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Abstract

Imitation Learning, while applied successfully
on many large real-world problems, is typically
addressed as a standard supervised learning prob-
lem, where it is assumed the training and testing
data are i.i.d.. This is not true in imitation learn-
ing as the learned policy influences the future test
inputs (states) upon which it will be tested. We
show that this leads to compounding errors and
a regret bound that grows quadratically in the
time horizon of the task. We propose two al-
ternative algorithms for imitation learning where
training occurs over several episodes of interac-
tion. These two approaches share in common
that the learner’s policy is slowly modified from
executing the expert’s policy to the learned pol-
icy. We show that this leads to stronger perfor-
mance guarantees and demonstrate the improved
performance on two challenging problems: train-
ing a learner to play 1) a 3D racing game (Super
Tux Kart) and 2) Mario Bros.; given input images
from the games and corresponding actions taken
by a human expert and near-optimal planner re-
spectively.

1 INTRODUCTION

Imitation Learning, where decision-making behavior is
programmed by demonstration, has led to state-of-the-art
performance in a variety of applications, including, e.g.,
outdoor mobile robot navigation (Silver 2008), legged lo-
comotion (Ratliff 2006), advanced manipulation (Schaal
1999), and electronics games. A common approach to im-
itation learning is to train a classifier or regressor to repli-
cate an expert’s policy given training data of the encoun-
tered observations and actions performed by the expert.
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Given access to a planner, current state-of-the-art tech-
niques based on Inverse Optimal Control (IOC) (Abbeel
2004, Ratliff 2006) achieves this indirectly by learning the
cost function the expert is optimizing from the observed be-
havior, and the planner is used by the learner to minimize
the long-term costs. These techniques can also be thought
as training a classifier (the planner), which is parametrized
by the cost function. This often has the advantage that
learning the cost function generalizes better over the state
space or across similar tasks. A broad spectrum of learning
techniques have been applied to imitation learning (Argall
2009; Chernova 2009), however these applications all vio-
late the crucial assumption made by statistical learning ap-
proaches that a learner’s prediction does not influence the
distribution of examples upon which it will be tested.

Ignoring the effects of the learner on the underlying state
distribution leads to serious practical difficulties (Thrun
1995, Pomerleau 1989). Consider the widely-known im-
itation learning success of ALVINN (Pomerleau 1989), a
neural network designed to drive at speed in on-road envi-
ronments by mimicking a human driver. Pomerleau one of
the first to elucidate this problem, notes that, “when driv-
ing for itself, the network may occasionally stray from the
center of road and so must be prepared to recover by steer-
ing the vehicle back to the center of the road.” Unfortu-
nately, demonstration of such “recovery behavior” is rare
for good human drivers and thus is poorly represented in
training data. The result is that naive application of ma-
chine learning techniques leads to a compounding of er-
rors and unacceptable driving performance. Formally, as
shown in Section 2.1, we find that a supervised learner that
makes mistakes with some small probability ε achieves a
total cost that grows quadratically O(εT 2) in the task hori-
zon T rather than asO(εT ) as we would expect for a typical
supervised learning task.

Ideally, we would optimize the total T -step cost of the
learned policy under the state distribution it induces. This
is a “chicken-or-the-egg” problem, however, as without
knowing the policy in advance it is not possible to generate
samples from the induced distribution of states. When op-
timizing the learned policy then, we do not know how the
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state distribution will be affected, so that the learners are
nearly always too optimistic about their own performance.
This problem is commonly encountered by policy iteration
approaches to reinforcement learning. One approach that
has proven useful is to change the current policy slowly
when doing the improvement step, so that the new policy’s
state distribution is close to the old policy (Kakade 2002).
In this work, we demonstrate that such an approach leads
to better performance in imitation learning. Intuitively, the
idea is to start from a policy that always queries and exe-
cutes the expert’s (that the learner is attempting to mimic)
action, and slowly replace it with the learned policy. This
allows the learner to retrain under the new state distribution
as the policy changes. Such approaches require a slightly
more interactive setting than traditional imitation learning,
where the learner is allowed to interact with the system and
can query the expert at any given state. We will assume
such a setting throughout the paper. Such interactivity is
possible in many real-world imitation learning problem,
e.g. any teleoperated robot can fall under this setting.

After introducing notation, we begin by analyzing the tradi-
tional supervised approach to imitation learning. Our anal-
yses throughout are reduction-based (Beygelzimer 2005)
where we relate the performance of the harder imitation
learning problem to a series of derived, simpler classifi-
cation or optimization tasks. We present a simple, se-
quential algorithm that trains a non-stationary policy by it-
erating over time steps and demonstrate that this method
achieves better performance bounds. While providing mo-
tivation and intuition for more practical algorithms, this ap-
proach is naturally limited to finite task horizons. We then
draw upon connections to the Conservative Policy Iteration
(CPI) (Kakade 2002) (reinforcement learning) and SEARN
(Daume 2009) (structured prediction) approaches that ex-
tend to arbitrary/infinite horizons as they generate a sta-
tionary policy. While these methods are impractical for our
imitation learning domain, we present the Stochastic Mix-
ing Iterative Learning (SMILe) algorithm, a simple, itera-
tive approach which provides the benefits of SEARN with
substantially simpler implementation and less demanding
interaction with an expert. We demonstrate experimentally
the improved performance of SMILE on two challenging
tasks: 1) learning how to steer a car in a 3D racing game
and 2) learning how to play Mario Bros.; given only input
images and corresponding actions taken by a human expert
and near-optimal planner respectively.

2 PRELIMINARIES

We begin by introducing notation familiar from the sequen-
tial decision-making literature (Putterman 1994). Let π∗ be
the expert’s policy we wish to mimic, assumed to be deter-
ministic and πs be the distribution over actions of a policy
π in state s. We let T refer to the task horizon. Define
C(s, a) in [0, 1] to be the immediate cost of doing action

a in state s for the task we are interested in. Correspond-
ingly, Cπ(s) = Ea∼πs(C(s, a)) is the expected immediate
cost of performing policy π in state s. For imitation learn-
ing we are most concerned with e(s, a) = I(a 6= π∗(s)),
the 0-1 loss of executing action a in state s, compared to
the expert’s policy π∗. We allow eπ(s) = Ea∼πs(e(s, a))
to denote the expected 0-1 loss of policy π in state s. As
the relative weighting of state distributions are crucial we
denote by diπ the state distribution at time step i if we fol-
lowed policy π from the initial time step. The distribution
dπ = 1

T

∑T
i=1 d

i
π encodes the state visitation frequency

over T time steps if we followed policy π. We denote by
J(π) = TEs∼dπ (Cπ(s)) the expected T -step cost (under
C) of executing policy π. Finally, we will be interested in
bounding the regret (in T step cost) of a policy π with re-
spect to the best policy in a particular policy class Π, which
is defined as RΠ(π) = J(π) − minπ′∈Π J(π′). For most
of our discussion, we will assume that π∗ ∈ Π and that π∗

is a good policy (under C), i.e. its regret RΠ(π∗) is O(1),
which is negligible for large T . However all theorems will
be stated such as to not rely on these assumptions.

2.1 THE SUPERVISED LEARNING APPROACH
TO IMITATION

The traditional approach to imitation learning trains a clas-
sifier that learns to replicate the expert’s policy under the
state distribution induced by the expert. Formally, the tradi-
tional approach minimizes 0-1 loss under distribution dπ∗ :
π̂ = argminπ∈Π Es∼dπ∗ (eπ(s)). Now assume that the re-
sulting classifier (policy) π̂ makes a mistake with probabil-
ity ε under dπ∗ , i.e. Es∼dπ∗ (eπ̂(s)) = ε. Then we have the
following guarantee:

Theorem 2.1. Let π̂ be such that Es∼dπ∗ [eπ̂(s)] ≤ ε. Then
J(π̂) ≤ J(π∗) + T 2ε. (Proof in Supplementary Material)

Intuitively, the reason this grows quadratically in T is be-
cause as soon as π̂ makes a mistake, it could end up in new
states that were not visited by π∗, and always incur maxi-
mal cost of 1 at each step from then on. Most importantly,
this bound is tight; it is easy to construct a dynamic sys-
tem, cost function C and policy π̂ with ε 0-1 loss on dπ∗
that incurs expected T -step cost of (1 − εT )J(π∗) + T 2ε
(e.g. example in Supplementary Material or example given
by Kääriäinen (2006)). It is natural to ask if any approach
could guarantee bounds closer to that of the classical su-
pervised learning setting, i.e. regret linear in the number of
examples to classify. The following section shows that, in-
deed, we can achieve near-linear regret on large subclasses
of problems.

3 FORWARD TRAINING ALGORITHM

The traditional approach fails to give good performance
bounds due to the discrepancy between the testing and
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training distribution when π̂ 6= π∗ and because the learner
does not learn how to recover from mistakes it makes. The
intuition behind the next approach, called forward training
algorithm, is that both of these problems can be solved if
we allow the training to occur over several iterations, where
at each iteration we train one policy for one particular time
step. If we do this training sequentially, starting from the
first time step to the last, then at the ith iteration, we can
sample states from the actual testing distribution at time
step i by executing the learned policies for each previous
step, and then ask the expert what to do at the ith time step
to train the next policy. Furthermore, if the learner makes
mistakes, the expert demonstrates how to recover at future
steps. The algorithm terminates once it has learned a policy
for all T steps. This is similar to the Sequential Stacking
algorithm (Cohen 2005) for sequence classification.

Formally, let πni denote the policy executed at time step
i after the nth iteration of the algorithm and πn the non-
stationary policy defined by πni for i = 1, . . . , T . Initially,
we set π0

1 , π
0
2 , . . . , π

0
T to query the expert and do the same

action. At iteration i, the algorithm trains the policy πii
on state distribution diπi−1 , and all other policies remain
unchanged (i.e. πij = πi−1

j ∀j 6= i). After T iterations, πT

does not query the expert anymore and we are done.

We can bound the expected total cost of the final policy πT

as follows. Let Jπ(π′, t) denote the expected T -step cost of
executing π′ at time t and policy π at all other time steps,
and denote the policy disadvantage of πii with respect to
πi−1 as A(πi−1, πii) = Jπ

i−1
(πii , i)−J(πi−1). The policy

disadvantage represents how much increase in T -step cost
we incur by changing the current policy at a single step.
Theorem 3.1. J(πn) = J(π∗) + nĀ, where Ā =
1
n

∑n
i=1 A(πi−1, πii). (Proof in Supplementary Material)

This bound suggests that we should choose πii to minimize
A(πi−1, πii), or equivalently Jπ

i−1
(πii , i), i.e. minimize the

cost-to-go from step i, assuming we follow π∗ afterwards.
Minimizing cost-to-go is impractical in imitation learning,
however. To train a classifier, this requires the ability to try
several actions from the same state and see what cost-to-go
is incurred after for each of these actions. This can only be
achieved if we have the ability to restart the system in any
particular state, which is usually not the case in practice.
Learning a value-estimate (i.e. regression) also typically
requires far more samples and is less robust if we are only
interested in determining the best action. Besides sample
complexity, the interaction required with an expert in this
case is quite unnatural as well– we have to try an action,
use the expert in the loop and then try alternate actions “re-
seting” to the original state for multiple runs.

Finally, in imitation learning the true cost function C we
would ideally like to minimize for mimicry is often un-
clear; instead we typically use agreement with the expert
to bound the loss with respect to an arbitrary cost. That

Initialize π0
1 , . . . , π

0
T to query and execute π∗.

for i = 1 to T do
Sample T -step trajectories by following πi−1.
Get datasetD = {(si, π∗(si))} of states, actions taken
by expert at step i.
Train classifier πii = argminπ∈Π Es∼D(eπ(s)).
πij = πi−1

j for all j 6= i
end for
Return πT1 , . . . , πTT

Algorithm 3.1: Forward Training Algorithm.

is, if πii mimics exactly πi−1
i = π∗, then the policy dis-

advantage A(πi−1, πii) = 0. Hence, small classification
error mimicking the policy we are replacing at each iter-
ation should guarantee good performance under all cost
functions. Thus, our forward algorithm (detailed in Al-
gorithm 3.1) chooses πii to minimize the 0-1 loss with
respect to π∗ under diπi−1 . From the reduction point of
view, any standard classification algorithm, IOC technique
or other imitation learning method can be used to train this
classifier. Now let Jπ(π′, t, s) represent the expected T -
step cost of π conditioned on being at state s at time t
and executing π′ instead of π at time t and suppose that
supπ∈Π,s|diπi−1

(s)>0[Jπ
i−1

(π, i, s)−Jπi−1
(π∗, i, s)] ≤ ui.

Intuitively ui represents the maximal increase in expected
cost-to-go from any probable state at time i, when chang-
ing only the policy at time i of πi−1. Then if πii is
such that Es∼di

πi−1
(eπii (s)) = εi, the policy disadvan-

tage is bounded by A(πi−1, πii) ≤ εiui. This implies that
J(πT ) ≤ J(π∗) + Tεu, where εu = 1

T

∑T
i=1 εiui.

In the worst case, εu ≤ T ε̄, where ε̄ = 1
T

∑T
i=1 εi, as each

of the ui could be T − i + 1. This is the same guarantees
as the traditional approach. However, it is often the case
that changing only one action in the current policy will not
increase the cost by much more than some small constant
k on average. Especially, if π∗ has some stability proper-
ties, i.e. it can rapidly bring itself back into its typical state
distribution upon random disturbances then, we can expect
the cost to increase only for a few steps in the worst case.
In such cases, the forward algorithm has a regret of O(T ε̄).

In particular, if the cost function is truly to minimize im-
itation loss (e(s, a)), then ui = 1 because π∗ achieves
cost-to-go of 0, no matter the current state. This implies
J(πT ) ≤ J(π∗) + T ε̄. In general, if we have a sys-
tem where supt≤T,πii∈Π∀i≤t,s|dπt−1 (s)>0[Jπ

t−1
(πtt , t, s) −

Jπ
t−1

(π∗, t, s)] ≤ k (i.e. there exist no (t − 1)-step tra-
jectory from which the expected cost-to-go of the expert
can be made much worse by changing only the action at
time t), then we will have that ui ≤ k for all i, so that
J(πT ) ≤ J(π∗) + kT ε̄. For instance, navigation problems
where the expert can reach a goal state within k steps (in
expectation) starting in any state would fall in that cate-
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gory. In those favorable cases, the traditional approach can
be shown to still have quadratic regret in T .

The drawback of this approach is that it is impractical when
T is large and does not extend to infinite horizon tasks as
we are training a non-stationary policy. The next algorithm
we present trains a stationary policy, enabling extension
to infinite horizon settings while also guaranteeing similar
performance guarantees to the forward algorithm.

4 STOCHASTIC MIXING ITERATIVE
LEARNING ALGORITHM

The forward algorithm can guarantee smaller regret be-
cause it is changing the policy slowly. This can also be
achieved by training a stationary stochastic policy over sev-
eral iteration, where at iteration n, the current learner’s pol-
icy πn is stochastically mixed with a new policy π̂n+1 to
construct the next policy πn+1, i.e. πn+1 = (1 − α)πn +
απ̂n+1. Here α is a small probability of executing the new
policy π̂n+1 and with large probability 1 − α we still do
the old policy πn. If α is small enough, then we can ex-
pect the new policy to only be executed at most once over
T steps with high probability, which ensures good perfor-
mance as in the forward algorithm. Initially, the learner
starts with the policy π0 = π∗, which always queries and
executes the expert’s action. After n iterations, the proba-
bility of querying the expert at any step is (1− α)n, which
goes to 0 as n → ∞. We can terminate after any itera-
tion N , by removing the probability of querying the ex-
pert and re-normalizing to return the unsupervised policy
π̃N = 1

1−(1−α)N
[πN − (1 − α)Nπ0] that never queries

the expert. Our analysis below indicates how to train the
policies π̂n, and choose the parameter α and number of it-
eration N so as to ensure good performance of π̃N .

We begin with a stochastic mixing algorithm based on
CPI/SEARN. However, these are impractical if applied di-
rectly to imitation learning as they require optimization of
the cost-to-go at each iteration for reasons discussed in Sec-
tion 3. Furthermore, the known performance guarantees
provided by Daume (2009) are no better, and in fact worse
by a logarithmic factor, than the performance of the tradi-
tional approach1. Here, we provide an alternative analysis
of stochastic mixing methods defined in terms of the pol-
icy disadvantage, related to the policy advantage in Kakade
(2002). Further, we bound the policy disadvantage by min-
imizing the immediate 0-1 classification loss to obtain a
practical approach for our imitation learning setting. Ad-
ditionally our analysis also provides a tighter bound on the
performance of previous algorithms and further insight as

1While they appear to scale linearly with T , we note that in
SEARN, for loss functions that are sums of losses on each predic-
tion, the definition of ε must scale with the number of predictions
as the cost-to-go will so scale. Thus it is effectively O(T 2 log T )
in the horizon length.

to why they outperform naive supervised learning for struc-
tured prediction (Daume 2009).

Let’s denote Jπk (π′, t1, . . . , tk) the expected T -step cost
of executing π′ at steps {t1, . . . , tk}, J̄πk (π′) =

1

(Tk)
∑T−k+1
t1=1 · · ·

∑T
tk=tk−1+1 J

π
k (π′, t1, . . . , tk) the ex-

pected T -step cost of executing π′ k times and policy π at
all other steps, and by Ak(π, π′) = J̄πk (π′)−J(π) the kth-
order policy disadvantage of π′ with respect to π. Then:
Lemma 4.1. If α ≤ 1

T , then for any k ∈ {1, 2, . . . , T −
1}, J(πn) ≤ J(π0) + n

∑k
i=1 α

i
(
T
i

)
(1 − α)T−iĀi +

nαk+1T
(
T
k+1

)
, where Āi = 1

n

∑n
j=1 Ai(πj−1, π̂j). (Proof

in Supplementary Material)

At each time step πn chooses the expert (π0) with prob-
ability pn = (1 − α)n. We would like to have strong
performance guarantees for the performance of the unsu-
pervised policy π̃n, which never queries the expert. The
performance of π̃n can be bounded as follows:
Lemma 4.2. J(π̃n) ≤ J(πn) + pnT

2. (Proof in Supple-
mentary Material)

This lemma implies that if n ≥ 2
α lnT , then pn ≤ 1

T 2 ,
such that J(π̃n) ≤ J(πn) + 1, where the additional cost of
1 becomes negligible for large T .

The SEARN algorithm effectively seeks to minimize di-
rectly the previous bound for k = 1 by choosing π̂n

to minimize A1(πn−1, π̂n) 2, using N = 2
α lnT and

α = T−3. With those parameters, SEARN guarantees
J(π̃N ) ≤ J(π∗) + O(T lnT Ā1 + lnT ). To minimize
the cost-to-go, SEARN solves a cost-sensitive classifica-
tion problem where for each state sample in the dataset,
the cost-to-go under the current policy must be estimated
for each action. Such estimates place the expert back in
an identical state for each action and require T -step roll-
outs. Such a reset is impractical in the physical world.
Even when possible, it is difficult for a person to perform
a task (e.g. driving) with multiple reset. Additionally, T -
step roll-outs require tedious interaction: for A actions, k
trajectories per estimate, and m sampled states per itera-
tion, it can be shown that SEARN needs O(mAkT 4 log T )
queries to the expert to complete allO(T 3 log T ) iterations.
Also when the cost function we would like to minimize is
unknown, then again it is not possible to obtain the cost-to-
go estimates. For these reasons, minimizing cost-to-go as
SEARN is impractical in our setting.

Instead, we choose π̂n to mimic πn−1, as if π̂n =
πn−1 exactly, then as for all k, we get Ak(πn−1, π̂n) =
0. Since only unknown component of πn−1 is the ex-
pert’s policy π∗, we can focus on only learning π∗ (un-
der the state distribution induced by πn−1). That is,
if π̂∗n = argminπ∈Π Es∼dπn−1 (eπ(s)), then the policy

2SEARN minimizes J̄π
n−1

1 (π̂n), which is equivalent to mini-
mizing A1(πn−1, π̂n).
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Initialize π0 ← π∗ to query and execute expert.
for i = 1 to N do

Execute πi−1 to get D = {(s, π∗(s))}.
Train classifier π̂∗i = argminπ∈Π Es∼D(eπ(s)).
πi = (1− α)iπ∗ + α

∑i
j=1(1− α)j−1π̂∗j .

end for
Remove expert queries: π̃N = πN−(1−α)Nπ∗

1−(1−α)N

Return π̃N

Algorithm 4.1: The SMILe Algorithm.

π̂n = pn−1π̂
∗n + (1 − pn−1)π̃n−1 approximates πn−1

using the new estimate π̂∗n of π∗, and the previously
trained policies π̃n−1. Using the same update rule as be-
fore (πn = (1 − α)πn−1 + απ̂n), we obtain that πn =
pnπ

∗ + α
∑n
i=1 pi−1π̂

∗i. Hence we will use directly this
update rule instead as we don’t have to construct the π̂n.
Finally, to ensure we get training data (s, π∗(s)) for every
state we encounter while following πn, we always query
the expert’s action, but πn only executes it with probabil-
ity (1 − α)n. This now completes the description of our
algorithm, called SMILe, for Stochastic Mixing Iterative
Learning, which is detailed in Algorithm 4.1. Again, from
the reduction perspective, SMILe can use any classifica-
tion algorithm, IOC technique or other imitation learning
technique to train the classifier at each iteration. Note that
for SMILe the weights of each learned policy remain con-
stant over the iterations and decays exponentially as n gets
larger. This contrasts with SEARN where old policies have
much smaller weights than the newest policies. This makes
intuitive sense as we might expect that for SMILe the old
policies are better at mimicing π∗ on the states encountered
most often when πn does a good job at mimicing π∗.

Now let εi = Es∼dπi−1 (e(s, π̂∗i)), ε̃ =
α

(1−(1−α)n)

∑n
i=1(1 − α)i−1εi and Ã1 =

α
(1−(1−α)n)

∑n
i=1(1 − α)i−1A1(πi−1, π̂∗i|π∗), for

A1(πi−1, π̂∗i|π∗) = J̄π
i−1

1 (π̂∗i) − J̄π
i−1

1 (π∗) then for
SMILe we have the following guarantee:

Theorem 4.1. For α =
√

3
T 2
√

log T
, and N = 2T 2(lnT )3/2,

then J(π̃N ) ≤ J(π∗) + O(T (Ã1 + ε̃) + 1). (Proof in
Supplementary Material)

Since in most problems, Ã1 will be at least in the order of
ε̃, then this is effectivelyO(T Ã1 +1). Hence SMILe needs
O(T 2(lnT )3/2) iterations to guarantee regret of O(T Ã1 +
1). This is an improvement over SEARN which requires
O(T 3 lnT ) iterations.

Just as with the forward algorithm, in the general case,
O(T Ã1) may be as large as O(T 2ε̃) as an early error may
simply be unrecoverable. Again, in parallel with the for-
ward algorithm, in many instances– particularly those rel-
evant to imitation learning– we can show that this pol-
icy disadvantage is upper bounded because of favorable

Dn ← ∅
while |Dn| ≤ m do

Sample r ∼ Uniform(0, 1)
if r ≤ (1− α)T then

Pick trajectory (T samples) fromDn−1 (without re-
placement) and add it to Dn

else
Sample t uniformly in {1, 2, . . . , T}
Add new trajectory (T samples) toDn by executing
πn at every step i 6= t, and π̂n at step t.

end if
end while
Return Dn

Algorithm 4.2: First algorithm to construct dataset for
state distribution dπn at iteration n+ 1 efficiently (n ≥ 1).

mixing properties of the dynamic system or recovery be-
havior of the policy to be mimicked. In particular, it is
straightforward to construct classes where Ã1 is bounded
by O(log T ε̄), while standard supervised training is still
only able to achieve quadratic regret (see example in Sup-
plementary Material). Further, we find in practice that the
policy disadvantage is typically bounded on average due to
the “recoverability” of the problem, leading to significantly
better performance of the SMILe approach.

Sample Complexity. The sample complexity of the
SMILe algorithm might seem prohibitive as it requires
O(T 2(log T )3/2) iterations. If it takes m examples to train
a classifier then, we might fear needing more thanO(T 2m)
samples to guarantee our error bound. Fortunately, this is
not the case as one can reuse a significant part of the sam-
ples collected at previous iterations as shown below.

Intuitively, the requirement to slowly change the policy im-
plies that some of the samples that we draw for a given
algorithm iteration are exactly that which the previous
policies would have generated– no actions have actually
changed on these. Concretely, as πn = (1−α)πn−1+απ̂n,
with probability (1 − α)T , πn always executes πn−1 over
T steps. Thus a first simple approach, detailed in Algo-
rithm 4.2, is to reuse a trajectory from the previous dataset
for πn−1 with probability (1 − α)T . With this approach,
we expect to collect less than αTm new samples at each
iteration. Summing over N = 2

α lnT iterations, we need
O(T lnTm) samples (in expectation) to complete all iter-
ations, rather than O(T 2 lnTm). This first approach ig-
nores that π̂n is similar to πn−1, so that even more sam-
ples can be reused. This is shown in the following lemma.
Let D(π) = dπ , Dπ

k (π′) the T -step state frequencies if
π′ is executed k times and π at all other timesteps, and
Dπ
k,j(π

′, π′′) the T -step state frequencies if π′ is executed k
times, π′′ j times and π at all other timesteps. Then D(πn)
can be related to the distributions Dπ∗

k (π̃n−1) (which are
sampled during execution of πn−1):
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Dkn ← ∅ for k ∈ {0, 1, . . . , T}
while |

⋃T
k=0Dkn| ≤ m do

Sample k ∼ Binomial(T, 1− (1− α)n)
Sample r ∼ Uniform(0, 1)
if k = 0 or r ≤ ( 1−(1−α)n−1

1−(1−α)n )k then
Pick trajectory (T samples) fromDkn−1 (without re-
placement) and add it to Dkn

else
Sample t1 uniformly in {1, . . . , T}
for i = 2 to k do

Sample ti uniformly {1, . . . , T}\{t1, . . . , ti−1}
end for
Add new trajectory (T samples) toDkn by executing
π∗ at every step t /∈ {t1, . . . , tk}, π̂∗n at step t1, and
π̃n at all steps ti for i ≥ 2.

end if
end while
Return {D0

n,D1
n, . . . ,DTn }

Algorithm 4.3: Second algorithm to construct dataset for
state distribution dπn at iteration n+ 1 efficiently (n ≥ 1).

Lemma 4.3. D(πn) =
∑T
k=0 cn,k[βknD

π∗

k (π̃n−1) + (1 −
βkn)Dπ∗

1,k−1(π̂∗n, π̃n)] for βn = 1−pn−1
1−pn and cn,k = (1 −

pn)kpT−kn

(
T
k

)
. (Proof in Supplementary Material)

This equality suggests a sampling procedure that leads to a
sample complexity ofO(Tm) for SMILe, which is detailed
in Algorithm 4.3. The drawback is that the sampling pro-
cedure is more involved and requires additional bookkeep-
ing, as we need to maintain seperate datasets Dkn for k ∈
{0, 1, . . . , T} at each iteration (Dkn contains trajectories
where π∗ executed T−k times; their union is the dataset for
training π∗n+1). With this procedure, the expected number
of new samples that we need to collect at each iteration af-
ter the first one is less then α(1−α)n−1Tm. Thus the total
expected number of samples we need to complete all itera-
tion is less than (T + 1)m. Hence, the sample complexity
of SMILe is in the same order as the forward algorithm,
which only required T iterations. This is also a major im-
provement over the sample complexity of SEARN, which
requires a factor O(T 3 log T ) more queries to the expert.

Practical Choice of Learning Rate. In practice, we will
see that it is often unnecessary to choose such a small α
and iterate until we reach pn = 1

T 2 to achieve good perfor-
mance. Further, as SMILe does not need to learn a policy
for each time step, it is more practical than the forward al-
gorithm when T is large, as we may terminate after some
small number of iterations N < T .

5 EXPERIMENTAL RESULTS

To verify the efficacy of the SMILe approach, we applied
it on two challenging imitation learning problems: 1) the

Super Tux Kart open source 3D racing game (Figure 1) and
2) the Mario Bros. game (Figure 3).

Figure 1: Image from Super Tux Kart’s Star Track.
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Traditional Supervised Approach
SMILe (α=0.1, N=15, no reuse)
SMILe (α=0.2, N=7, no reuse)

Figure 2: Performance of SMILe and the traditional ap-
proach in Super Tux Kart as a function of training laps.

SUPER TUX KART. In Super Tux Kart, our goal is to
train the computer to steer the car properly at fixed speed on
a particular race track given screen captured images from
the game and corresponding joystick commands from a hu-
man player. Here, since planning from the image is non-
trivial, the base classifier used was a Neural Network trying
to map directly images to actions, rather than using more
sophisticated IOC techniques. 3

We compare the performance of SMILe (without sample
reuse) to the traditional approach on a track called “Star

3Implementation details: To make the problem tractable,
screen images are resized to 24 × 18 pixels, and we transform
the RGB color of these pixels to LAB color, yielding 1296 fea-
tures. The joystick commands are integers ranging from -32768
to 32767 (negative is left, positive is right, magnitude controls
degree of turn). We choose to discretize this range into 15 val-
ues (15 class). To learn the controller, we use single layer neu-
ral networks with 1296 input nodes, 32 hidden layer nodes and
15 output nodes and train it with backward propagation (Mitchell
1997), where each neuron corresponds to a sigmoid function and
use ten-fold cross-validation to avoid overfitting.
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Track”. As this track floats in space, a car can fall off the
track at any point. For this task, we measure performance
by the average number of times the vehicle falls off the
track per lap. When using SMILe, each iteration consists
of three laps of data with screen capture and joystick com-
mands recorded at 15 Hz (∼1000 datapoints/lap). As T is
not a fixed horizon here, we made a practical choice for α
and N , comparing α = 0.1 and α = 0.2, and choosing to
stop once the probability of choosing the expert reaches
roughly 1

5 , yielding N = 15 and N = 7 respectively.
When comparing the result of our approach after n itera-
tions, we give equivalent training data to the classification
approach, i.e. data collected over 3n laps at 15 Hz, where
the human is always playing, using the same parameters
for the neural network. A video that enables more quali-
tative comparison is available on YouTube (Ross 2009a).
Figure 2 shows the performance (with 95% confidence in-
tervals) of the controller trained with SMILe and the tradi-
tional approach, as a function of the total number of train-
ing laps. We observe that the traditional approach requires
45 laps of data before begining to yield reasonable perfor-
mance. SMILe with α = 0.1 achieves similar performance
after only 5 iterations (15 laps) and gets much better perfor-
mance after 15 iterations (45 laps). However, SMILe with
α = 0.2 doesn’t achieve as good performance at the end
of its 7 iterations. This suggests that mixing more slowly
is desirable and leads to better performance. Hence, we
recommend choosing the smallest α one can afford, con-
sidering the higher number of iterations required.

Figure 3: Captured image from Mario Bros.

MARIO BROS. For Mario Bros., we used the open source
simulator from the recent Mario Bros. AI competition (To-
gelius 2009). In this game, Mario must move across a level
without falling into gaps and being hit by enemies. Lev-
els are randomly generated and vary in difficulty (more
difficult gaps and types of enemies). Our goal is to train
the computer to play this game by providing features ex-
tracted from screen captured images and corresponding ac-
tions taken by a near-optimal planner having full access to
the game’s internal state. Here the actions are represented
by 4 binary variables, corresponding to whether the Left,
Right, Jump and Speed buttons are pressed. The player
can choose any combination of these buttons at any step.
Again here, since planning from the image features is non-
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Traditional Supervised Approach
SMILe (α=0.1, N=15, no reuse)
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Figure 4: Performance of SMILe and the traditional ap-
proach in Mario Bros. as a function of training data.

trivial, the base classifier used was a Neural Network trying
to map directly image features to actions, rather than using
more sophisticated IOC techniques. 4

We compare the performance of SMILe (with and with-
out sample reuse) to the traditional approach on randomly
generated levels ranging in difficulty from 0 to 10 (where
difficulty is chosen uniformly randomly). Difficulty 0 is
easy even for beginners, however difficulty 10 is challeng-
ing even for very experienced human players. We measure
performance by the average distance per level traveled by
Mario before falling into a gap, being killed by an enemy or
running out of time. As the average total distance of a level
is around 4300 units, this can vary in roughly [0, 4300].

4Implementation details: Each image is divided into 22x22
cells of equal size, and 14 binary features is extracted for each
cell: whether it contains ground, pass-through ground, pipe, can-
non, enemy, winged enemy, spiky enemy, flower enemy, bul-
let, shell, fireball, destructible block, item block and mush-
room/flower. The game runs at 24 frames/second but new actions
are only issued at every 4 frames (keeping actions constant over
4 frames). This is done to make the planner run in near real-time.
As a single image does not allow the learner to detect the direc-
tion enemies are moving, we give as input the history of features
for the last 4 images where decisions were made. In addition, the
history of the last chosen actions and 4 other observable binary
variables (mario on ground, mario can jump, fire mario, large
mario) over the last 6 steps where new actions were chosen are
also added to the input features. This yields 27152 input binary
features, which are very sparse. We trained single hidden layer
neural networks with 32 hidden nodes, using an available library
optimized for sparse features (Karampatziakis 2008). The plan-
ner used as expert has access to the internal state and can simulate
exactly the future using the game’s simulator. It plans 24 frames
ahead, considering sequences of 3 actions (each action held con-
stant over 8 frames), and chooses the one that leads to the best
state in 1 second according to an heuristic function. It replans at
every 4 frames. This achieves beyond human-level performance,
as it can go through every level at any difficulty over 95 to 99%
of the times.
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When using SMILe, each iteration consists 6000 train-
ing examples (state,action pair) for each difficulty in
{0, 1, . . . , 10}, and we use α = 0.1 and N = 15. When
reusing samples, we choose T as 1

α = 10 and use the ap-
proach in Algorithm 4.3. The traditional approach is also
given equal training data for each difficulty and we look at
its performance after different total amount of data. Fig-
ure 4 compares each approach5. Again, SMILe performs
better even without reusing samples. When samples are
reused, performance is not affected as it compares to the
performance without reuse for the same number of itera-
tions. However as a function of samples collected, the ap-
proach is even more efficient and gives better results. A
video that enables more qualitative comparison is available
on YouTube (Ross 2009b). What we observe is that the
traditional approach is only good on the easiest difficulty
levels, falling into gaps, hitting enemies or getting stuck of-
ten at the harder difficulties, whereas SMILe also performs
well at easy difficulties and performs better at the harder
difficulties. SMILe doesn’t get stuck like the traditional
approach but still falls quite often into gaps.

6 CONCLUSION

We have presented an analysis of two different approaches
to imitation learning that have better performance guaran-
tees than the traditional approach. We showed that SMILe
works better in practice than the traditional approach on
two challenging tasks. Our theoretical analysis provides
further novel insights into why other stochastic mixing al-
gorithms like SEARN works well in practice. As we never
made any assumption that the states were markovian, our
analysis also directly extends to partially observable sys-
tems where the “state” used for predicting the expert’s ac-
tion might be only the last observation (if the expert’s pol-
icy is reactive) or a function of the history of action and
observation.6. While we have experimented using SMILe
with standard classification algorithms, it would be inter-
esting to use more sophisticated IOC techniques as the
base classifier with SMILe when possible. We believe such
combination should offer the best performance. SMILe can
also be adapted for general structured prediction and would
provide similar guarantees to SEARN, but with the advan-
tage of only having to solve simpler classification prob-
lems, without requiring rollouts of full cost-to-go.

5The 95% confidence intervals are fairly tight, roughly ±20,
so they are not shown in the plot.

6The only assumptions we need for our analysis to hold is that
the “state” must be a sufficient statistic of the history for predict-
ing the next expert’s action and the immediate costs, in the sense
that they are conditionnally independent of any information in the
history given the current “state”.

Acknowledgements

This work is supported by the ONR MURI grant N00014-
09-1-1052, Reasoning in Reduced Information Spaces, the
National Science Foundation through the Quality of Life
Technology Center ERC and by the National Sciences and
Engineering Research Council of Canada (NSERC).

References

P. Abbeel and A. Y. Ng (2004). Apprenticeship learning via in-
verse reinforcement learning. In ICML.

B. D. Argall, S. Chernova, M. Veloso and B. Browning (2009). A
Survey of Robot Learning from Demonstration. In Robotics and
Autonomous Systems.

A. Beygelzimer, V. Dani, T. Hayes, J. Langford and B. Zadrozny
(2005). Error limiting reductions between classification tasks. In
ICML.

S. Chernova and M. Veloso (2009). Interactive Policy Learning
through Confidence-Based Autonomy. In JAIR.

W. W. Cohen and V. R. Carvalho (2005). Stacked sequential
learning. In IJCAI.

H. Daume, J. Langford and D. Marcu (2009). Search-based struc-
tured prediction. Machine Learning Journal.

S. Kakade and J. Langford (2002). Approximately Optimal Ap-
proximate Reinforcement Learning. In ICML.

N. Karampatziakis (2008). Sparse NN library. http://www.
cs.cornell.edu/˜nk/sparsenn/.

M. Kääriäinen (2006). Lower bounds for reductions. Atomic
Learning workshop.

T. Mitchell (1997). Machine Learning. McGraw-Hill.

D. Pomerleau (1989). ALVINN: An Autonomous Land Vehicle
in a Neural Network. In NIPS.

M. Puterman (1994). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.

N. Ratliff, D. Bradley, J. A. Bagnell and J. Chestnutt (2006).
Boosting structured prediction for imitation learning. In NIPS.

S. Ross (2009). Comparison of Supervised Learning and SMILe
for Imitation Learning in Super Tux Kart. http://www.
youtube.com/watch?v=ywH9Z2NivjY.

S. Ross (2009). Comparison of Supervised Learning and
SMILe for Imitation Learning in Mario Bros. http://www.
youtube.com/watch?v=ldl7TQJxE5U.

S. Schaal (1999). Is imitation learning the route to humanoid
robots? In Trends in Cognitive Sciences.

D. Silver, J. A. Bagnell and A. Stentz (2008). High Performance
Outdoor Navigation from Overhead Data using Imitation Learn-
ing. In Proceedings of Robotics Science and Systems (RSS).

J. Togelius and S. Karakovskiy (2009). Mario AI
Competition. http://julian.togelius.com/
mariocompetition2009.

S. Thrun (1995). Learning To Play the Game of Chess. In NIPS.

http://www.cs.cornell.edu/~nk/sparsenn/
http://www.cs.cornell.edu/~nk/sparsenn/
http://www.youtube.com/watch?v=ywH9Z2NivjY
http://www.youtube.com/watch?v=ywH9Z2NivjY
http://www.youtube.com/watch?v=ldl7TQJxE5U
http://www.youtube.com/watch?v=ldl7TQJxE5U
http://julian.togelius.com/mariocompetition2009
http://julian.togelius.com/mariocompetition2009

	INTRODUCTION
	PRELIMINARIES
	THE SUPERVISED LEARNING APPROACH TO IMITATION 

	FORWARD TRAINING ALGORITHM 
	STOCHASTIC MIXING ITERATIVE LEARNING ALGORITHM 
	EXPERIMENTAL RESULTS
	CONCLUSION

