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Abstrac(-We demonstrate that Ethernet LAN traffic is statis-
tically se~-simi/ar, that none of the commonly used traffic models
is able to capture this fra([al-like behavior, that such behavior
has serious implications for the design, control, and analysis of
high-speed, cell-based networks, and that aggregating streams of
such traffic typically intensifies the self-similarity (“burstiness”)
instead of smoothing it. Our conclusions are supported by a
rigorous statistical analysis of hundreds of millions of high quality
Ethernet traffic measurements colleeted between 1999 and 1992,
coupled with a discussion of tbe underlying mathematical and
statistical properties of self-similarity and their relationship with
actual network behavior. We also present traffic models based
on self-similar stochastic processes that provide simple, accurate,
and realistic descriptions of traffic scenarios expected during
B-ISDN deployment.

1. INTRODUCTION

IN THIS PAPER 1. we use the LAN traffic data collected by
Leland and Wilson [ 14] who were able to record hundreds

of millions of Ethernet packets without loss (irrespective of
the traffic load) and with recorded time-stamps accurate to
within 100 ps, The data were collected between August 1989

and February 1992 on several Ethernet LAN’s at the Bellcore
Morristown Research and Engineering Center. Leland and
Wilson [ 14] present a preliminary statistical analysis of this
unique high-quality data and comment in detail on the presence
of ‘Sburstiness” across an extremely wide range of time scales:
traffic “spikes” ride on longer-term “ripples,” that in turn
ride on still longer term “swells,” etc. This self-similar or
fractal-like behavior of aggregate Ethernet LAN traffic is very
different both from conventional telephone traffic and from
currently considered formal models for packet traffic (e.g.,

pure Poisson or Poisson-related models such as Poisson-batch
or Markov-Modulated Poisson processes (see [11]), packet-
train models (see [13]), fluid flow models (see [1]), etc. and
requires a new look at modeling traffic and performance of
broadband networks.

The main objective of this paper is to establish in a
statistically rigorous manner the self-similarity characteristic
of the very high quality, high time-resolution Ethernet LAN
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traffic measurements presented in [ 14]. Moreover, we illustrate
some of the most striking differences between self-similar

models and the standard models for packet traffic currently

considered in the literature. For example, our analysis of the
Ethernet data shows that the generally accepted argument for
the “Poisson-like” nature of aggregate traffic, namely, that
aggregate traffic becomes smoother (less bursty) as the number
of traffic sources increases, has very little to do with reality.
In fact, using the degree of self-similarity (which typically
depends on the utilization level of the Ethernet and can be
defined via the Hurst parameter) as a measure of “burstiness,”
we show that the burstiness of LAN traffic typically intensifies

as the number of active traffic sources increases, contrary to
commonly held views.

The term “self-similar” was coined by Mandelbrot. He
and his co-workers (e.g., see [21 ]–[23]) brought self-similar
processes to the attention of statisticians, mainly through
applications in such areas as hydrology and geophysics. For
further applications and references on the probability theory
of self-similar processes, see the extensive bibliography in

[27]. For an early application of the self-similarity concept to
communications systems, see the seminal paper by Mandelbrot
[18].

The paper is organized as follows. In Section 11,we describe
the available Ethernet traffic measurements and comment on
the changes of the Ethernet population, applications, and
environment during the measurement period from August 1989
to February 1992. In Section III, we give the mathematical
definition of self-similarity, identify classes of stochastic mod-
els which are capable of accurately describing the self-similar

behavior of the traffic measurements at hand, and illustrate
statistical methods for analyzing self-similar data sets. Section
IV describes our statistical analysis of the Ethernet data, with
emphasis on testing for self-similarity. Finally, in Section
V we discuss the significance of self-similarity for traffic
engineering, and for operation, design, and control of B-ISDN
environments.

11. TRAFFIC MEASUREMENTS

2.1, The Trafic Monitor

The monitoring system used to collect the data for the
present study was custom-built by one of the authors (Wilson)
in 1987/88 and has been in use to the present day with one
upgrade. For each packet seen on the Ethernet under study,
the monitor records a timestamp (accurate to within 100p-to
within 20 /Ls in the updated version of the monitor), the packet
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TABLE I
QUASJTATSVEDESCRIPTIONOF SETS OF ETHERNEXTRAFFIC MEASUREMENTSUSED rN THE ANALYSISIN SECITONIV

Traces of Ethe

Measurement Period

ToM (27.45 h)

AUGUST 1989 Low Hour
Start of Trace: (6:25 anr-7:25 am)
Aug. 29, 11:25 am Normal Hour
End of Trace: (2:25 pm-3:25 pm)
Aug. 30, 3:10 pm Bmy Hour

4:25 pm-5:25 pm)

Told (20,86 h)

OCTOBER 1989 Low Hour
Start of Trace: (2:00 am-3:tM am)
Get. 5, 11:(NIam Normal Hour
End of Trace: (5:00 pm-6:00 pm)
Get. 6, 7:51 pm Busy Hour

(1 I:oo am-12:ou am)

Total (40.16 h)

JANUARY 1990 Low Hour
Start of Trace: (Jan. 11, 8:32 pm-9:32 pm)

JWI.10, 6:07 am Normal Hour
End of Trace: (Jan. 10,9:32 arn-10:32 am)
Jan. 11, 1017 pm Busy Hour

(1032 am-l I :32 am)

Totat (47.91 h)

FEBRUARY 1992 Low Hour
Start of Trace: (Feb. 20, 1:21 arn-2:21 am)
Feb. 18, 5:22 am Normal Hour
End of Trace: (Feb. 18, 8:21 pm-9:21 pm)
Feb. 20, 5:16 ~ Busy Hour

(Feb. 18, 11:21 am-12:21 am.

length, the status of the Ethernet interface and the first 60 bytes
of data in each packet (header information). As we will show
in Section IV, the high-accuracy timestamps of the Ethernet
packets produced by this monitor are crucial for our statistical
analyses of the data. A detailed discussion of the capabilities
of the original monitoring system, including extensive testing
of its capacity and accuracy can be found in [14].

2.2. The Network Environment at Bellcore

The network environment at the Bellcore Morns Research
and Engineering Center (MRE) where the traffic measurements
used for the analysis presented later were collected is probably
typical of a research or software development environment
where workstations are the primary machines on people’s

desks. It is also typical in that much of the original installation
was well thought out and planned but then grew haphazardly.
For the purposes of this study, this haphazard growth is not
necessarily a liability, as we are able to study the traffic on a
network that is evolving over time. Table I gives a summary
description of the traffic data analyzed later in the paper. We
consider four sets of traffic measurements, each representing

between 20 and 40 consecutive hours of Ethernet traffic and
each consisting of tens of millions of Ethernet packets. The
data were collected on different intracompany LAN networks
at different times over the course of approximately four years
(August 1989, October 1989, January 1990, and February
1992).

2.2.1. Workgroup Network Traflc Data: Four data sets will
be considered in this paper. A summary description of these

;t Traffic Measurements

Total Number Total Number Ethernet
Data Set of Bytes of Packets Utilization

11448753134 27901984 9.3’?4

AUG89.LB 224315439
AUG89.LP 652909

5.0’%

AUG89.MB 3S0889404
AUG89.MP 968631 8.5%

AUG89.HB 677715381
AUG89.HP 1404444

15.l%

14774694236 27915376 15.7%

OCT89.LB 468355006
0CT89.LP 978911

10.4%

ocT89.h4B 827287174
0CT89.MP 1359656

18.4%

OCT89.HB 1382483551
0CT89.HP 2141245

30.7%

7122417589 27954961 3.9%
JAN90.LB 87299639
JAN90.LP 310038

1.9’%

JAN90.MB 182636845
JAN90.MP 643451

4.l%

JAN90.HB 711529370
JAN90.HP 1391718 15.8%

6585355731 27674814 3.1%1

FEB92.LB 56811435
FEB92.LP 231823

1.3%

FEB92.MB 154626159
FEB92.MP 524458

3.4%

FEB92.HB 225066741
FEB92.HP 947662

5.0’%

data sets is given in Table I. The first two sets of traffic
measurements, taken in August and October of 1989 (see first
two rows in Table I), were from an Ethernet network serving a

laboratory of researchers engaged in everything from software

development to prototyping new services for the telephone

system. The traffic was mostly from services that used the
Internet Protocol (1P) suite for such capabilities as remote
Iogin or electronic mail, and the Network File System (NFS)
protocol for file service from servers to workstations. There
were some unique services, though; for example, the audio of
a local radio station was p-law encoded and distributed over
the network during portions of the day. While it is not our

intent to provide here a detailed description of the particular
MRE network segments under study, some words about the

types of traffic on them are appropriate.
A snapshot of the network configuration at the time of

collection of the earliest data set being used (August 1989)
is given in Fig. 1: there were about 140 hosts and routers

comected to this intra-laboratory network at that time, of
which 121 spoke up during the 27 h monitoring period. This
network consisted of two cable segments connected by a

bridge, implying that not all the traffic on the network as

a whole was visible from our monitoring point. During the
period this data was collected, among the 25 most active hosts
were two DEC 3100 fileservers, one Sun-4 fileserver, six Sun-

3 fileservers, two VAX 8650 minicomputers, and one CCI
Power 6 minicomputer. At that time, the less active hosts were

mainly diskless Sun-3 machines and a smattering of Sun-4 ‘s,
DEC 3 100’s, personal computers, and printers.
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Fig. 1, Network from which the August 1989 and October 1989 measure-
ments were taken.

During the latter part of 1989 when the first two data sets
were collected, a revolution was taking place on this network.
The older Sun-3 class workstations were rapidly replaced with
RISC-based workstations such as the SPARC station-1 and
DEC 3100. Many of the new workstations were “dataless”

(where the operating system is stored on a local disk but
user data on a server) instead of “diskless” (where all tiles

for the user and for the operating system are stored on a
remote server). Because of the increased computing power
of the machines connected to this segment, the network load
increased appreciably, in spite of the trend towards dataless
workstations. Note, for example, that the “busy hour” from
the October 1989 data set is indeed busy: 30. 7y0 utilization
as compared to 15. l?lo during the August 1989 busy hour;
similar increases can also be observed for the low and normal
hours. Not long after this data was taken, this logical Ethernet

segment was again segmented by adding yet a third cable and a
bridge, and moving some user workstations and their fileserver
to that new cable. The above network has always been isolated
from the rest of the Bellcore world by one or more routers. The
other sides of these routers were connected to a large corporate
intemet consisting at that time of many Ethernet segments and
T-1 point-to-point links connected together with bridges. Less
than 5% of the total traffic cm this workgroup network during
either of the traces went out to either the rest of Bellcore or
outside of the company.

?.2,2. W[>rkgr(>upand External Trafl(: The third data set,

taken in January 1990 (row 3 in Table I), came from an
Ethernet cable that linked the two wings of the MRE facility
that were occupied by a second laboratory (see Fig. 2). At
the time this data set was collected, this second laboratory
comprised about 160 people, engaged in work similar to the
first laboratory. This particular segment was unique in that it
was also the segment serving Bellcore’s link to the outside

Internet world. Thus the traffic on this cable was from several
sources: (i) two very active file servers directly connected to
the segment; (ii) traffic (file service and remote Iogin) between
the two wings of this laboratory; (iii) traffic between the
laboratory and the rest of Bellcore; and (iv) traffic between
Bellcore as a whole and the larger Internet world. This last
type of traffic we term exfermd traffic, and in 1990 could come
from conversations between machines in any part of Bellcore
and the outside world. This Ethernet segment was specifically
monitored to capture this external traffic. In Section IV, we

%?7
-*! ‘CA*
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Fig. 2. Network for second laboratory from which the Jarruary 1990 mea-
surements were taken.
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Fig. 3. Backbone network for MRE facility from which the Febrmry 1990
measurements were taken.

will be considering the aggregate and external traffic from

this data set separately. This segment was separated from both

the Bellcore intemet and the two wings of the laboratory by

bridges, and from the outside world by a vendor-controlled

router programmed to pass anything with a Bellcore address

as source or destination. In contrast to the two earlier data sets,

over 1200 hosts spoke up during the 40 h monitoring period

on this segment.
The last data set, from February 1992 (see row 4 in Table

I), was taken from the building-wide Ethernet backbone in

MRE after security measures mandated by the “Morris worm”

(described in detail in [26]) had been put into place (see Fig.

3). This cable carried all traffic going between laboratories

within MRE, traffic from other Bellcore buildings destined for

MRE, and all traffic destined for locations outside of Bellcore.
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Fig. 4. Pictorial “proof” of self-similarity: Ethernet traffic (packets per time unit) on five different time scales (a)-(e). For comparison, synthetic traffic
h-m an appropriately chosen compound Poisson model on the same five different time scales (a’)-(e’).

Some hosts were still directly connected to this company-
wide network in early 1992, but the trend to move them from

the Bellcore intemet to workgroup cables comected to the
Bellcore intemet via routers continues to the present. Because
this cable had very little host to file server traffic, the overall
traffic levels were much lower than for the other three sets.
On the other hand, the percentage of remote login and mail
traffic was higher. This cable also carried the digitized radio
traffic between the two laboratories under discussion. The most
radical difference bet ween this data set and the others is that
the traffic is primarily router to router rather than host to host.
In fact, about 600 hosts spoke up during the measurement
period (down from about 1200 active hosts during the January
’90 measurement period), and the five most active hosts were
routers.

III. SELF-SIMfLARSTOCHASTIC PROCESSES

3.1. A Picture is Worth a Thousand Words

For 27 consecutive hours of monitored Ethernet traffic from
the August 1989 measurements (first row in Table I), Fig.
4 (a)-(e) depicts a sequence of simple plots of the packet
counts (i.e., number of packets per time unit) for five different
choices of time units. Starting with a time unit of 100 s (Fig.

4(a)), each subsequent plot is obtained from the previous one

by increasing the time resolution by a factor of 10 and by

concentrating on a randomly chosen subinterval (indicated by
a darker shade).

The time unit corresponding to the finest time scale (e) is

10 ms. In order to avoid the visually irritating quantization

effect associated with the finest resolution level, plot (e)

depicts a “jittered” version of the number of packets per

10 ms, i.e., a small amount of noise has been added to the

actual arrival rate. Observe that with the possible exception

of plot (a) which suggests the presence of a daily cycle,
all plots are intuitively very “similar” to one another (in a

dkributional sense), that is, Ethernet traffic seems to look
the same in the large (rein, h) as in the small (s, ins). In

particular, notice the absence of a natural length of a “burst:”
at every time scale ranging from milliseconds to minutes

and hours, bursts consist of bursty subperiods separated by

less bursty subperiods. This scale-invariant or “self-similar”

feature of Ethernet traffic is drastically different from both

conventional telephone traffic and from stochastic models

for packet traffic currently considered in the literature. The

latter typically produce plots of packet counts which are

indistinguishable from white noise after aggregating over

a few hundred milliseconds, as illustrated in Fig. 4 with
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the sequence of plots (a’)–(e’); this sequence was obtained
in the same way as the sequence (a)–(e), except that it

depicts synthetic traffic generated from a comparable (in
terms of average packet size and arrival rate) compound
Poisson process. (Note that while the choice of a compound
Poisson process is admittedly not very sophisticated, even
more complicated Markovian arrival processes would produce
plots indistinguishable from Fig. 4(a’)–(e’). ) Fig. 4 provides a
surprisingly simple method for distinguishing clearly between

our measured data and traffic generated by currently used
models and strongly suggests the use of self-similar stochastic
processes for traffic modeling purposes. Below. we give a brief

description of the concept of self-similar processes, discuss
their most important mathematical and statistical properties,
mention some modeling approaches, and outline statistical
methods for analyzing self-similar data. For a more detailed
presentation andreferences, see 117], [4], or [2].

3..?. Definitions and Propertic,~

Let .Y = (.Yt : / = (’l.1. 2....) be a f{~t’uriar2ce.Yrarionary

stochastic process with mean I(, variance rJ2 and autocorrela-
tion function r(k). k > 0. In particular, we assume that X has
an autocorrelation function of the foml

where () < ~i < I and 1. is slowly varying at infinity, i.e.,
liltlt-+w L(l.r)/ l,(t) = 1, for all .r > (). (For our discussion

below, we assume for simplicity that L is asym totically

constant. ) For each ))t = 1.2.3... .. let .Y[’”) = r(x,,~’) :/$=

1. ‘2.3. ..) denote the new covariance stationary time series
(with corresponding autocorrelation function r(’n )) obtained by
averaging the original series Y over non-overlapping blocks
of size ~rl, That is. for each II) = 1.2. :\. . . .. .l-(’”) is given
by ~j,lll ] = l//n(.Yk.,,, --,1,+] + . . + .Y~,,, ).k > 1. The
process .Y is called (e.u/[t/y)second-order self-similar with
self-similarity parameter 11 = 1 – ~J/2 if for all m = 1, 2 . . . ..
var(.~~’”~) = ~zr,,-’i and

‘r~’’’~(k) = r(k), k > (). (2)

.\- is called (u.symptoticallyj se(wtd-order self-similar with
selt-similarity parameter }1 = 1– ~~/2 if for ail k large enough,

,“’J’(A”’) – r(k). as ?t] - x (3)

with r(k) given by ( I ). In other words. .Y is exactly or

asymptotically second-order self-similar if the corresponding
aggregated processe~ .1-I1,1J are the same as X or become

indistinguishable from .Y—at least with respect to their au-

tocorrelation functions.
Mathematically. self-similarity manifests itself in a number

of equivalent ways: (i) the variance of the sample mean
decreases more slowly than the reciprocal of the sample size
(slowly dccqvin,g l,ariances), i.e.. var( .Y(‘“) ) N a2?n-i?, as
rt}+ x, with () < ;) < I (here and below, a,z. as, . . .

denote finite positive constants): (ii) the autocorrelations decay
hyperbolically rather than exponentially fast. implying a non-
summable autocorrelation function ~k. r(k) = K (long-

range depende~r[e). i.e., r(k) satisfies relation ( 1); and (iii)

the spectral density ~(.) obeys a power-law near the origin
(1/~–rroise), i.e., ~(~) - a3A-7, as A ~ O, with O < ~ <1

and~=l–~.
Intuitively, the most striking feature of (exactly or asymp-

totically) second-order self-similar processes is that their ag-
gregated processes X(m) possess a nondegenerate correlation
structure, as m ~ w. This intuition is best illustrated with
the sequence of plots in Fig. 4: if X represents the number of
Ethernet packets per 10 ms (plot (e)), then plots (d)-(a) depict
segments of the time series rrLX(m ), m = 10, 100, 1000.10000”

(i.e., number of Ethernet packets per 0.1, 1, 10, 100 s),
respectively. Note that all plots look “similar” and distinctively

different from pure noise. The existence of a nondegenerate
correlation structure for the processes X(m), as m + ,x,

is in stark contrast to typical packet traffic models currently
considered in the literature, all of which have the property that
their aggregated processes X (’n) tend to second-order pure
noise, i.e., for all k > 1,

r ‘m)(k) -+ O. as 7rl + x. (4)

Equivalently, packet traffic models currently considered in
the literature can be characterized by (i) a variance of the
sample mean that decreases like the reciprocal of the sample
mean, i.e., Va(x(”l) ) - rQTn –1 , as 77L + x, (ii) an
autocorrelation function that decreases exponentially fast (i.e.,
T-(k) - pk. O < p < 1), implying a summable autocorrelation
function ~k r(k) < cc (short-range dependence), or (iii) a
spectral density that is bounded at the origin.

Historically, the importance of self-similar processes lies

in the fact that they provide an elegant explanation and
interpretation of an empirical law that is commonly referred to
the Hurst effect. Briefly, for a given set of observations (Xk :
k = 1.2, . . . . n) with sample mean ~(rt) and sample variance
S2(7L), the resealed adjusted range statistic (or RIS statistic) is
given by R(n)/S(n) = l/S(n)[ max(O, W’l, W2, . . . . Wn) –
min (O, Wl$WZ, . . . . W.)], with wk = (Xl + X2 + . . +

Xk ) – k~(n)(,k ~ 1). While many naturally Occurnng
time series appear to be well represented by the relation
E[z?(7/)/s(7L)] ~ rzsn~. as n --+ x, with Hurst parameter

H “typically” about ().7, observations xk from a short-

range $~pendent model are known to satisfy ~[l?(7L) /S(71)]
- (l(j?) , as 71-+ X. This discrepancy is generally referred
to as the Hurst effect,

3.3. Modeling of Self-Similar Phenomena

Since in practice we are always dealing with finite data
sets, it is in principle not possible to decide whether the
above asymptotic relationships (e.g., ( I )-(4)) hold or not.
For processes that are not self-similar in the sense that their
aggregated series converge to second-order pure noise (see
(4)), the correlations will eventually decrease exponentially,
continuity of the spectral density function at the origin will
eventually show up, the variances of the aggregated pro-
cesses will eventually decrease as m-1, and the resealed
adjusted range will eventually increase as no’s. For finite
sample sizes, distinguishing between these asymptotic and
the ones corresponding to self-similar processes is, in general,
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problematic. In the present context of Ethernet measurements,
we typically deal with time series with hundreds of thousands
of observations and are therefore able to employ statistical
and data analytic techniques that are impractical for small
data sets. Moreover, with such sample sizes, parsimonious
modeling becomes a necessity due to the large number of

parameters needed when trying to fit a conventional process
to a “truly” self-similar model. Modeling, for example, long-
range dependence with the help of short-range dependent
processes is equivalent to approximating a hyperbolically
decaying autocomelation function by a sum of exponential.
Although always possible, the number of parameters needed
will tend to infinity as the sample size increases, and giv-
ing physically meaningful interpretations for the parameters

becomes more and more difficult. In contrast, the long-range

dependence component of the process can be modeled (by a
self-similar process) with only one parameter. Moreover, from
a modeling perspective, it would be very unsatisfactory to use
for a single empirical time series two different models, one for
a short sequence, another one for a long sequence.

Two formal mathematical models that yield elegant repre-
sentations of the self-similarity phenomenon but do not pro-
vide any physical explanation of self-similarity are fracfbud

Gaussian noise and the class of fractional autoregressive inte-
grated moving-average (ARIMA) processes. Fractional Gauss-

ian noise X = (X~ : k 2 O) with parameter H G (O, 1)
has been introduced in [22] and is a stationary Gaussian
process with mean p, variance Oz, and autocorrdation function
r-(k) = l/2(lk + 112* – IIc12H+ Ik – 112H), k > 0. Simple
calculations show that fractional Gaussian noise is exactly
second-order self-similar with self-similarity parameter If, as
long as 1/2 < If < 1. Methods for estimating the three

unknown parameters IL,u*, and H are known and will be
addressed below. Fractional ARIMA(p, d, q) processes are a

natural generalization of the widely used class of Box–Jenkins
models [3] by allowing the parameter d to take non-integer
values. They wem introduced by Granger and Joyeux [10]
and Hosking [12] who showed that fractional ARIMA(P, d, q)
processes are asymptotically second-order self-similar with
self-similarity parameter d + 1/2, as long as O < d < 1/2.
Fractional ARIMA processes are much more flexible with
regard to the simultaneous modeling of the short-term and
long-term behavior of a time series than fractional Gaussian

noise, mainly because the latter, having only the three param-
eter u, az, and H, has a very rigid correlation structure and is
not capable of capturing the wide range of low-lag correlation
structures encountered in practice. This flexibility can already
be observed when considering the simplest processes of the
fractional ARIMA(P, d, q) family, namely the two-parameter
models ARIMA(l, d, O) and ARIMA(O, d, 1).

Finally, we briefly mention a construction of self-similti

processes (due to Mandelbrot [19] and later extended by Taqqu
and Levy [28]), based on aggregating many simple renewal
reward processes exhibiting inter-renewal times with infinite
variances. Although the construction was originally cast in an

economic framework involving commodhy prices, it is par-
ticularly appealing in the context of high-speed packet traffic,
and we will return to this construction in Section V when

attempting to provide a “phenomenological” explanation for
the observed self-similar nature of aggregate Ethernet traffic.
In its simplest form, this construction requires a sequence of
i.i.d. integer valued random variables UO, UI, U2, . . . (“inter
renewal times”) with “heavy tails,” i.e., with the property

P[U ~ u] - u-ah(u), asu ~ co, (5)

where h is slowly varying at infinity and O < a < 2.
For example, the stable (Pareto) distribution with parameter
1< a <2 satisfies the “heavy-tail” property (5). Furthermore,
let WO, WI, Wz, . . . be an i.i.d. sequence (“rewards”) with
mean zero and finite variance, independent of the b”s. Next,

let Sk = SO + ~$=1 Uj, k 2 0 denote the delayed renewal
sequence derived from (Uj )j20 where SO is chosen such

that the sequence (Sk )k20 is stationary. The renewal reward
process W = (W(t) : t = 0,1,2,.. .) is then defined

by W(t) = ~~=o wk~(.s,.,,s,l(t), with 1A(”) denoting the
indicator function of the set A. By aggregating Zt4 i.i.d.
copies W(l), W(2), . . . . Wfkf) of W, we obtain the model

of interest, namely the process W* given by W* (T, M) =

ZF=l Zti=l w(m)(~) with W“(O, M) = O. In [19] and [28]
it is shown that for T and M both large with T << M,
W* behaves like fractional Brownian motion; in other words,
properly normalized, W’(T, M) converges to the integrated
version of fractional Gaussian noise, i.e., to a mean-zero

Gaussian process BH = (B~(s) : s ~ O), 1/2 < H <1, with
correlation function R(s, t) = l/2(s2H + t2H– Is– t12H).For
more details concerning fractional Brownian motion, see [22]
and [21 ]. As an immediate consequence of Taqqu and Levy’s
result, we have that for T and M both large with T << M,

the increment process of W* behaves like fractional Gaussian
noise.

3.4. Inference for Self-Similar Processes

Since slowly decaying variances, long-range dependence,
and a spectral density obeying a power-law are different
manifestations of one and the same property of the underlying
covariance stationary process X, namely that X is asymptot-
ically or exactly second-order self-similar, we can approach
the problem of testing for and estimating the degree of self-
similarity from three different angles: (1) time-domain analysis
based on the MS-statistic, (2) analysis of the variances of
the aggregated processes X(m), and (3) periodogram-based
analysis in the frequency-domain. The following gives a brief
description of the corresponding statistical and graphical tools.
For an engineering-based graphical tool that is related to the
variance property of the aggregated processes, see Section 5.2.

The objective of the R/S analysis of an empirical record is
to infer the degree of self-simihwit y H (Hurst parameter+via
the Hurst effect-for the self-similar process that presum-

ably generated the record under consideration. Graphical R/S
analysis consists of taking logarithmically spaced values of
n (starting with n x 10), and plotting log(R(n)/S(n))
versus log(n) results in the resealed adjusted range plot (also
called the pox diagram of R/S). When l-l is well defined, a
typical resealed adjusted range plot starts with a transient
zone representing the nature of short-range dependence in
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the sample, but eventually settles down and fluctuates in a
straight “street” of a certain slope. Graphical R/S analysis is

used to determine whether such asymptotic behavior appears
supported by the data. In the affirmative, an estimate fi of
H is given by the street’s asymptotic slope which can take
any value between 1/2 and 1. For practical purposes, the
most useful and attractive feature of the R/S analysis is its
relative robustness against changes of the marginal distribu-

tion. This feature allows for practical] y separate investigations
of the self-similarity property of a given data set and of its

distributional characteristics.
We have observed that for second-order self-similar pro-

cesses, the variances of the aggregated processes X(”’). m >—
1. decrease linearly (for large m) in log-log plots against m
with slopes arbitrarily flatter than —1. The so-called tlariance-
firne plots are obtained by plotting log(var( X(m))) against
log( 7n) (‘‘time”) and by fitting a simple least squares line
through the resulting points in the plane, ignoring the small
values for m. Values of the estimate ~ of the asymptotic slope

between – 1 and O suggest self-similarity, and an estimate for
the degree of setf-simik-wity is given by A = 1 – ~/2.

The absence of any limit law results for the statistics
corresponding to the R/S analysis or the variance-time plot
makes them inadequate for a more refined data analysis
(e.g.. confidence intervals for H). In contrast, a more re-
fined data analysis is possible for maximum likelihood-type

estimates (MLE) and related methods based on the per-i-
0dOgrUf7? I(r) = (2’T?L)-1 \ ~J=~ Xjt’i;J12, () ~ J; < fl Of

.%” = (Xl, .~2, . . . . X,, ) and its distributional properties. In
particular, for Gaussian or approximately Gaussian processes,
Whittle’s approximate MLE has been studied extensively
and has been shown to have desirable statistical properties.
Combined, Whittle’s approximate MLE approach and the
aggregation method discussed earlier give rise to an oper-
ational procedure for obtaining confidence intervals for the
self-similarity parameter H. Briefly, for a given time series,
consider the corresponding aggregated processes X(m) with
/r/ = 100,”‘200. 300, . . .. For each of the aggregated series,

estimate the self-similarity parameter H(m) via Whittle’s
method. This procedure results in point estimates fi(n’) of
H( “iJ and corresponding %5%,-confidence intervals of the form
~(lrl) + l,gfj~ ~, ,,,~, where ti~(,,, , is given by a known central

limit theorem result (for references, see [17 ]). Plots of fi(m’ )
(together with their 95%-confidence intervals) versus 711 will

typically vary for small aggregation levels, but will stabilize
after a while and fluctuate around a constant value, our final
estimate of the self-similarity parameter }{.

IV. ETHERNET TRAFFIC 1s SELF-SIMILAR

While Fig. 4 gives a pictorial “proof’ of the self-similar

nature of the traffic measurements described in Section II,
using the statistical and graphical tools presented above, we
establish in this section the self-similar nature of Ethernet
traffic (and some of its major components, such as external
traffic or external TCP traffic) in a statistically more rigorous
manner. For each of the four measurement periods described in
Table I, we identified typical low-, medium-, and high-activity

hours. With the resulting data sets, we are able to investigate

features of the observed traffic that persist across the network

as well as across time, irrespective of the utilization level of
the Ethernet. Only one LAN could be monitored at any one
time (making it impossible to study correlations in the activity
on different LAN’s) and all data were collected from LAN’s in
the same company (making it not representative for all LAN
traffic). For a similar analysis that uses different data sets from
Table I, see [ 16].

4,1. Ethernet Trajjic over a 27-Hour Period

In order to check for the possible self-similarity of the
August 1989 Ethernet traffic data, we apply the graphical
tools described in the previous section, namely, variance-
time plots, pox plots of R/S, and periodogram plots, to the
three subsets AUG89.LB, AUG89.MB, and AUG89.HB of
the August ’89 trace that correspond to a typical “low hour,”
“normal hour,” and “busy hour” traffic scenario, respectively

(see Table I). Each sequence contains 360000 observations,

and each observation represents the number of bytes sent over
the Ethernet per 10 ms. As an illustration of the usefulness of
the graphical tools for detecting self-similarity in an empirical
record, Fig. 5 depicts the variance-time curve (a), the pox
plot of R/S (b), and the periodogram plot (c) corresponding
to the sequence AUG89.MB. The variance-time curve, which
has been normalized by the corresponding sample variance,
shows an asymptotic slope that is distinctly different from
– 1 (dotted line) and is easily estimated to be about – ,40,
resulting in an estimate fi of the Hurst parameter H of
about fi x .80. Estimating the Hurst parameter directly
from the corresponding pox plot of R/S leads to a practically
identical estimate; the value of the asymptotic slope of the
R/S plot is clearly between 1/2 and 1 (lower and upper dotted
line, respectively), with a simple least-squares fit resulting
in H x .79. Finally, looking at the periodogram plot, we
observe that although there are some pronounced peaks in the
high-frequency domain of the periodogram, the low-frequency
part is characteristic for a power-law behavior of the spectral
density around zero. In fact, by fitting a simple least-squares
line using only the lowest 10~ of all frequencies, we obtain
a slope estimate ~ x .64 which results in a Hurst parameter
estimate P of about .82. Thus, together the three graphical
methods suggest that the sequence AUG89.MB is self-similar
with self-similarity parameter H x .80. Moreover, Fig. 5(d)
indicates that the normal hour Ethernet traffic of the August
1989 data is, for practical purposes, exactly self-similar: it

shows the estimates of the Hurst parameter H for selected
aggregated time series derived from the sequence AUG89.MB,
as a function of the aggregation level m. For aggregation
levels m = 1,5.10.50, 100,500, 1000, we plot the Hurst
parameter estimate fi(m’) (based on the pox plots of IUS
(“*”), the variance-time curves (“o”), and the periodogram

plots (“0”)) for the aggregated time series X(’”) against the
logarithm of the aggregation level m. Notice that the estimates
are extremely stable and practically constant over the depicted
range of aggregation levels 1 s wi. s 1000. Because the
range includes small values of m, the sequence AUG89.MB
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Fig, 5. Graphical methods for checking the self-similarity property of the
sequence AUG89.MB.

can be regarded as exactly self-similar. Similar results are
obtained for the sequences AUG89.LB and AUG89.HB, and
for the corresponding packet count processes AUG89.LP,

AUG89.MP, and AUG89.HP. Together, these observations
show that Ethernet traffic over approximately a 24-hour period
is self-similar, with the degree of self-similarity increasing as
the utilization of the Ethernet increases.

4.2. Ethernet Trajj4c Over a Four-Year Period

In order to examine in detail the nature of Ethernet traffic
across time as well as across the network under consideration,
we now consider the remaining data sets described in Table I.

In contrast to Section 4.1, our analysis below results in
estimates of the self-similarity parameter H together with their
respective 95%-confidence intervals. As discussed in Section

3.4, such a refined analysis is possible if maximum likelihood
type estimates (MLE) or related estimates based on the pe-

riodogram are used instead of the mostly heuristic graphical
estimation methods illustrated in the previous section. Plots
(a)-(d) of Fig. 6 show the result of the MLE-based estimation
method when combined with the method of aggregation. For
each of the four sets of traffic measurements described in
Table I, we use the time series representing the packet counts
during normal traffic conditions (i.e., AUG89.MP in Fig. 6(a),

0CT89.MP in (b), JAN90.MP in (c), and FEB92.MP in (d)),
and consider the corresponding aggregated time series X(m)
with m = 100, 200, 300,. ... 1900, 2000 (representing the

packet counts per 1,2,..., 19,20 s, respectively). We plot the

Hurst parameter estimates llfm) of H(m) obtained from the
aggregated series X(m), together with their 95%-confidence
intervals, against the aggregation level m. Fig. 6 shows that for
the packet counts during normal traffic loads (irrespective of
the measurement period), the values of fi(m) are quite stable

and fluctuate only slightly in the 0.85 to 0.95 range throughout
the aggregation levels considered. The same holds for the
95%-confidence interval bands indicating strong statistical

evidence for self-similarity of these four time series with
degrees of self-similarity ranging from about 0.85 to about
0.95. The relatively stable behavior of the estimates fi(m) for
the different aggregation levels m also confirms our earlier
finding that Ethernet traffic during normal traffic hours can be
considered to be exactly self-similar rather than asymptotically
self-similar. For exactly self-similar time series, determining

a single point estimate for H and the corresponding 9570-
confidence interval is straightforward and can be done by
visual inspection of plots such as the ones in Fig. 6 (see below).

Notice that in each of the four plots in Fig. 6, we added two
lines corresponding to the Hurst parameter estimates obtained
from the pox diagrams of R/S and the variance-time plots,
respectively. Typically, these lines fall well within the 95~0-
confidence interval bands which confirms our earlier argument

that for these long time series considered here, graphical
estimation methods based on R/S or variance-time plots can
be expected to be very accurate.

In addition to the four normal hour packet data time series,
we also appliedthe combined MLE/aggregation method to
the other traffic data sets described in Table 1. Fig. 7(a)
depicts all Hurst parameter estimates (together with the 95%-
confidence interval corresponding to the choice of m discussed
earlier) for each of the 12 packet data time series, while Fig.
7(b) summarizes the same information for the time series

representing the number of bytes. We also include in these
summary plots the Hurst parameter estimates obtained via the
variance-time plots (“o”) and R/S analysis (“*”) in order to

indicate the accuracy of these essentially heuristic estimators
when compared to the statistically more rigorous Whittle
estimator (“o”).

Concentrating first on the packet data, i.e., Fig. 7(a),we see
that despite the transition from mostly host-to-host workgroup
traffic during the August 1989 and October 1989 measurement
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Fig. 6. Penodogram-based MLE/aggregation melhod for the sequences
AUG89.MP, 0CT89.MP. JAN90,MP, and FEB92,MP.

periods, to a mixture of host-to-host and router-to-router traffic
during the January 1990 measurement period, to the pre-
dominantly router-to-router traffic of the February 1992 data
set, the Hurst parameter corresponding to the typical normal
and busy hours, respectively, are comparable, with slightly
higher H-values for the busy hours than for the normal traffic
hours, This latter observation might be surprising in light of
conventional traffic modeling where it is commonly assumed
that as the number of sources (Ethernet users) increases, the
resulting aggregate traffic becomes smoother and smoother. In
contrast to this generally accepted argument for the “Poisson-
like” nature of aggregate traffic, our analysis of the Ethernet
data shows that, in fact, the aggregate traffic tends to become
less smooth (or, more bursty ) as the number of active sources
increases (see also our discussion in Section 5.1 ). While
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Fig. 7. Summary plot of Hursl parameter estimates for all da)a sets in Table I.

there were about 120 hosts that spoke up during the August
1989 or October 1989 busy hour, we heard from an order

of magnitude more hosts (about 1200) during the January

1990 high traffic houq the comparable number of active hosts

during the February ’92 busy hour was around 600. The major
difference between the early (pre-1990) measurements and the
later ones (post- 1990) can be seen during the low traffic hours.
Intuitively, low period router-to-router traffic consists mostly
of machine-generated packets which tend to form a much
smoother arrival process than low period host-to-host traffic
which is typically produced by a smaller than average number

of actual Ethernet users, e.g., researchers working late hours.
Next, turning our attention to Fig. 7(b), we observe that as

in the case of the packet data, H increases as we move from
low to normal to high traffic hours. Moreover, while there
is practical y no difference between the two post- 1990 data
sets, the two pre-1990 sets clearly differ from one another but
follow a similar pattern as the post-1990 ones. The difference
between the August 1989 and October 1989 measurements
can be explained by the transition from diskless to “dataless”
workstations that occurred during the latter part of 1989 (see

Section 2,2). Except during the low hours, the increased
computing power of many of the Ethernet hosts causes H
to increase and gives rise to a bit rate that closely matches
the self-similar feature of the corresponding packet process.
Also note that the 95%-confidence intervals corresponding to
the Hurst parameter estimates for the low traffic hours are
typically wider than those corresponding to the estimates of H
for the normal and high traffic hours. This widening indicates
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TABLE 11
QUALITATIVEDESCRIFITONOF THE SETS OF EXTERNAL ETHERNETTRAFFtC MEASUREMENTSUSED IN THE ANALYSISIN SECTION4.3

Traces of Ethernet Traffic Measurements

I Total Total Percentage of
Measurement [ntemal Traffic

Period Data (see Table I)

JAN90.LB
JANUARY 1990
Start of Trace:

JAN90.LP

Jan. 10,6:07 am
JAN9CLMB

End of Trace:
JAN90.MP

JarL 11, 10:17 pm JAN9CLHB
JAN90MP

FEB92.LB
FEBRUARY 1992
Start of Trace:

FEB92.LP

Feb. 18, 5:22 am
FEB92.MB

End of Trace:
FEB92.MP

Feb. 20, 5:16 am FEB92.HB
FEB92.HP

that Ethernet traffic during low traffic periods is asymptotically

self-similar rather than exactly self-similar.
We also notice in Fig. 7 that some of the analyzed time series

result in estimated Hurst parameters close to 1, i.e., their cor-
responding 95%-confidence intervals include the value H = 1.
When finding an H-estimate close to 1, it is advisable to
analyze the time series further to ensure that the observed high
degree of self-similarity is genuine and cannot be explained
by elementary arguments (see for example [21]). To illustrate,
we consider the sequences JAN90.HP and FEB92.HP; visual
inspection of both time series and comparisons with traces of
fractional Gaussian noise with H = 0.9 (see, for example,

the plots in [23] and [21]) show no obvious signs of non-
stationarity; the mean seems to be changing with time but
the overall mean appears constant and although, locally, there
clearIy exist spurious trends and cycles of varying frequencies,
these “typical” features of nonstationarity are characteristic
of stationary long-range dependent processes. Moreover, the
variance-time plots as well as the pox diagrams of the adjusted

range R (without resealing by S) of the two time series
yield slope estimates (not shown) that are consistent with the
observed high H-values. As discussed in [2] this consistency
is a strong indication that the given time series cannot be
regarded as nonstationary due to a lack of differencing. Further
tests for non-stationarity (e.g., due to nonhomogeneities of H)

can be found in [17].

4.3. External Ethernet Traflic

The Ethernet traffic analyzed so far is also called iruernal

trdlic and consists of all packets on a LAN. An important
component of internal Ethernet traffic is the so-called remote

or external Ethernet traffic, consisting of all those Ethernet
packets that originate on one LAN but are routed to another
LAN. That is, for the traffic measurements at hand, an external

packet is defined to be an 1P (Internet protocol) packet with
a source or destination address that is not on any of the
Bellcote networks. This external traffic can be viewed as

representative for LAN interconnection services, which are
expected to contribute significantly to future broadband traffic.

Table 11 summarizes the external Ethernet traffic data ana-

lyzed in the process of this study. We consider the two most
reeent measurement traces i.e., the January 1990 and February

Number of NumLux of Internal
Data Set Bytes Packets Traffic

JAN90E.LB 1105876 1.27%
JAN90E.LP 9369 3.02%

JAN90E.MB 16536148 9.05%
JAN90E.MP 87307 13.57%

JAN90E.HB 13023016 2.00%
JAN90E.HP 68405 4.96%,

FEB92E.LB 2319881 4.08%
FEB92E.LP 25247 10.89%,

FEB92E.MB 86283283 55.80%
FEB92E.MP 270636 51.60%

FEB92E.HB 55154789 24.50%
FEB92E.HP 202367 21.35%

1992 data sets, and for ease of comparison, we analyze for

both measurement periods the time series consisting of the

number of external packets (bytes) per 10 ms during the same
low-, normal-, and high-hours of (internal) Ethernet traffic
as considered in Table I. The last column in Table II shows
that external traffic (in terms of packets or bytes) makes up
between 1– 10~0 of the internal traffic during the low hours
in January 1990 and February 1992, about 2–2570 during the
corresponding busy hours, and up to 56% during the February
1992 normal hour. As a result, it is reasonable to expect

external traffic to behave very similarly to the overall traffic
analyzed earlier in this section. Differences (if any) between

the internal and external traffic can, in general, be attributed
to NFS traffic between workstations and file servers which is
missing completely in the external traffic.

Repeating the same laborious analysis of Section 4.2 for the
data sets described in Table II, we find that in terms of its self-
similar nature, external traffic does not differ from the internal

traffic studied earlier. More specifically, the Hurst parameters
for the external traffic during normal and high (internal) traffic
hours (or during previously identified stationary parts of the

corresponding data sets) are only slightly smaller than the ones
depicted in Fig. 7. For instance, even though the portion of
external packets during the high (internal) traffic hour of the
January 1990 data is only 2% of all the packets seen during this
period, the data set JAN90E.HP seems to be well described by
an H-value that changes from H = 0.82 for the first 30 min to
H = 0.94 for the second 30 rein; recall that the corresponding

data set of internal traffic, i.e., the sequence JAN90.HP, has
an estimated Hurst parameter of 0.98. A more significant
change in the Hurst parameter occurs during the low traffic
hours. While the internal traffic data (JAN90.LB, JAN90.LP,
FEB92.LB, and FEB92.LP) yield a Hurst parameter of about
0.70, the sequences JAN90E.LB, JAN90E.LP, FEB92E.LB,
and FEB92E.LP have H x 0.55, and the corresponding 95
intervals contain the value H = 0.5. These are the only cases

in all the data sets considered in this paper, where an H-value

of 0.5 (i.e., conventionally used short-range dependent models
such as Poisson, batch-Poisson, or Markov-Modulated Poisson
Processes) seems to describe the data accurately. For all other
data sets described in Tables I and 11, the 95%-confidence
intervals for the Hurst parameter estimates do not even come
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close to covering the value H = 0.5. As already mentioned
in our discussion of Fig. 7, the low hour traffic in the January

199(I and February 1992 data is mostly machine-generated and
produces traffic that is typically smoother (i.e., less bursty)
than traffic that is generated during the normal and busy hours
by humans using their workstations. This argument applies
even more when considering low hour external traffic.

We also looked at the portion of external traffic using the
Transmission Control Protocol (TCP) and 1P. There were two
main reasons for this. First, the traditional services offered by

the Internet are for the most part based around TCP, which

offers reliable delivery of data and protection against data
loss due to lost or corrupted packets. These services include
remote Iogin, file transfer (including anonymous file transfer
for making information and programs publicly available to any
lntemet user), electronic mail. and more recently the delivery
of the electronic bulletin board known as Netnews. The second
reason is that application programs using the TCP protocol
have significantly less control over how their data is actually

sent than do applications using the User Datagram Protocol

(LJDP) or their own protocol. The TCP protocol has significant
control over how the user data is segmented and a great deal
of control over the spacing of the packets as they are sent
out. When investigating the external TCP traffic, we found
that there was little point in doing a separate analysis. For
instance, in the heavy traffic hour from the MRE backbone
taken in 1992 (FEB92E. HP), 87% of the packets were TCP
packets, and a plot of the external TCP traffic is practically
indistinguishable from the corresponding plot of the entire

external traffic. Of those TCP packets of the FEB92E.HP data
set. about (;(;(~ of the packets were for file transfer, 9~o for
remote login~ELNET. 11% for electronic mail, and 13~o for
netnews delivery. The 12% of non-TCP traffic simply had no
effect on the results of our analysis for this data set; external
TC’P traffic is practically identical to the external traffic, and
our findings for the external traffic apply directly to external
TCP traffic,

V. ENGINEERING FOR SELF-SIMILAR NETWORK TRAFFtC

The fact that one can distinguish clearly—with respect
to second-order statistical properties-between the existing
models for Ethernet traffic and our measured data is surprising
and clearly challenges some of the modeling assumptions that
have been made in the past. While this distinction is obvious
from a statistical perspective, potential traffic engineering
implications of this distinction are currently under intense
scrutiny. Below, we concentrate on three implications of self-
similar network trdftic for traffic engineering purposes: mOd-

eling individual sources such as Ethernet hosts, inadequacy
of conventional notions of “burstiness,” and the generation of
synthetic traces of self-similar traffic. For a simulation study of
the effects of self-similar packet traffic on congestion control
and management for B- ISDN, we refer to [7].

i. 1. On t)lt, Natl{t-t~Of Tra/ji( Generated bt’ [ndi\’idual.
.Ethernet H[~.sts

In Section IV, we showed that irrespective of when and
where the Ethernet measurements were collected, the traffic is

self-similar, with different degrees of self-similarity depending
on the load on the network. We did so without first study-

ing and modeling the behavior of individual Ethernet users
(sources). Although historically, accurate source modeling has
been considered a prerequisite for successful modeling of
aggregale traffic, we show here that in the case of self-similar
packet traffic, knowledge of fundamental characteristics of the
aggregate traffic can provide new insight into the nature of
traffic generated by an individual user. Thus, in this section
we attempt to give a phenomenological explanation for the

visually obvious (see Fig. 4) and statistically significant (see

Fig. 7) self-similarity property of aggregate Ethernet LAN
traffic in terms of the behavior of individual Ethernet users.

TO this end, we recall Mandelbrot’s construction of frac-
tional Brownian motion (see Section 3.3) and interpret the
renewal reward process W(’”) = (W(m)(t) : t = 0, 1,2, . . .)
introduced in Section 3.3 as the amount of information (in
bits, bytes, or packets) generated by Ethernet host m at time t
(1 s m < M, t > O). In fact, if bits or bytes are the prefemed

units, the renewal reward process source model resembles the

popular class of fluid models (see [1]). On the other hand,
if we think of packets as the underlying unit of information,
the renewal reward process is basically a packet train model in
the sense of [13]. For ease of presentation, we can assume that
the “rewards” WO, WI, WZ, . . . take only the values 1 and O
(or, to keep E[W] = O, +1 and – 1), with equal probabilities,
where the value 1/0 during a renewal interval indicates an
active/inactive period during which the source sends 1/0 unit(s)

of information every time unit. The crucial property that

distinguishes the renewal reward process source model from
the above mentioned models is that the inter-renewal intervals
(i.e., the lengths of the active/inactive periods) are heavy-
tailed in the sense of (5) or, using Mandelbrot’s terminology,
exhibit the injinire variance syndrome. Intuitively, (5) states
that with relatively high probability, the active/inactive periods
are very long, i.e., each Wm can assume the same value for
a long period of time. While this heavy-tailed property of the
activefinactive periods seems plausible in light of tbe way a
typical workstation user contributes to the overall traffic on

the Ethernet, we have not yet analyzed the traffic generated
by individual Ethernet users in order to validate the simple
renewal reward source model assumption.

However, evidence in support of the infinite variance syn-
drome in packet traffic measurements already exists. For
example, in a recent study of traffic measurements from an
ISDN office automation application, Meier-Hellstem et al.

[24] observed that the extreme variability in the data (e.g.,
interarrival times of packets, number of successive packet

arrivals in certain states) cannot be adequately captured using
traditional packet traffic models but, instead, seems to be best
described with the help of heavy-tailed distributions of the
form (5). These authors subsequently propose an elaborate
and highly parametenzed model for the measured traffic. In
contrast, the renewal reward source model for the traffic
generated by an individual workstation user is extremely
simple; moreover, we have seen in Section 3.3 that when

aggregating the traffic of many such source models, the
resulting superposition process is a fractional Brownian motion
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with self-similarity parameter H = (3 — 0)/2, where a is
given in (5), and that the time series representing, for example,
the total number of bytes or Ethernet packets every 10 ms,
behaves like fractional Gaussian noise with the same If-value.
In this sense, our analysis in Section IV suggests that a simple
renewal reward process is an adequate traffic source model
for an individual Ethernet user and that often, a more detailed
source modeling might not be needed since the convergence
result in Section 3.3 shows that many of the details disappear
during the process of aggregating the traffic of many sources
and only property (5) is required for the fractional Brownian
motion behavior of the superposition process to hold. Note
that we have reached this conclusion by treating the Ethernet
packets essentially as black boxes, i.e., we did not look
into the packet header fields or distinguish packets based on

their source or destination. Further work on extracting the

relevant source-destination addresses from our measurements
and on statistically validating the infinite variance property
of the inter-renewal periods of a single source is currently in
progress.

5.2. On Measuring “Burstiness” for Self-Similar Network
TraJjic

On an intuitive level, the results of our statistical analysis
of the Ethernet traffic measurements in Section IV can be
summarized by saying that typically, the higher the load on
the Ethernet the higher the estimated Hurst parameter If, i.e.,
the degree of self-similarity in the arrival rate process (in
terms of packets or bytes). Visual comparisons between the
different traces also suggest that the larger H, the “burstier”
the corresponding trace appears. Trying to capture the intuitive
notion of “burstiness” with the help of the Hurst parameter l-l
becomes particularly appealing in light of the relation H =

(3 - a)/2 mentioned in the previous section between the self-
simikirity parameter H and the parameter a that characterizes
the “thickness” (see (5)) of the tail of the inter-renewal time
distribution (i.e., of the lengths of the active/inactive periods).
Clearly, the heavier the tail in (5) (i.e., the closer ~ gets to
1), the greater the variability of the active/inactive periods and
hence, the burstier the traffic generated by an individual source.

Going from a to H relates burstiness of an individual source
to burstiness of the aggregate traffic: the higher the H, the
burstier the aggregate traffic. The fact that the Hurst parameter

H seems to capture the intuitive notion of burstiness through
the concept of self-similarity and, at the same time, also seems
to agree well with the visual assessment of bursty behavior
challenges the feasibility of some of the most commonly
used measures of “burstiness.” The latter include the index
of dispersion (’Jor counts), the peak-to-mean ratio, and the
coefficient of variation (of inter-renewal times).

A commonly used measure for capturing the variability of

traffic over different time scales is provided by the index of
dispersion (for counts) and has recently attracted considerable
attention (see for example [11 ]). For a given time interval
of length L, the index of dispersion for counts (IDC) is
given by the variance of the number of arrivals during the
interval of length L divided by the expected value of that same
quantity. Fig. 8 depicts the IDC as a function of L in log-log

0.01 0.10 1.00 10.0

IoIJ1O(L)fln Seconds)

(a)

0.01 0.10 1.Ou 10.0

IoglO(L)(in Saeonds)

(b)

Fig. 8. Index of dispersion for counts (IDC) as a function of the length L of
the time interval over which the IDC is calculated, for the high traffic hours
of the January 1990 and February 1992 data sets.

coordinates; it shows the IDC for both internal (solid lines)

and external (dashed lines) traffic from the high traffic hour of

the January 1990 (Fig. 8(a)) and February 1992 data (b).
Note in particular that the IDC increases monotonically

throughout a time span that covers 4-5 orders of magnitude.
This behavior is in stark contrast to conventional traffic models

such as Poisson or Poisson-like processes and the popular
Markov-modulated Poisson processes where the IDC is either

constant or converges to a fixed value quite rapidly. On the

other hand, self-similar traffic models are easily shown to
produce a monotonically increasing IDC. In fact, assume for

simplicity that the process X representing the total number of
packets seen in every 10 ms interval, is fractional Gaussian
noise (with positive drift) with self-similarity parameter H.

CL2H-1 (where c is a finite positi~e constant th~t does not
depend on L), and plotting log(lDC(L)) against log(L)

results in an asymptotic straight line with slope 2H – 1. The

dotted lines in Figure 5.1 represent the IDC curves predicted
by self-similar traffic models with H x 0.94 (JAN90.HP)

and H = 0.96 (FEB92.HP), respectively. Similarly striking
agreement between the empirical and theoretical IDC curves
can be observed for the corresponding external traffic data sets.
Notice that plotting the IDC curve and estimating its slope
provides a quick and simple engineering-based approach to
testing for self-similarity of a set of traffic measurements.

Leland and Wilson [ 14] have pointed out the problem with

using the peak-to-mean ratio as a measure for “bttrstiness”
in the presence of self-similar traffic. The observed ratio of

peak bandwidth (i.e., peak arrival rate of, say, bytes) to mean
bandwidth depends critically on the time interval over which
the peak and mean bandwidth is determined, i.e., essentially
any peak-to-mean ratio is possible, depending on the length
of the measurement interval. For a two-week long trace of
the October 1989 measurements, they show that the peak rate
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in bytes for the external traffic observed in any 5 s interval
is about 150 times the mean arrival rate, while the peak rate
observed in any 5 ms interval is about 710 times the mean.
The dependence of this burstiness measure on the choice of
the time interval is clearly undesirable.

Final] y, we remark that the use of the coefficient of }wri-

ation (for interarrival times), i.e., the ratio of the standard
deviation of the interarrival time to the expected number of

the interarrival time, as a measure of “burstiness” becomes

questionable because of the potential “heavy-tailedness” (in
the sense of (5)) of the interarrival times and the implied
infinite variance property. Although the empirical standard
deviation can always be calculated, it will depend crucially
on the sample size and can attain practically any value as the
sample size increases.

5.-?. On Generutin<q .Tynthetic Traces of Self Similar Trafic

As we have noted in Section IV, exactly self-similar models
such as fractional Gaussian noise, or some nonlinew trans-
formation of fractional Gaussian noise (in order to ensure
for example that the process takes only positive values) or
asymptotically self-similar models such as fractional ARIMA
processes can be used to fit hour-long traces of Ethernet traffic
very well. Parameter estimation techniques for these models
are known but they often turn out to be computationally too in-

tensive in order to work for large data sets. However, we have
illustrated in Section W how to estimate the Hurst parameter
H for large data sets, and methods to adapt the existing pa-
rameter estimation techniques and to apply them to long time
series are currently being studied (for references, see [17]).
Notice also that our analysis of the measured data has shown
that the Hurst parameter can be expected to change during a
measurement period of an hour or more and that refinements
such as modeling the change points of H may be needed in

the future in order to produce more realistic traffic models. For
other approaches to modeling self-similar packet traffic, see the
recent articles by Erramilli and Singh [6] who use deterministic
nonlinear chaotic maps in order to mimic the fractal-like
properties of Ethernet traffic, and Veitch [29] whose work is
motivated by the early paper of Mandelbrot [18].

An important requirement of practical traffic modeling is to
generate synthetic data sequences that exhibit similar features
as the measured traffic. While exact methods for generating
synthetic traces from fractional Gaussian noise and fractional
ARIMA models exist (see for example [ 12]), they are, in

general, only appropriate for short traces (about 1000 obser-
vations). For longer time series, short memory approximations
have been proposed such as the fast fractional Gaussian
~ujise by Mandelbrot [20]. However, such approximations also

become often inappropriate when the sample size becomes
exceedingly large. Here, we briefly discuss two methods
for generating asymptotically self-similar observations. The
tirst method simulates the buffer occupancy in an Al/G/cc
queue. where the service time distribution G satisfies the

heavy-tail condition (5), i.e., G has infinite variance. Cox
l-l] showed that an infinite variance service time distribution
results in an asymptotically self-similar buffer occupancy
process, and he relates the tail-behavior of the former to

the degree of self-similarity of the latter. Generating a time
series of length 100000 this way requires about 2 h of CPU-
time on a Sun SPARCstation 2. The second method exploits
a convergence result obtained by Granger [9] who showed
that when aggregating many simple AR( 1)-processes, where
the AR(1) parameters are chosen from a beta-distribution on
[0, 1] with shape parameters p and q, then the superposition

process is asymptotically self-similau Granger also showed

that the Hurst parameter H depends linearly on the shape

parameter q of the beta-distribution. This method is well-
-suited for parallel computers, and producing a synthetic trace
of length 100000 on a MasPar MP- 1216, a massively parallel
computer with 16384 processors, takes only a few minutes. In
contrast, Hosking’s method to produce 100000 observations
from a fractional ARIMA(O, d. 0) model requires about 10 h
of CPU time on a Sun SPARCstation 2. Implementations of
and experimentations with these and some other methods are

currently under way.

VI. DISCUSSION

Understanding the nature of traffic in high-speed, high-
bandwidth communications systems such as B-ISDN is essen-
tial for engineering, operations, and performance evaluation of
these networks. In a first step toward this goal, it is important
to know the traffic behavior of some of the expeeted major

contributors to future high-speed network traffic. In this paper,
we analyze LAN traffic offered to a high-speed public network

supporting LAN interconnection, an important and rapidly
growing B-ISDN service. The main findings of our statistical
analysis of hundreds of millions of high quality, high time-
resolution Ethernet LAN traffic measurements are that (i)
Ethernet LAN traffic is statistically self-similar, irrespective of
when during the four-year data collection period 1989–1 992
the data were collected and where they were collected in the
network, (ii) the degree of self- simihuit y measured in terms

of the Hurst parameter H is typically a function of the overall
utilization of the Ethernet and can be used for measuring the
“burstiness” of the traffic (namely, the burstier the traffic the
higher H), (iii) major components of Ethernet LAN traffic such
as external LAN traffic or external TCP traffic share the same
self-similar characteristics as the overall LAN traffic, and (iv)
the packet traffic models currently considered in the literature
are not able to capture the self-similarity property and can
therefore be clearly distinguished from our measured data.

For the purpose of modeling this self-similar or fractal-like
nature of the Ethernet traffic data, we introduce novel methods

based on self-similar stochastic processes. The motivation for
these methods is the desire for an accurate and relatively
simple (i.e., parsimonious) description of the complex packet
traffic generation process. These modeling approaches typ-
ically yield a single parameter (i.e., the Hurst parameter)
that describes the fractal nature of the measured traffic and
appears to capture the intuitive notion of “burstiness” where

conventional measures of burstiness no longer apply. From the
point of view of queueing/performance analysis, the proposed
modeling approaches pose new and challenging problems
which are likely to require new sets of mathematical tools.
Ultimately, in the context of traffic engineering, it is the pre-
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dieted performance of appropriately chosen queueing systems
that will decide the relevance of self-similar traffic models.

However, indications of the impact of the self-similar nature

of packet traffic for engineering, operations, and performance

evahtation of high-speed networks are already ample: (i)
source models for individual Ethernet users are expeeted to
show extreme variability in terms of interarrival times of
packets (i.e., the infinite variance syndrome), (ii) commonly
used measures for “burstiness” such as the index of dispersion
(for counts), the peak-to-mean-ratio, or the coefficient of
variation (for interarrival times) are no longer meaningful
for self-similar traffic but can be replaced by the Hurst

parameter, (iii) the nature of congestion produced by self-
similar network traffic models differs drastically from that
predicted by standard formal models and displays a far more
complicated picture than has been typically assumed in the
past, and (iv) first analytic results show a clear distinction
between predicted performance of certain queueing models
with traditional input streams and the same queueing models
with self-similar inputs (see for example [25] and [5]). Finally,
in light of the same fractrd-like behavior recently observed in
VBR video traffic (see [2] and [8])-another major contributor

to future high-speed network traffic-the more complicated
nature of congestion due to the self-similar traffic behavior
can be expected to persist even when we move toward a more
heterogeneous B-ISDN environment. Thus, we believe based
on our measured traffic data that the success or failure of, for
example, a proposed congestion control scheme for B-ISDN
will depend on how well it performs under a self-similar rather

than under one of the standard formal traffic scenarios.
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