
learned model T̂ ). For instance, if we found an ε-optimal
policy π̂ within some class of policies Π for learned model
T̂ , then επ

′

oc ≤ ε for all π′ ∈ Π. Define the predictive error
of T̂ on training distribution ν, measured in L1 distance, as
εL1

prd = E(s,a)∼ν [||Tsa − T̂sa||1]. Similarly, define εKL
prd =

E(s,a)∼ν,s′∼Tsa [log(Tsa(s′)) − log(T̂sa(s′))] and εcls
prd =

E(s,a)∼ν,s′∼Tsa [`(T̂ , s, a, s′)] the training predictive error
of T̂ in terms of KL and classification loss respectively (`
is the 0-1 loss or any upper bound on the 0-1 loss such as
hinge loss). Additionally, let cπν = sups,a[Dµ,π(s,a)

ν(s,a) ] repre-
sent the mismatch between state-action distribution ν, and
the state-action distribution induced by policy π starting in
µ.

Theorem 3.1. The policy π̂ is s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′

ν

2
HεL1

prd

Equivalently, using the relations in Section 1.2:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′

ν

2
H

√
2εKL

prd

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc + (cπ̂ν + cπ
′

ν )Hεcls
prd

Proof.

Jµ(π̂)− Jµ(π′)
≤ επ

′

oc + H
2 [E(s,a)∼Dµ,π̂ [||Tsa − T̂sa||1]

+E(s,a)∼Dµ,π′ [||Tsa − T̂sa||1]]
≤ επ

′

oc + H
2 [cπ̂νE(s,a)∼ν [||Tsa − T̂sa||1]

+cπ
′

ν E(s,a)∼ν [||Tsa − T̂sa||1]]

= επ
′

oc + cπ̂ν+cπ
′
ν

2 HE(s,a)∼ν [||Tsa − T̂sa||1]

= επ
′

oc + cπ̂ν+cπ
′
ν

2 HεL1
prd

where the first inequality follows from corollary 1.2, and
the second inequality follows from the fact that for any non-
negative function f and distributions p, q, Ex∼p[f(x)] ≤
supx[p(x)

q(x) ]Ex∼q[f(x)]. We now have proven the first state-
ment of the theorem. Applying lemma 1.4 proves that
εL1

prd ≤
√

2εKL
prd, from which the second statement follows.

Similarly, lemma 1.3 proves that εL1
prd ≤ 2εcls

prd, from which
the third statement follows.

This theorem relates performance of the learned policy π̂
to the training error (under the exploration distribution ν)
the algorithm is minimizing in the model fitting procedure.
The factor cπ̂νH represents by how much the error in the
model T̂ under training distribution ν can scale to larger
errors in predicting total cost of the learned policy π̂ in the
real system T . Similarly cπ

′

ν H represents by how much the
error in the model T̂ under training distribution ν can scale
to larger errors in predicting total cost of another policy π′

in the real system T . Together, with the error in solving the
optimal control problem under T̂ , this bounds how much
worse π̂ can be compared to π′.

More interestingly, we can use this result to provide a
strong guarantee of the form: if there exists a model in the
class which achieves small enough error under the train-
ing distribution ν, Batch must find a policy with good
test performance. We can guarantee this if we use con-
sistent fitting procedures that converge to the best model
in the class asymptotically, as we collect more and more
data. This allows us to relate the predictive error to
the capacity of the model class to achieve low predic-
tive error under the training distribution ν. We denote
the modeling error, measured in L1 distance, as εL1

mdl =
infT ′∈T E(s,a)∼ν [||Tsa − T ′sa||1]. Similarly, define εKL

mdl =
infT ′∈T E(s,a)∼ν,s′∼Tsa [log(Tsa(s′)) − log(T ′sa(s′))] and
εcls

mdl = infT ′∈T E(s,a)∼ν,s′∼Tsa [`(T ′, s, a, s′)]. These are
all 0 in realizable settings, but generally non-zero in ag-
nostic settings. After observing m sampled transitions, the
generalization error εL1

gen(m, δ) (or consistency rate) bounds
with high probability 1 − δ the quantity εL1

prd − εL1
mdl. Sim-

ilarly, εKL
gen(m, δ) and εcls

gen(m, δ) denote the generalization



Agnostic System Identification for Model-Based Reinforcement Learning - Supplementary Material

error for the KL and classification loss respectively.

By definition, all these quantities are such that after ob-
serving m samples, with probability at least 1 − δ: εL1

prd ≤
εL1

mdl + εL1
gen(m, δ), εKL

prd ≤ εKL
mdl + εKL

gen(m, δ) and εcls
prd ≤

εcls
mdl + εcls

gen(m, δ). If the procedure is consistent in min-
imizing the L1 distance, this means εL1

gen(m, δ) → 0 as
m → ∞ for any δ > 0. Similarly, εKL

gen(m, δ) → 0 and
εcls

gen(m, δ) → 0 as m → ∞ for any δ > 0 if the proce-
dure is consistent in minimizing the KL and classification
loss respectively. Combining with the previous result, this
proves the following:

Corollary 3.1. After observing m transitions, with proba-
bility at least 1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′

ν

2
H[εL1

mdl + εL1
gen(m, δ)].

Equivalently, using the relations in Section 1.2:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc

+ cπ̂ν+cπ
′
ν

2 H
√

2[εKL
mdl + εKL

gen(m, δ)].

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc + (cπ̂ν + cπ
′

ν )[εcls
mdl + εcls

gen(m, δ)].

Additionally, if the fitting procedure is consistent w.r.t. the
L1 distance, KL or classification loss then εL1

gen(m, δ)→ 0,
εKL

gen(m, δ)→ 0, or εcls
gen(m, δ)→ 0 respectively asm→∞

for any δ > 0.

This corollary can be used to prove sample complexity re-
sults for Batch. For example, with the classification loss,
one could immediately leverage existing generalization er-
ror results from the supervised learning literature to deter-
mine the quantity εcls

gen(m, δ) based on the particular class of
hypothesis T . These results would, e.g., express εcls

gen(m, δ)
as a function of the VC dimension (or multi-class equiva-
lent) of T . In many cases, Hoeffding’s inequality combined
with covering number arguments and a union bound can be
used to compute these generalization error terms.

1.3.1. THE BATCH ALGORITHM’S PERFORMANCE
BOUND IS TIGHT

As mentioned in the paper, the previous performance
bound for Batch in Theorem 3.1 is tight, in that we can
construct examples where the bound is achieved to an ar-
bitrarily small additive constant. We here present such an
example.

Consider the real system to be a MDP with 3 states
(s1, s2, s3) and 2 actions (a1, a2). The initial state is al-
ways s1 (i.e. µ = [1; 0; 0]). Executing action a1 in s1 and
s2 transits to s1 with probability 1. Executing action a2 in
s1 transits to s2 with probability 1 and executing a2 in s2

transits to s2 with large probability 1 − ε, and transits to
s3 with small probability ε. Doing any action in s3 transits

back to s3 with probability 1. There is small cost δ > 0 for
executing any action in s1 and large cost ofC > δ(1+ 1−γ

γε )
for doing any action in s3. Doing action a2 in s2 has 0 cost,
and action a1 is s2 has cost δ.

In this system, an optimal policy always executes a1 in s2

and can execute any action in s1 and s3. So let’s consider
an optimal policy π∗ that is uniform over (a1, a2) in s1 and
s3. It achieves expected total cost of Jµ(π∗) = δ

1−γ .

Now consider that we learned a model T̂ which is the same
as the real system, except that the learned model predicts
that when executing a2 in s2 it transits to s2 with prob-
ability 1. The optimal policy under the learned model is
to execute a2 in s1 and s2, and to execute any action in
s3. So let’s consider the policy π̂ which is uniform over
(a1, a2) in s3 and picks a2 in both s1 and s2. The dis-
tribution dµ,π̂ induced by this policy can be computed as
dµ,π̂ = (1−γ)(I−γT π̂)−1µ where I is |S|×|S| the iden-
tity matrix, T π̂ is the transition matrix induced by π̂ (ele-
ment (i,j) corresponds to probability of transitioning from
state j to state iwhen executing π̂ in state j), and µ the vec-
tor containing the initial state distribution. It can be seen
that the distribution dµ,π̂ = [1 − γ; γ(1−γ)

1−γ(1−ε) ; γ2ε
1−γ(1−ε) ]

and the performance of the learned policy π̂ in the real
system is Jµ(π̂) = δ + γ2εC

(1−γ)(1−γ(1−ε)) . So we have that

Jµ(π̂)− Jµ(π∗) = γ2εC
(1−γ)(1−γ(1−ε)) −

γδ
1−γ .

Suppose the exploration distribution ν is induced by exe-
cuting the policy π0, which picks actions uniformly ran-
domly in s1 and s3, and picks a2 with small probability
α > 0 in s2 (a1 with large probability 1−α in s2). It can be
seen that ν = dµ,π0 = 1

(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2 [(1 −
γ)(1−γα(1−ε)); γ(1−γ)/2; γ2αε/2]. Because theL1 dis-
tance between the real system and learned model is 0 for all
state-action pairs, except 2ε for state-action pair (s2, a2),
we obtain that the predictive error during training is
E(s,a)∼ν [||Tsa − T̂sa||1] = γ(1−γ)αε

(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2 ,
which becomes arbitrarily small as α → 0. Thus the
learned model could likely be picked by a model fitting
procedure in practice for small α. The learned model is
also an optimal model among deterministic models, so if
T contains only deterministic models, T̂ would likely be
picked.

Now we have that cπ̂ν = 2c
α for c =

(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2
1−γ(1−ε) . Similarly, we have

dµ,π∗ = 1
(1−γ)(1+γ/2) [1 − γ; γ(1−γ)

2 ; 0] so that

cπ
∗

ν = (1−γ)(1+γ/2−γα(1−ε))+γ2αε/2
(1−α)(1−γ)(1+γ/2) .

For this problem we have Cmax = C and Cmin = 0. Also
since Es∼µ[V̂ π̂(s)] = δ and Es∼µ[V̂ π

∗
(s)] = δ

1−γ we have

επ
∗

oc = − γδ
1−γ . So using these quantities, we obtain that our
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bound says that:

Jµ(π̂)− Jµ(π∗)

≤ επ
∗

oc + cπ̂ν+cπ
∗
ν

2 HεL1
prd

= γC
2(1−γ)2 (cπ̂ν + cπ

∗

ν ) γ(1−γ)αε
(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2 −

γδ
1−γ

= γ2αεC
2(1−γ) [ 2

α(1−γ(1−ε)) + 1
(1−α)(1−γ)(1+γ/2) ]− γδ

1−γ

= γ2εC
(1−γ)(1−γ(1−ε)) [1 + α(1−γ(1−ε))

(1−α)(1−γ)(2+γ) ]− γδ
1−γ

As mentioned previously, we know that Jµ(π̂)−Jµ(π∗) =
γ2εC

(1−γ)(1−γ(1−ε)) −
γδ

1−γ . We observe that we can pick α
arbitrarily close to 0 in the example above so that in the
limit, as α becomes closer to 0, the bound becomes the
exact value of Jµ(π̂)−Jµ(π∗). This shows that there exists
examples where our bound is tight to an arbitrarily small
additive constant.

1.4. Analysis of the DAgger Algorithm

We now present the detailed analysis of the DAgger Algo-
rithm. Let’s define επ

′

oc = 1
N

∑N
i=1 Es∼µ[V̂i(s) − V̂ π

′

i (s)],
for V̂i and V̂ π

′

i the value functions of πi and π′ under
learned model T̂ i respectively. The term επ

′

oc measures
how much better of a solution π′ is on average compared
to the policies π1:N (in terms of expected total cost) on
the optimal control problems we solved (with the learned
models T̂ 1:N ). For instance, if at each iteration i we
found an εi-optimal policy πi within some class of poli-
cies Π on learned model T̂ i, then επ

′

oc ≤ 1
N

∑N
i=1 εi for

all π′ ∈ Π. Additionally, define the average predictive
error of T̂ 1:N over the training iterations, measured in
L1 distance, as εL1

prd = 1
N

∑N
i=1 E(s,a)∼ρi [||T̂ isa − Tsa||1]

for ρi = 1
2Dµ,πi + 1

2ν the state-action distribution used
at iteration i to collect data. Similarly define εKL

prd =
1
N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [log(Tsa(s′))− log(T̂ isa(s′))] and

εcls
prd = 1

N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [`(T̂ , s, a, s′)] the average

training predictive error of T̂ 1:N measured in KL and clas-
sification loss respectively (` is 0-1 loss or any upper bound
on the 0-1 loss such as hinge loss).

Lemma 4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′

ν Hε
L1
prd

Equivalently, using the results from Section 1.2:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′

ν H
√

2εKL
prd

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′

ν Hε
cls
prd

Proof.

minπ∈π1:N Jµ(π)− Jµ(π′)
≤ 1

N

∑N
i=1[Jµ(πi)− Jµ(π′)]

≤ επ
′

oc + H
2

1
N

∑N
i=1[E(s,a)∼Dµ,πi [||Tsa − T̂

i
sa||1]

+E(s,a)∼Dµ,π′ [||Tsa − T̂
i
sa||1]]

≤ επ
′

oc + H
2

1
N

∑N
i=1[E(s,a)∼Dµ,πi [||Tsa − T̂

i
sa||1]

+cπ
′

ν E(s,a)∼ν [||Tsa − T̂ isa||1]]

≤ επ
′

oc + cπ
′
ν H
2

1
N

∑N
i=1[E(s,a)∼Dµ,πi [||Tsa − T̂

i
sa||1]

+E(s,a)∼ν [||Tsa − T̂ isa||1]]
= επ

′

oc + cπ
′

ν H
1
N

∑N
i=1[E(s,a)∼ρi [||Tsa − T̂ isa||1]

= επ
′

oc + cπ
′

ν Hε
L1
prd

where the second inequality follows from applying corol-
lary 1.2 to each term Jµ(πi)− Jµ(π′).

The last lemma relates the performance of DAgger to
the training loss of the sequence of models picked over
the iterations of training. However it is only an inter-
mediate step, and as is, it is unclear why it is mean-
ingful. In particular, it is unclear why the term εL1

prd (or
εKL

prd, εcls
prd) should be small as it corresponds to an aver-

age loss of the models on out-of-training samples. That
is, T̂ i is trained based on data seen so far from the dis-
tributions ρ1, ρ2, . . . , ρi−1, but then its loss is evaluated
under the distribution ρi in the term E(s,a)∼ρi [||Tsa −
T̂ isa||1] (or E(s,a)∼ρi,s′∼Tsa [log(Tsa(s′)) − log(T̂ isa(s′))],
E(s,a)∼ρi,s′∼Tsa [`(T̂ i, s, a, s′)]) contributing to εL1

prd (or
εKL

prd, εcls
prd). So as is, it could be that εL1

prd (or εKL
prd, εcls

prd) is
large even if we achieve low error on the aggregate dataset
at each iteration when fitting each T̂ i. However we can ob-
serve that the quantity εL1

prd (or εKL
prd, εcls

prd) can be interpreted
as the average loss of an online learner on a particular on-
line learning problem. This is where the no-regret property
is crucial and makes this result interesting: no-regret guar-
antees that εL1

prd (or εKL
prd, εcls

prd) must be small relative to the
error of the best model in hindsight. So the combination
of no-regret, and existence of a model with low error on
the aggregate dataset, implies that εL1

prd (or εKL
prd, εcls

prd) must
be small. This is emphasized in the following theorem that
constitutes our main result for DAgger.

We denote the modeling error under the
overal training distribution ρ = 1

N

∑N
i=1 ρi,

measured in L1 distance as εL1
mdl =

infT ′∈T E(s,a)∼ρ[||Tsa − T ′sa||]. Similarly, denote εKL
mdl =

infT ′∈T E(s,a)∼ρ,s′∼Tsa [log(Tsa(s′)) − log(T ′sa(s′))]
and εcls

mdl = infT ′∈T E(s,a)∼ρ,s′∼Tsa [`(T ′, s, a, s′)] the
modeling error measured in terms of KL and classi-
fication loss. The modeling error represents the error
of the best model in hindsight after the N iterations of
training. To relate the predictive error to this modeling
error when using no-regret algorithms, we first need
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to express the predictive error in terms of an online
learning loss on a particular online learning problem.
For each iteration i ∈ 1 : N , define the following
loss functions: LL1

i (T̂ ) = E(s,a)∼ρi [||Tsa − T̂sa||1],
LKL
i (T̂ ) = E(s,a)∼ρi,s′∼Tsa [− log(T̂sa(s′))], and

Lcls
i (T̂ ) = E(s,a)∼ρi,s′∼Tsa [`(T̂ , s, a, s′)]. Now it

can be seen that εL1
prd = 1

N

∑N
i=1 L

L1
i (T̂ i), εL1

mdl =
infT ′∈T 1

N

∑N
i=1 L

L1
i (T ′), εKL

prd = 1
N

∑N
i=1 L

KL
i (T̂ i) −

LKL
i (T ), εKL

mdl = infT ′∈T 1
N

∑N
i=1 L

KL
i (T ′) −

LKL
i (T ), εcls

prd = 1
N

∑N
i=1 L

cls
i (T̂ i) and εcls

mdl =
infT ′∈T 1

N

∑N
i=1 L

cls
i (T ′). DAgger uses a no-regret algo-

rithm on one of the sequence of loss functionLL1
1:N , LKL

1:N or
Lcls

1:N . If for instance we use the no-regret algorithm on the
sequence of loss LKL

1:N , then this implies that εKL
prd − εKL

mdl =
1
N

∑N
i=1 L

KL
i (T̂ i) − infT ′∈T 1

N

∑N
i=1 L

KL
i (T ′) → 0

as N → ∞. If we define εKL
rgt the average regret of

the online learning algorithm after N iterations when
using the KL loss, then we have εKL

prd ≤ εKL
mdl + εKL

rgt

for εKL
rgt → 0 as N → ∞. Similarly, if we use

the classification loss, a no-regret algorithm on the
sequence of loss Lcls

1:N implies that εcls
prd − εcls

mdl =
1
N

∑N
i=1 L

cls
i (T̂ i) − infT ′∈T 1

N

∑N
i=1 L

cls
i (T ′) → 0 as

N → ∞. If we define εcls
rgt the average regret of the

online learning algorithm after N iterations when using
the classification loss, then we have εcls

prd ≤ εcls
mdl + εcls

rgt

for εcls
rgt → 0 as N → ∞. While the L1 distance cannot

be evaluated from samples, some statistical estimators
can be no-regret on the sequence of loss LL1

1:N with
high probability without explicitly trying to minimize
this loss. This is the case in finite MDPs if we use the
empirical estimator of the transition matrix T based on
all data seen so far over the iterations (see section 1.5.1).
If we have a such sequence of models T̂1:N which is
no-regret on the sequence of loss LL1

1:N , then εL1
prd − εL1

mdl =
1
N

∑N
i=1 L

L1
i (T̂ i) − infT ′∈T 1

N

∑N
i=1 L

L1
i (T ′) → 0 as

N → ∞. If we define εL1
rgt the average regret of T̂1:N

after N iterations on the L1 distance, then we have
εL1

prd ≤ εL1
mdl + εL1

rgt for εcls
L1 → 0 as N →∞. Combining with

the previous lemma, this proves our main result:
Theorem 4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′

ν H[εL1
mdl + εL1

rgt]

Equivalently, using the results from Section 1.2:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′

ν H
√

2[εKL
mdl + εKL

rgt ]

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′

ν H[εcls
mdl + εcls

rgt]

Additionally, if the fitting procedure is no-regret w.r.t. LL1
1:N ,

LKL
1:N , or Lcls

1:N , then εL1
rgt → 0, εKL

rgt → 0, or εcls
rgt → 0 respec-

tively, as N → 0.

In cases where the distributions Dµ,πn converge to a small

region in the space of distributions as n → ∞ (which tend
to occur in practice), we can also guarantee good perfor-
mance if we pick the last policy πN , for N large enough:

Lemma 4.2. Suppose there exists a distribution D∗ and
some ε∗cnv ≥ 0 such that for all i, ||Dµ,πi −D∗||1 ≤ ε∗cnv +
εicnv for some sequence {εncnv}∞i=1 that is o(1). Then the last
policy πN produced by DAgger is such that:

Jµ(πN ) ≤ Jµ(π) +
Crng

2(1− γ)
[2ε∗cnv + εNcnv +

1
N

N∑
i=1

εicnv]

Thus:

lim sup
N→∞

Jµ(πN )− Jµ(π) ≤
Crng

1− γ
ε∗cnv

Proof. We have that Dµ,π = 1
N

∑N
i=1Dµ,πi . By our as-

sumptions, ||Dµ,πN−Dµ,π||1 ≤ 2ε∗cnv+εNcnv+ 1
N

∑N
i=1 ε

i
cnv.

Thus:
Jµ(πN )
= 1

1−γE(s,a)∼Dµ,πN [C(s, a)]
≤ 1

1−γE(s,a)∼Dµ,π [C(s, a)] + Crng

2(1−γ) ||Dµ,πN −Dµ,π||1
≤ Jµ(π) + Crng

2(1−γ) [2ε∗cnv + εNcnv + 1
N

∑N
i=1 ε

i
cnv]

where the first inequality follows from the fact that for any
function f , constant c, and distributions p, q, Ex∼p[f(x)] ≤
Ex∼q[f(x)] + supx |f(x) − c|||p − q||1. Here since
C(s, a) ∈ [Cmin, Cmax], choosing c = Crng

2 minimizes the
term sups,a |C(s, a)− c|.

1.5. Finite Sample Analysis for DAgger in Particular
Scenarios

This subsection presents sample complexity results to
achieve near-optimal performance with DAgger in two par-
ticular scenarios.

1.5.1. FINITE MDP WITH EMPIRICAL ESTIMATOR

Consider the real system to be an arbitrary finite MDP with
|S| states and |A| actions, and the model T̂ i used at itera-
tion i to be the empirical estimator of T from the observed
transitions in the first i − 1 iterations. That is let nisas′
be the number of times we observed transition (s, a, s′)
at iteration i (i.e. when sampling s, a from distribution
ρi = 1

2Dµ,πi + 1
2ν). Let n<isas′ =

∑i−1
k=1 n

k
sas′ the total

number of times we observed state transition (s, a, s′) in
the first i − 1 iterations, and n<isa =

∑
s′ n

<i
sas′ the number

of times we picked sampled transitions from state action
pair (s, a) in the first i − 1 iterations. Then the empiri-

cal estimator at iteration i is such that T̂ isa(s′) =
n<i
sas′

n<isa
. If

n<isa = 0, then simply define T̂ isa(s′) = 1
|S| . We seek to

bound εL1
prd after N iterations with high probability when

using this empirical estimator and sampling m transitions
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at each iteration.

Let (sij , aij , s′ij) denote the jth transition sampled
at iteration i. For i ∈ {1, 2, . . . , N} and j ∈
{1, 2, . . . ,m}, define the random variables Y(i−1)m+j =
E(s,a)∼ρi [||Tsa − T̂ isa||1] − ||Tsijaij − T̂ isijaij ||1. Then
E[Y(i−1)m+j |Y1, Y2, . . . , Y(i−1)m+j−1] = 0. Thus the ran-
dom variables Xk =

∑k
l=1 Yl for k ∈ {1, 2, . . . , Nm}

form a martingale. Since Yl ∈ [−2, 2], then by the Azuma-

Hoeffding inequality we have XNm
Nm ≤ 2

√
2 log(1/δ)
Nm with

probability at least 1 − δ. Hence we must have that with
probability at least 1− δ:

1
N

∑N
i=1 E(s,a)∼ρi ||T̂ isa − Tsa||1

≤ 1
Nm

∑N
i=1

∑m
j=1 ||T̂ isijaij − Tsijaij ||1 + 2

√
2 log(1/δ)
Nm

= 1
Nm

∑N
i=1

∑
s,a n

i
sa||T̂ isa − Tsa||1 + 2

√
2 log(1/δ)
Nm

By applying a result from Wasserman (2003), we know
that if we have m samples from a distribution P over k
events and P̂ denotes the empirical estimate of this distri-
bution, then with probability at least 1 − δ′, ||P̂ − P ||1 ≤√

2 ln(2)k+2 log(1/δ′)
m . Using an union bound, we conclude

that with probability at least 1 − δ′, we must have that for
all state-action pair s, a and iteration i:

||T̂ isa − Tsa||1 ≤

√
2 log(2)|S|+ 2 log(|S||A|N/δ′)

n<isa

It is also clear that ||T̂ isa − Tsa||1 ≤ 2 always hold. Thus
we must have that with probability at least 1− δ − δ′:

1
N

∑N
i=1 E(s,a)∼ρi ||T̂ isa − Tsa||1

≤ 1
Nm

∑N
i=1

∑
s,a n

i
sa min(2,

√
2 log(2)|S|+2 log(|S||A|N/δ′)

n<isa
)

+2
√

2 log(1/δ)
Nm

The term min(2,
√

2 ln(2)|S|+2 log(|S||A|N/δ′)
n<isa

) = 2 when

n<isa ≤ m0 for m0 = 2 log(2)|S|+2 log(|S||A|N/δ′)
4 . Let ksa ∈

{1, 2, . . . , N} be the largest iteration such that n<ksasa ≤
m0. Then we have that for all s, a:

∑N
i=1 n

i
sa min(2,

√
2 ln(2)|S|+2 ln |S||A|N/δ′

n<isa
)

= 2
∑ksa
i=1 n

i
sa + 2

√
m0

∑N
i=ksa+1

nisa√
n<isa

≤ 2(m0 +m) + 2
√
m0

∑N
i=ksa+1

nisaq
m0+

Pi−1
j=ksa+1 n

j
sa

Thus we obtain that with probability at least 1− δ − δ′:

1
N

∑N
i=1 E(s,a)∼ρi [||T̂ isa − Tsa||1]

≤ 2m0|S||A|
Nm + 2|S||A|

N + 2
√

2 log(1/δ)
Nm

+ 2
√
m0

Nm

∑
s,a

∑N
i=ksa+1

nisaq
m0+

Pi−1
j=ksa+1 n

j
sa

To upper bound this term, we will seek to upper bound∑
s,a

∑N
i=ksa+1

nisaq
m0+

Pi−1
j=ksa+1 n

j
sa

with respect to any

choice of {nisa} an adversary might pick under the con-
straint that

∑
s,a n

j
sa = m for all j. We have that:

max{nisa}
∑
s,a

∑N
i=ksa+1

nisaq
m0+

Pi−1
j=ksa+1 n

j
sa

≤ max{nisa}
∑
s,a

∑N
i=1

nisaq
m0+

Pi−1
j=1 n

j
sa

= max{nisa}
∑
s,a

∑N
i=1

nisa√
m0+n<isa

The inequality holds because for any assign-
ment of {nisa}, we can create a new assignment
{n′isa} such that

∑
s,a

∑N
i=1

n′isaq
m0+

Pi−1
j=1 n

′j
sa

≥∑
s,a

∑N
i=ksa+1

nisaq
m0+

Pi−1
j=ksa+1 n

j
sa

(namely by set-

ting n′isa = nksa+i
sa for i ∈ {1, 2, . . . , N − ksa} and n′isa

arbitrarily for i > N − ksa for all s, a).

Now, it can be seen that
∑
s,a

∑N
i=1

nisa√
m0+n<isa

is maxi-

mized by sequentially setting the nisa equal to m to the pair
(s, a) with smallest n<isa and nis′a′ = 0 for all other (s′, a′)
(and breaking ties arbitrarily). This implies that for itera-
tion i such that k|S||A| ≤ i < (k+ 1)|S||A| for some non-
negative integer k,

∑
s,a

nisa√
m0+n<isa

≤ m√
m0+km

. For any

N , let us express N = k|S||A| + l for some non-negative
integers k and l < |S||A|, then we have:
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max{nisa}
∑
s,a

∑N
i=1

√
nisa

m0+n<isa

≤ |S||A|m
∑k−1
j=0

1√
m0+jm

+ lm 1√
m0+km

= (|S||A| − l)m
∑k−1
j=0

1√
m0+jm

+ lm
∑k
j=0

1√
m0+jm

= |S||A|m√
m0

+ (|S||A| − l)m
∑k−1
j=1

1√
m0+jm

+lm
∑k
j=1

1√
m0+jm

≤ |S||A|m√
m0

+ (|S||A| − l)m
∫ k−1

0
dx√

m0+xm

+lm
∫ k

0
dx√

m0+mx

= |S||A|m√
m0

+ 2(|S||A| − l)
√
m0 + xm|k−1

0

+2l
√
m0 +mx|k0

≤ |S||A|m√
m0

+ 2(|S||A| − l)
√

(k − 1)m+ 2l
√
km

≤ |S||A|m√
m0

+ 2|S||A|
√
km

≤ |S||A|m√
m0

+ 2
√
|S||A|Nm

Putting all together, we conclude that with probability at
least 1− δ − δ′:

1
N

∑N
i=1 E(s,a)∼ρi [||T̂ isa − Tsa||1]

≤ 4|S||A|
N + log(2)|S|2|A|

Nm + |S||A| log(|S||A|N/δ′)
Nm

+2
√

2 log(2)|S|2|A|+2|S||A| log(|S||A|N/δ′)
Nm + 2

√
2 log(1/δ)
Nm

This is an interesting result in itself: it shows that using
the empirical estimator of T at each iteration based on ob-
served samples so far is a no-regret algorithm under this L1

distance penalty.

Combining with the result from Lemma 4.1, this implies
that for any ε > 0, we can choose m = 1, N =

Õ(
C2

rng[|S|
2|A|+|S||A| log(1/δ′)+log(1/δ)]

ε2(1−γ)4 ) to ensure that with
probability at least 1− δ − δ′, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc +O(cπ
′

ν ε)

Thus if we solve each optimal control problem with high
enough accuracy, and we have access to a good state-action
exploration distribution, we can obtain an ε-optimal pol-
icy with high probability with sample complexity that is

O(
C2

rng|S|
2|A|

ε2(1−γ)4 ) (ignoring log factors). This is an improve-
ment over other model-based RL methods that have been
analyzed in this particular scenario, such as Rmax, which

has sample complexity of O(
C3

rng|S|
2|A|

ε3(1−γ)6 ) (Strehl et al.,
2009), and a recent improved version of Rmax which has

sample complexity of O(
C2

rng|S||A|
ε2(1−γ)6 ) (Szita & Szepesvári,

2010).

1.5.2. FINITE MDP WITH KERNEL SVM MODEL

Consider the true model to be an arbitrary finite MDP, and
the set of models T be a set of multiclass SVM in a Repro-

ducing Kernel Hilbert Space (RKHS) induced by some ker-
nel k. For any state-action pair s, a, and hypothesis h in the
RKHS, the associated transition model T̂hsa puts probability
1 on next state s′ = argmaxs′′ h(fs

′′

sa ) for fs
′

sa the feature
vector associated with transition (s, a, s′) (e.g. in a grid
world domain, this might encode the relative location of s′

with respect to s, direction in which a is moving the robot,
and configuration of nearby obstacles or type of terrain
we’re on). Without loss of generality, we assume the kernel
k inducing the RKHS has RKHS norm ||k(·, fs′sa)|| ≤ 1 for
any transition (s, a, s′) (we can scale any bounded kernel
over the feature space to satisfy this), and we restrict T to
only functions h with bounded RKHS norm ||h|| ≤ K. In
the case of a linear SVM, this corresponds to assuming that
the features are scaled so that ||fs′sa||2 ≤ 1 and we restrict
ourselves to weight vector w, such that ||w||2 ≤ K.

To optimize the model, we consider proceeding by doing
online learning on the following multiclass hinge loss func-
tional L. Given any observed transition (s, a, s′) in our
dataset and SVM h, we define the loss as:

`(h, s, a, s′) = max[0, 1− h(fs
′

sa) + max
s′′ 6=s′

h(fs
′′

sa )]

We note that the loss `(h, s, a, s′) upper bounds the 0-
1 classification loss `0−1(h, s, a, s′) (as defined in lemma
1.3)

We will now seek to bound εcls
prd with high probability as

a function of the regret and minimum loss in the class
on the sampled training data. Let (sij , aij , s′ij) denote
the jth sample transition at iteration i (i.e. sampled from
ρi = 1

2Dµ,πi + 1
2ν). For i ∈ {1, 2 . . . , N} and j ∈

{1, 2, . . . ,m}, define the random variables Y(i−1)m+j =
E(s,a)∼ρi,s′∼Tsa [`0−1(hi, s, a, s′)]− `0−1(hi, sij , aij , s′ij).
Then E[Y(i−1)m+j |Y1, Y2, . . . , Y(i−1)m+j−1] = 0 and
thus the random variables Xk =

∑k
l=1 Yl for k ∈

{1, 2, . . . , Nm} form a martingale.

Since `0−1(h, s, a, s′) ∈ [0, 1] for all h, s, a, s′ then |Yl| ≤
1 with probability 1. By Azuma-Hoeffding’s inequality,

we obtain that XNmNm ≤
√

2 log(1/δ)
Nm with probability at least

1−δ. Thus, using lemma 1.3, we have that with probability
at least 1− δ:

εL1
prd

= 2 1
N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [`0−1(hi, s, a, s′)]

≤ 2[ 1
Nm

∑N
i=1

∑m
j=1 `0−1(hi, sij , aij , s′ij) +

√
2 log(1/δ)
Nm ]

≤ 2[ 1
Nm

∑N
i=1

∑m
j=1 `(h

i, sij , aij , s
′
ij) +

√
2 log(1/δ)
Nm ]

Now with these samples, the online algorithm is
run on the sequence of loss functionals Li(h) =
1
m

∑m
j=1 `(h, sij , aij , s

′
ij). Because the Li are all convex
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in h, for any (s, a, s′), then an online algorithm such as gra-
dient descent, or follow-the-regularized-leader is no-regret.
In particular, suppose we run the projected subgradient de-
scent algorithm from Zinkevich (2003). Because for any
h, h′ in the RKHS, ||h − h′|| ≤ 2K and for any h, s, a, s′,
the norm of the subgradient ||∇L|| = ||k(·, fs′sa) −
k(·, fs∗sa )|| ≤ 2 (for s∗ = argmaxs′′ 6=s′ h(fs

′′

sa )), then
using learning rate K√

n
at iteration n we can guar-

antee that 1
N

∑N
i=1 Li(h

i) ≤ minh 1
N

∑N
i=1 Li(h) +

6K√
N

from the result in Zinkevich (2003). Let ε̂cls
mdl =

minh 1
Nm

∑N
i=1

∑m
j=1 `(h, sij , aij , s

′
ij) the predictive er-

ror of the best model in hindsight on the training set. Then
combining with the previous equation, we obtain that with
probability at least 1− δ:

εL1
prd ≤ 2[ε̂cls

mdl +
6K√
N

+

√
2 log(1/δ)
Nm

]

Combining with the result from Lemma 4.1, this implies
that for any ε > 0, we can choose m = 1, N =

O(
C2

rng(K
2+log(1/δ))

ε2(1−γ)4 ) to ensure that with probability at least
1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′

ν Hε̂
cls
mdl +O(cπ

′

ν ε)

Thus if we solve each optimal control problem with high
enough accuracy, there exist a SVM model in the RKHS
that achieves low enough loss on the training set, and we
have access to a good state-action exploration distribution,
we can obtain a ε-optimal policy with high probability with

sample complexity that is O(
C2

rngK
2

ε2(1−γ)4 ) (ignoring log fac-
tors). Note that this has no dependency on |S| and |A|,
only on the complexity of the class of models (i.e. K),
which could be constant as |S|, |A| increases.
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