Carnegie Mellon Computer Science Department. 15-744 Spring 2008 Theory-ish Problem Set 4

This problem set has a few short questions. Answer them as clearly and concisely as possible. You may discuss ideas with others in the class, but your solutions and writeup must be your own. If you do discuss at length with others, please mention in your solution for the problem who you collaborated with, and optionally, the amount of time you discussed at length. I bet most of you aren't even reading this. Do not look at anyone else's solutions or copy them from anywhere.

This assignment is due by **3:00pm**, **Monday**, **April 21st** in class or to the course secretary in Wean Hall 8018.

Glossary

BGP: The Border Gateway Protocol

DHT: Distributed Hash Table (like Chord)

DNS: The Domain Name System

TTL: Time To Live values (how long a DNS record may be cached)

NS Records: Name Server records; those records that point to more specific authoritative servers for a DNS name

RIAA: The Recording Industry Association of America. Defn (1) An industry group that attempts to ensure that artists are fairly compensated for their work. Alternate meaning: (2) An industry group that believes that launching a campaign of fear and intimidation by indiscriminately suing its customers and seven year old children is the most effective way to boost sales and ensure goodwill.

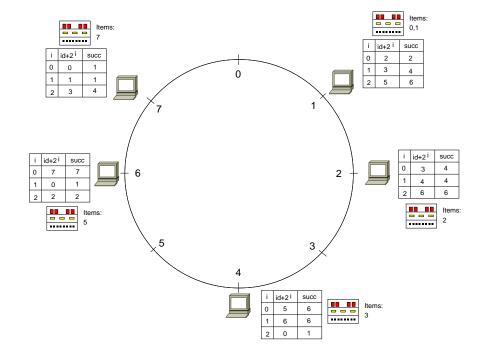
If you are in doubt of any terms used here, Google is your friend.

A DNS Redirection

Harry Bovik is working on a web site that has multiple replicated servers located throughout the Internet. He plans on using DNS to help direct clients to their nearest server replica. He comes up with a hierarchical scheme. Harry has divided his server replicas into three groups (east, west and central) based on their physical location. A typical query occurs as follows:

- A. When a client makes a query for www.distributed.hb.com, the root and .com name servers are contacted first. It returns the name server (NS) record for ns1.hb.com. The TTL of this record is set to 1 day.
- B. The ns1.hb.com name server is then queried for the address. It examines the source of the name query and returns a NS record for one of {east-ns, central-ns, west-ns}.distributed.com. The choice of which name server is based on where ns1 thinks the query came from.
- C. Finally, one of {east-ns, central-ns, west-ns}.distributed.com. is contacted and it returns an address (A) record for the most lightly loaded server in its region. Answer the following 3 questions based on this design.
- 1. Harry's name server software has only two choices for TTL settings for A and NS records 1 day and 1 minute. Harry chooses the following TTLs for each record below:

- 1. NS record for {east-ns, central-ns, west-ns}.distributed.com 1 day TTL.
- 2. A record for {east-ns, central-ns, west-ns}.distributed.com 1 day TTL.
- 3. A record returned for the actual Web server 1 minute TTL.


Briefly explain why Harry's choices are reasonable, or why you would have made different choices.

- 2. Harry notices that many clients are directed to servers in the wrong region (i.e. the client is not in the same region as the Web server chosen). He tracks down the problem and sees that the clients appear to be in some other region during name resolution. Why is this happening? Hint: a client may choose a local name server that is not geographically local!
- 3. Harry's Web site is especially popular among CMU students. The CMU network administrator estimates that there is one access from CMU every 3 minutes. Each access results in the application resolving the name www.distributed.hb.com. Assume the following:
 - No other DNS queries are made in CMU
 - All CMU clients use the same local name server.
 - This local name server is mapped to the east-ns region.
 - Web browsers do not do any caching on their own.

How many accesses per hour will be made to the following name servers to resolve these CMU queries? Explain your calculation.

- 1. The Root Servers
- 2. ns1.hb.com
- 3. east-ns.distributed.com
- 4. Vijay, in fear that the RIAA/MPAA/ASPCA will shut down his centralized P2P server like Napster, sets up a Chord for lookups and routing in his peer to peer network. Unfortunately (or fortunately, for you), Vijay's P2P network is not very popular (apparently nobody really wants to have 3TB of lolcats images¹) and only consists of four (!) peers at the current moment with successor tables and items illustrated below. For example, node 4 has item 3.

¹http://icanhascheezburger.files.wordpress.com/2007/05/jesus_christ_its_a_lion.jpg

- (a) List the nodes that will receive a query from node 1 for item 7.
- (b) List the nodes that will receive a query from node 2 for item 5.
- (c) In his uncontrollable Hulk-like rage over the unpopularity of large lolcats datasets², Vijay decides to arbitrarily DDoS www.srini.com and accidently mixes up the IP address 10.1.0.2 of www.srini.com with 10.1.0.1, which points to node 4. His attack is successful, albeit misguided, and Node 4 is no longer in the network: (. Soon after, node 7 queries for item 5. List the nodes that will receive this query, assuming the the tables have had time to converge. Hint: keep ranges in mind.

²http://icanhascheezburger.files.wordpress.com/2007/01/1159587965947.jpg