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Abstract

Solving large Partially Observable Markov Deci-
sion Processes (POMDPs) is a complex task which
is often intractable. A lot of effort has been
made to develop approximate offline algorithms to
solve ever larger POMDPs. However, even state-
of-the-art approaches fail to solve large POMDPs
in reasonable time. Recent developments in on-
line POMDP search suggest that combining of-
fline computations with online computations is of-
ten more efficient and can also considerably reduce
the error made by approximate policies computed
offline. In the same vein, we propose a new anytime
online search algorithm which seeks to minimize,
as efficiently as possible, the error made by an ap-
proximate value function computed offline. In ad-
dition, we show how previous online computations
can be reused in following time steps in order to
prevent redundant computations. Our preliminary
results indicate that our approach is able to tackle
large state space and observation space efficiently
and under real-time constraints.

1 Introduction

The POMDP framework provides a powerful model for se-
quential decision making under uncertainty. However, most
real world applications have huge state space and obser-
vation space, such that exact solving approaches are com-
pletely intractable (finite-horizon POMDPs are PSPACE-
complete [Papadimitriou and Tsitsiklis, 1987] and infinite-
horizon POMDPs are undecidable [Madani et al., 1999]).
Most of the recent research in the area has focused on de-
veloping new offline approximate algorithms that can find
approximate policies for larger POMDPs [Braziunas and
Boutilier, 2004; Pineau et al., 2003; Poupart, 2005; Smith
and Simmons, 2005; Spaan and Vlassis, 2005]. Still, suc-
cessful application of POMDPs to real world problems has
been limited due to the fact that even these approximate al-
gorithms are intractable in the huge state space of real world
applications. One of the main drawbacks of these offline ap-
proaches is that they need to compute a policy over the whole
belief state space. In fact, a lot of these computations are
generally not necessary since the agent will only visit a small

subset of belief states when acting in the environment. This is
the strategy online POMDP algorithms tries to exploit [Satia
and Lave, 1973; Washington, 1997; Geftner and Bonet, 1998;
McAllester and Singh, 1999; Paquet er al., 2005]. Since we
only need to plan for the current belief state when acting on-
line, one needs only to compute the best action to do in this
belief state, considering the subset of belief states that can be
reached over some finite planning horizon.

One drawback of online planning is that it generally needs
to meet hard real-time constraints when one is in face of
large POMDPs. Nevertheless, recent developments in on-
line POMDP search algorithms [Paquet er al., 2005; 2006]
suggest that combining approximate offline and online solv-
ing approaches may be the most efficient way to tackle large
POMDPs. Effectively, we can generally compute a very ap-
proximate policy offline using standard offline value itera-
tion algorithms and then use this approximate value function
as a heuristic function in an online search algorithm. Us-
ing this combination enables online search algorithm to plan
on shorter horizons in order to respect online real-time con-
straints and retain a good precision. Furthermore, doing an
exact online search on a certain horizon also reduces the er-
ror made by approximate value functions, and consequently,
does not require as much precision in the value function to be
efficient.

In this paper, we propose a new anytime online search al-
gorithm which aims to reduce, as efficiently as possible, the
error made by approximate offline value iteration algorithms.
Our algorithm can be combined with any approximate offline
value iteration algorithm to refine and improve the approx-
imate policies computed by such algorithm. It can also be
used alone, as a simple online search algorithm that can be
applied in stationary or dynamic environments.

We first introduce the POMDP model and some offline and
online approximate solving approaches. Then we present our
new algorithm and some experimental results which show its
efficiency.

2 POMDP Model

In this section we introduce the POMDP model and present
different approximate offline and online approaches to solve
POMDPs.



2.1 Model

A Partially Observable Markov Decision Process (POMDP)
is a model for sequential decision making under uncertainty.
Using such a model, an agent can plan an optimal sequence
of action according to its belief by taking into account the
uncertainty associated with its actions and observations.

A POMDP is generally defined by a tuple
(S,A,Q,T,R,0,v) where S is the state space, A is the
action set, €2 is the observation set, T'(s,a,s’) : S x Ax S —
[0, 1] is the transition function which specifies the probability
of ending up in a certain state s’, given that we were in state
s and did action a, R(s,a) : S x A — R is the reward
function which specifies the immediate reward obtained by
doing action «a in state s, O(0,a,s’) : 2 x A x S — [0,1]
is the observation function which specifies the probability of
observing a certain observation o, given that we did action a
and ended in state s’ and y is the discount factor.

In a POMDP, the agent does not know exactly in which
state it currently is, since its observations on its current state
are uncertain. Instead the agent maintains a belief state b
which is a probability distribution over all states that speci-
fies the probability that the agent is in each state. After the
agent performs an action a and perceives an observation o,
the agent can update its current belief state b using the belief
update function 7(b, a, 0) specified in equation 1.

V' (s'") =n0(o,a,s") ZT(S, a, s )b(s) (1)
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Here, b’ is the new belief state and b is the last belief state of
the agent. The summation part specifies the expected proba-
bility of transiting in state s’, given that we performed action
a and belief state b. Afterward, this expected probability is
weighted by the probability that the agent observed o in state
s’ after doing action a. 7 is a normalization constant such that
the new probability distribution over all states sums to 1.

Solving a POMDP consists in finding an optimal policy 7*
which specifies the best action to do in every belief state b.
This optimal policy depends on the planning horizon and on
the discount factor used. In order to find this optimal policy,
we need to compute the optimal value of a belief state over
the planning horizon. For the infinite horizon, the optimal
value function is the fixed point of equation 2.

V() = Iglea;l( R(b,a) + 'y(;z P(olb,a)V*(7(b,a,0)) (2)

In this equation, R(b, a) is the expected immediate reward
of doing action a in belief state b and P(o|b, a) is the proba-
bility of observing o after doing action a in belief state b. This
probability can be computed using equation 3.

P(olb,a) = Z 0O(o0,a,s) ZT(S, a,s"b(s)  (3)

s'eS ses

This equation is very similar to the belief update function,
except that it needs to sum over all the possible resulting
states s’ in order to consider the global probability of observ-
ing o over all the state space.

Similarly to the definition of the optimal value function, we
can define the optimal policy 7* as in equation 4.

7w (b) = arg max R(b,a) +~ Z P(o|b,a)V*(7(b,a,0))
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However, one problem with this formulation is that there
is an infinite number of belief states and as a consequence, it
would be impossible to compute such a policy for all belief
states in a finite amount of time. But, since it has been shown
that the optimal value function of a POMDP is piecewise lin-
ear and convex, we can define the optimal value function and
policy of a finite-horizon POMDP using a finite set of S-
dimensional hyper plan, called a-vector, over the belief state
space. This is how exact offline value iteration algorithms
are able to compute V* in a finite amount of time. However,
exact value iteration algorithms can only be applied to small
problems of 10 to 20 states due to their high complexity. For
more detail, refer to Littman and Cassandra [Littman, 1996;

Cassandra et al., 1997].

2.2 Approximate Offline algorithms

Contrary to exact value iteration algorithms, approximate
value iteration algorithms try to keep only a subset of a-
vectors after each iteration of the algorithm in order to limit
the complexity of the algorithm. Pineau [Pineau er al., 2003;
Pineau, 2004] has developed a point based value iteration al-
gorithm (PBVI) which bounds the complexity of exact value
iteration to the number of belief points in its set. Instead of
keeping all the «-vectors as in exact value iteration, PBVI
only keeps a maximum of one a-vector per belief point, that
maximizes its value. Therefore, the precision of the algo-
rithm depends on the number of belief points and the loca-
tion of the chosen belief points. Spaan [Spaan and Vlassis,
2005] has adopted a similar approach (Perseus), but instead
of updating all belief points at each iteration, Perseus up-
dates only the belief points which have not been improved
by a previous a-vector update in the current iteration. Since
Perseus generally updates only a small subset of belief points
at each turn, it can converge more rapidly to an approximate
policy, or use larger sets of belief points, which improves
its precision. Another recent approach which has shown
interesting efficiency is HSVI [Smith and Simmons, 2004;
20051, which maintains both an upper bound defined by a set
of points and a lower bound defined by a-vectors. HSVI uses
an heuristic that approximates the error of the belief points in
order to select the belief point on which to do value iteration
updates. When it selects a belief to update, it also updates its
upper bound using linear programming methods.

2.3 Approximate Online algorithms

Satia & Lave [Satia and Lave, 1973] developed the first online
algorithm to solve POMDPs. Their heuristic search algorithm
uses upper and lower bounds, computed offline, on the value
function to conduct branch-and-bound pruning in the search
tree. The POMDP is represented as an AND-OR graph in
which belief states are OR-nodes and actions are AND-nodes.
The root node (by) of such an AND-OR graph represents the



current belief state as it is presented in Figure 1. The authors
suggested solving the underlying MDP to get an upper bound
and to use the value function of any reasonable policy for
the lower bound. The heuristic they proposed to guide their
search algorithm will be compared to our proposed heuristic
in section 3.1.

Figure 1: A search tree.

The BI-POMDP algorithm [Washington, 1997] uses the
classic AO* algorithm [Nilsson, 1980] online to search the
AND-OR graph. The author slightly modified AO* to use
lower and upper bounds on the value function. For the lower
bound, BI-POMDP pre-computes offline the min MDP ( low-
est possible value in every state), and uses this approximation
at the fringe of the tree. For the upper bound, they use the
QMDP algorithm [Littman et al., 1995] to solve the under-
lying MDP and use this bound as an heuristic to direct the
search of AO* toward promising actions. They also use the
difference between the lower and upper bound to guide the
search toward fringe nodes that require more precision.

The RTBSS algorithm [Paquet ef al., 2005] is another sim-
ilar algorithm which uses a branch and bound technique to
search the AND-OR graph from the current belief state on-
line. The search in the tree is done in a depth-first-search
fashion up to a certain pre-determined fixed depth. When it
reaches this depth, it uses a lower bound heuristic to evaluate
the long term value of the fringe belief state. RTBSS also uses
an upper bound heuristic in order to prune some branches in
the tree. Pruning is only possible when the upper bound value
of doing an action is lower than the lower bound of another
action in the same belief state.

Several other techniques have been proposed to conduct
online search in POMDPs. Geffner [Geffner and Bonet,
1998] adapted the RTDP algorithm to POMDPs. This ap-
proach requires the belief state space to be discretized and
generally needs a lot of learning time before it performs well.
Another online search algorithm which uses observation sam-
pling has also been proposed by McAllester [McAllester and
Singh, 1999]. Instead of exploring all possible observations,
this approach samples a pre-determined number of obser-
vations, at each AND-node from a generative model of the
environment. A more recent online approach, called SOVI
[G. Shani and Shimony, 2005], extended HSVI into an online
value iteration algorithm. Its authors also proposed a few im-
provements to speed up the upper bound updates and evalua-
tions. The main drawback of this approach is that it is hardly
applicable online in large environments with real time con-

straints since it needs to do a value iteration with a-vectors
online, and this has a very high complexity.

3 AEMS

We now present our new online search algorithm, called
Anytime Error Minimization Search (AEMS). This algorithm
aims to determine the best action to do in the current belief
state by doing a look-ahead search. This search is done by
exploring the tree of reachable belief states from the current
belief state, by considering the different sequence of actions
and observations. In this tree, belief states are represented as
OR-nodes (we must choose an action child node) and actions
are represented as AND-nodes (we must consider all belief
state child nodes, associated to the different possible obser-
vations) as presented before in Figure 1.

This tree structure is used to determine the value of the cur-
rent belief state by and the best action to do in this belief state.
The values of the actions and belief states in the tree are eval-
uated by backtracking the fringe belief state values, according
to equation 2. However, since the search cannot be conducted
on an infinite horizon, we use an approximate value function
at the fringe of the tree to approximate the infinite-horizon
value of these fringe belief states. As the tree is expanded,
the estimate we will get for the current belief state by is guar-
anteed to be more precise by the discount factor.

AEMS conducts the search by using a heuristic that pro-
vides an efficient way to minimize the error on the current
belief state by and to handle large observation space. AEMS
is also able to reuse the computations done at previous time
steps in order to prevent the redundant computations. Finally,
AEMS is also an anytime algorithm which is able to exploit
every bit of time available at each turn.

The key idea of AEMS consists in exploring the search tree
by always expanding the fringe node that has the highest ex-
pected error contribution to the current belief state by. Ex-
panding this belief state will reduce its error and will lead to
better precision at the current belief state by for which we are
planning.

3.1 Expected Error evaluation

There are three key factors that influence the error introduced
by a fringe belief state on the current belief state. The first
is the actual error committed by using a lower bound value
function instead of the exact value function to evaluate the
value of the fringe belief state. In order to evaluate this error,
we can compute the difference between our upper and lower
bound to get the maximal possible error introduced by our
lower bound function on the fringe belief state. We will refer
to this approximation as the function € defined by equation 5.

&) = U(b) — L(b) 5)

Here, U(b) is the upper bound on V*(b) and L(b) is the
lower bound on V*(b). The real error €(b), which is defined
by €(b) = V*(b) — L(b), is always lower or equal to our
approximation €(b).

However, this error is multiplied by different factors, when
it is backtracked into the search tree, that must be taken into
account to get a good evaluation of its impact. By looking



back at equation 2, we notice that the value of a child belief
state is always multiplied by the discount factor v and the
probability P(o|b, a) of reaching this child belief state given
the action taken in the parent belief state. Since these factors
have a value in interval [0, 1], they reduce the contribution of
this error on the parent belief state’s value.

Another implicit factor that must be considered is the max
operator, since it indicates that we need to consider only the
values of belief states that can be reached by doing a sequence
of optimal actions. In other words, if we know the optimal
action in a certain belief state, than we would only need to
pursue the search in this action’s subtree, because the other
action values will not be considered in the value of by. In
our case, since we only have an approximate value function,
we are generally not sure whether a certain action is optimal
or not. Nevertheless, we can take this uncertainty into ac-
count by considering the probability that an action becomes
the optimal action, given its current bounds. In particular, if
the upper bound value of a certain action a is lower than the
lower bound value of another action a’ in a belief state, then
we are sure that a is not the optimal action, (i.e., its probabil-
ity of becoming the optimal action is 0). However, most of
the time we might encounter cases where the upper bound is
higher than the highest lower bound. To handle such case, we
will assume the other actions lower bound fixed and we will
assume that the exact value of the parent belief state is evenly
distributed between its current lower and upper bounds. We
could also consider other types of distributions, in particular
if we know that a certain bound is more precise than the other.
Using these assumptions, we can evaluate the probability that
a certain action can still become the best action in the future
using equation 6.

Ul(a,b) — L(b) ©)
U(b) — L(b)

Here U(a,b) is the upper bound on the value of action
a. L(b) and U(b) corresponds to the current lower and
upper bound of belief state b, i.e. which can be obtained
from the maximum lower and upper bound of the actions
in belief state b. So basically, what we are computing is
P(U(a,b) > V*(b)|[V*(b) ~ Uniform(L(b),U(d))), ie.
the probability that U(a,b) is greater than V*(b), assuming
that V*(b) follows a uniform distribution between L(b) and
U(b). This formula is valid when U(a,b) > L(b) and, as
we mentioned earlier, if this is not the case, then P(alb) =0
because we are sure that action a will not be the optimal ac-
tion. This probability can also be interpreted as the prob-
ability that we cannot prune action a in belief state b if
V*() ~ Uniform(L(b),U(b)). While P(alb), is not a
probability distribution, it still gives a measure of how likely
a certain action will not be pruned in the future and remain as
the optimal action.

An alternative way to approximate the max operator would
be to consider the current action with the highest upper bound
as the optimal action. In such a case, we can use the alterna-
tive definition for P(a|b) presented in equation 7.

P(alb) =

| 1 ifa=argmaxeecaU(a,b)
Pal) = { 0 otherwize 7

Furthermore, if we want to know what the probability is,
that a certain fringe belief state can be reached by a sequence
of optimal actions, we can use the product rule to combine
the probabilities of optimal action at each depth.

Combining all these factors, we find that the probability of
reaching a certain fringe belief state b% at depth d, denoted
P(b%), can be computed using equation 8.

d—1
P = [ Po'b',a") P(a’|b") ®)
=0

In this equation, o, a* and b denote the observation, action
and belief state encountered at depth 7 that leads to belief state
b? at depth d.

Consequently, we can compute the expected error intro-
duced by a certain fringe belief state b at depth d on the
current belief state by by using equation 9.

B(b) = v P(b)e(b) ©)

Therefore, we can use equation 9 as an heuristic to choose
the fringe node that contributes the most to the error in
bo. Since we propose two different definitions for the term
P(alb), we will refer to E(b?) using equation 6 as the heuris-
tic AEMS1 and F(b?) using equation 7 as the heuristic
AEMS2.

Intuitively, £(b%) seems a sound heuristic to guide the
search since it has several desired properties. First, it will fa-
vor exploration of nodes with loose bounds. Loose bounds
generally indicate that at least one of them is flawed and
therefore, exploring such node is generally important to get
more precision and make better decisions afterwards. In ad-
dition, if we have very tight bounds on the value of a belief
state then we do not need to search this belief state any longer
since it would have a very low impact on the quality of our
solution in belief state by. Moreover, E(b%) favors the explo-
ration of the most probable belief states we will encounter in
the future. This is good for two reasons. Firstly, if a belief
state has a really low probability of occurring in the future,
then we do not need a high precision on its value because
better precision on this belief state would only have a small
impact on the value of the actions in b°, and consequently on
our action choice in b°. Secondly, exploring the most proba-
ble belief states also increases the chance that we will be able
to reuse the computations done for this belief state in the fu-
ture, which will improve our precision in the future. Finally
E(b%), favors the exploration of actions that look promising.
This behavior is desired for multiple reasons. Generally, we
will only hesitate between a few actions for the best action
choice. These actions will have the highest probability of be-
ing optimal, and by concentrating the search to these actions,
we should be in a better position to decide which one is the
best. If for some reason the promising actions were not opti-
mal, then we should find it pretty quickly when we get better
precisions on their upper bounds.

We can also compare how this heuristic differs from other
heuristics that have been proposed to guide best-first-search
in POMPDs. Satia & Lave actually proposed a similar heuris-
tic, i.e. they suggested exploring at each iteration the k fringe



nodes that maximize the term y%(*)€(b) Hjﬁg)* P(o'[b?, a?).
This term differs from our heuristic by the fact that they do
not consider the term P(a|b). We will actually see that this
makes a big difference in terms of performance in practice.
On the other hand, BI-POMDP always explore the fringe
node, reached by a sequence of actions that maximizes the up-
per bound, that maximizes €(b), i.e. it is equivalent to choos-
ing the fringe node that maximizes €(b) [] i=b0) ~! P(a'|b?) us-
ing equation 7 for P(alb). This heuristic does not take into
account the probability that a certain belief state is going to be
reached, or the discount factor that applies to the value of this
belief state, such that it may explore belief nodes in the tree
that do not have a lot of impact on the bounds in by. Again,
our experiments will show that this affects the performance
of the BI-POMDP approach.

3.2 Anytime Error Minimization Search

As mentioned before, the expected error £'(b) will be the term
we will seek to minimize. This can be done efficiently in an
anytime fashion by always exploring the fringe belief state
that has the highest F(b). Since this term includes the prob-
ability P(olb,a), we can possibly handle large observation
space because generally in such an environment, only a few
observations will have high probabilities and therefore, the
search will be conducted only in the most probable part of
the tree. Furthermore, the probability P(a|b) in E(b) implic-
itly does pruning of the non optimal actions and limits the
search to the parts of the search tree where the actions have
small probabilities of being optimal. A detailed description
of our algorithm is presented in algorithm 1.

Algorithm 1 AEM S : Anytime Error Minimization Search

Function AEM S(t)
Static : G: an AND-OR graph representing the current search
tree.
to < CURRENTTIME()
while CURRENTTIME() — to < t do
b* « arg MaXpecFRINGE(G) E(b)
EXPAND(b")
BACKTRACK(b™)
end while
return BESTACT(ROOT(()))

The AEMS algorithm takes the time allowed to search the
tree in parameter and returns the best action to do in the cur-
rent belief state. This current belief state is stored in the root
node of the AND-OR graph GG. The graph G is also kept in
memory to resume the search at the fringe in the next time
steps. After an action is executed in the environment, the
graph G is updated such that our new belief state will be the
root of G. This is simply done by setting the root to the node
we reach by following the action-observation path from the
old root node. The value F(b) can be computed quickly since
all information needed to compute its value can be stored in
the belief state nodes when they are created or updated.

The EXPAND function simply does a one-step look-ahead,
from the fringe belief state given in parameter, by construct-
ing the action AND-nodes and the next belief state OR-nodes

resulting from all possible action and observation combina-
tions. It also computes the lower and upper bounds for all the
next belief states using the lower bound L and upper bound
U functions. For the actions, the lower and upper bounds are
simply computed using equation 2 in which V* is replaced
by L and U respectively. Notice that if we reach a belief
state that is already somewhere else in the tree, it will be du-
plicated, since our current algorithm does not handle cyclic
graph structure. We could possibly try to use a technique
proposed for AO* (LAO* algorithm [Hansen and Zilberstein,
2001]) to handle cycle, but we have not investigated this fur-
ther and how it affects the heuristic value.

Once a node has been expanded, we need to backtrack its
new upper and lower bounds in the tree, in order to update the
probabilities that each action is optimal and reconsider our
best action choices. This is done by the BACKTRACK func-
tion which recursively recomputes the bounds (using equa-
tion 2 in which V* is replaced by L and U), the probabilities
P(a|b) and the best actions of each ancestor nodes that leads
to the expanded node b*. Notice that if the bounds of a certain
ancestor node do not change, then we do not need to pursue
the backtracking process because all the subsequent ancestor
node bounds will remain the same.

4 Empirical results

We now present empirical results with our AEMS algorithm.
We have tested our algorithm in the RockSample environ-
ment [Smith and Simmons, 2004] and a modified version
of this environment, called FieldVisionRockSample (FVRS).
FVRS is a new environment that we introduce to test our al-
gorithm in an environment with a big observation space; its
observation space size is exponential in the number of rocks,
as presented below.

In each of these environments, we first computed a very ap-
proximate policy with PBVI by limiting its computation time
and number of belief points to a very small value. Then we
evaluated this policy empirically and we compared the im-
provement yielded by different online approaches using this
policy as a lower bound on V*. For the upper bound, we
used the QMDP algorithm and solved the underlying MDP,
and provided the resulting value function to every online al-
gorithm. The online time available for decision making was
constrained to 1 second per action and all the different online
heuristics presented (Satia, BI-POMDP, AEMS1, AEMS?2)
were implemented in the same best-first-search algorithm,
such that only the search heuristic could affect the perfor-
mance and not the different implementations. We also com-
pared our heuristic search to the performance of the depth-
first search algorithm RTBSS, using the same PBVI and
QMDP value functions for the lower and upper bounds.

4.1 RockSample

In RockSample (RS) environment, a robot has to explore the
environment and sample good rocks. Each rock can be ei-
ther good or bad (no scientific value) and the robot receives
rewards accordingly. The robot also receives rewards by leav-
ing the environment (by going to the extreme right of the en-
vironment). At the beginning, the agent knows the position



of each rock, but not their scientific value (good or bad). The
robot has an noisy sensor to check if a rock is good or not be-
fore choosing to go to this rock and sample it. The accuracy
of this sensor depends on the distance between the robot and
the rock checked.

In Table 1, we compare the performance of the different
algorithms in this environment. To get our results, we ran 20
runs on each of the possible starting rock states and the initial
belief state for each of these runs was the uniform distribution
over all rock states. We present the average reward, the av-
erage online time per action, the average error reduction' per
time step, the average number of belief nodes in the search
tree and the average percentage of belief nodes reused in the
next time step. For PBVI, the time column shows the offline
time used to compute its value function and the Belief Nodes
column shows the number of a-vectors representing its value
function. The number of states, actions and observations of
each of the different RockSample environments are shown in
parenthesis.

Table 1: Results in RockSample.

probability that the action is optimal. Still, AEMS1 provided
interesting performance compared to Satia, BI-POMDP and
RTBSS in RS(4,4) and RS(7,8). We also observe that AEMS2
generally had a greater reuse percentage than all other ap-
proaches which also indicates that the heuristic is really guid-
ing the search toward belief nodes that are more likely to be
encountered in the future.

4.2 FieldVisionRockSample

FieldVisionRockSample (FVRS) differs from the original
RockSample by the fact that the robot’s noisy sensor per-
ceives all rocks at each turn. So basically, instead of hav-
ing only 2 observations (Good or Bad), there are 2f obser-
vations, where R is the number of rocks in the environment.
As in RockSample, the probability that the sensor is accu-
rate for a certain rock at distance d is computed according to
n/2 4+ 0.5 where n = 27440 d, being the half efficiency
distance, but since the robot perceives all rocks after each
action, we had to decrease the accuracy of its sensor in or-
der for the problem to remain partially observable. Thus, we
have chosen to set the half efficiency distance dy of the sensor

to do = (n — 1)4/(2)/4, where n is the width of the square

Heuristic / Error Belief Nodes . Yo .. . .
’ Algorithm ‘ Reward ‘ Time (s) | Reduction (%) | Nodes ‘ Reused (%) ‘ grid. The probabilities of the joint observations are obtained
RS@4) (2575, 0a, 20) by simply taking the joint probability of each rock observa-
PBVI 77 136 - 65 - tions using the product rule (we consider that each rock ob-
Satia 77 0.990 4345 10134 .02 servation is independ Th : ize is reduced
pendant). The action space size is reduced to
BI-POMDP 77 0.991 46.18 10547 493 } . .

RTBSS(@) 435 1247 1478 15267 0 5 (4 Move action and a Sample action ) since the robot has

AEMSI 179 0.883 50.29 13692 2471 no need to do Check actions.

AEMS?2 17.9 0.846 64.05 14168 33.21 In Table 2, we compare the same statistics that we pre-

RS(5,5) (801s, 10a, 20) : :

] — e - = - sented for RockSample in the FVRS environments.

Satia 173 0.947 2452 11676 9.89

AEMSI 175 0.942 35.19 11174 2143 o o

RTBSS(3) 17.6 0.367 2431 2373 0 Table 2: Results in FieldVisionRockSample.

AEMS2 184 0.926 62.11 17500 36.36 Houristic/ Error Belief Nodes
BI-POMDP 19.2 0.920 47.90 13626 37.40 Algorithm Reward | Time (s) | Reduction (%) | Nodes | Reused (%)
RS(,7) (3201s, 124, 20) FVRS(@4,4) (2575, 5a, 160)

PBVI 11.9 1345 - 114 - PBVI 10.1 158 - 52 -

Satia 17.6 0.963 10.68 3032 749 BI-POMDP | 113 0.042 1221 17478 181
RTBSS(2) 214 0.172 22.89 318 0 Satia 123 0.940 20.11 12800 175

AEMS1 229 0.954 2203 4857 21.74 AEMSIT 8.9 0.864 24.19 12388 322

BI-POMDP | 242 0.947 47.80 5749 34.12 AEMS2 20.0 0.857 30.83 13861 5.54

AEMS2 242 0.938 53.13 5577 38.03 RTBSS(2) 208 0.349 30.96 3271 0

RS(7.8) (125455, 134, 20) FVRS(5,5) (301s, 5a, 320)

PBVI 77 2418 - 54 - PBVI 92 534 - 28 -

Satia 17.6 0.963 10.68 3032 749 RTBSS(2) 20.7 2.446 34.40 13996 0
BI.POMDP | 19.0 0974 39.63 2705 27.02 BI.POMDP | 217 0914 19.00 11847 143
RTBSS(2) 19.4 1.029 23.10 448 0 Satia 21.8 0.922 19.80 9725 1.79

AEMST 19.6 0.965 27.11 3094 279 AEMSI 21.8 0.923 25.61 9799 1.94

AEMS2 213 0.950 50.32 3553 38.73 AEMS2 22.1 0.917 26.74 10785 4.66

FVRS(,7) (32015, ba, 1280)

The results obtained shows that our AEMS2 heuristic ob- RTP;S\;I(I) ;gi 581?;23 553 43715 5
tains a significantly better performance than the other heuris- BIL.POMDP | 267 0.966 1152 5487 025
tics, obtaining the highest error reduction percentage in all en- Satia 26.8 1015 12.06 5225 0.67
vironments. It al ins th verage reward in all envi- AEMS1 27.0 0.977 12.67 5352 1.05

onments. It also obtains the best average reward in all TSI 573 0.966 160 667 330

ronments except for RS(5,5) where BI-POMDP obtained sur-
prisingly good rewards. On the other hand, AEMS1 obtains
average performance in most environments. This may be due
to the fact that equation 6 does not correctly approximate the

"We define the error reduction as 1 — €(bo)a fter /€(D0)of flines
where €(bo)a fter represent the difference between the bounds in the
search tree after the search and €(bo)o f f1ine represent U (bo) — L(bo)
from the offline value functions computed offline.

As in RS, we observe that our AEMS?2 heuristic performs
substantially better than all other heuristics in the FVRS
environments. While RTBSS obtained the best result on
FVRS(4,4), we see that it does not scale as well when the
branching factor increases significantly, in FVRS(5,5) and
FVRS(5,7), since it explores all action/observation combi-
nations. FVRS has a much greater branching factor than



the standard RS and the fact that we succeeded in signifi-
cantly improving the policy obtained with PBVI shows that
our heuristic scales well even in environments with big ob-
servation space.

5 Conclusion

The online search algorithm we proposed has shown very
good performance in large POMDPs and can tackle big ob-
servation space more efficiently than other previous online
search techniques. It has shown the best overall performance
both in terms of rewards and error reduction compared to the
other existing online algorithm. While our search heuristic
seems to work very well in practice, much more theoretical
work needs to be done in order to bound the error yielded
by our algorithm. We also want to investigate further im-
provement to the algorithm. As we mentioned, our current
algorithm does not handle cycle which makes it do redundant
computations when belief states are duplicated. We would
also like to investigate further different variants of the term
P(a|b) and see whether we can come up with better approxi-
mations of the true probability that a certain action is optimal.
Finally, we have only tried to combine our approach with the
PBVI algorithm, since it is fairly easy to implement. How-
ever combining our algorithm with HSVI would be promis-
ing since HSVI computes quickly lower and upper bounds
that we could use online with our algorithm.
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