Background Material 1:
Getting stuff from here to there
Or
How I learned to love OSI layers 1-3
Power of Layering

- Solution: Intermediate layer that provides a single abstraction for various network technologies
 - $O(1)$ work to add app/media
 - variation on “add another level of indirection”

Application

- SMTP
- SSH
- NFS
- HTTP

Intermediate layer

Transmission Media

- Coaxial cable
- Fiber optic
- 802.11 LAN
Outline

• Switching and Multiplexing
• Link-Layer
• Routing-Layer
• Physical-Layer Encoding
Packet vs. Circuit Switching

- **Packet-switching: Benefits**
 - Ability to exploit statistical multiplexing
 - More efficient bandwidth usage

- **Packet switching: Concerns**
 - Needs to buffer and deal with congestion:
 - More complex switches
 - Harder to provide good network services (e.g., delay and bandwidth guarantees)
Amplitude and Frequency Modulation

0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0

0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0

0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0

0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0
Capacity of a Noisy Channel

• Can’t add infinite symbols - you have to be able to tell them apart. This is where noise comes in.

• Shannon’s theorem:
 • $C = B \times \log(1 + S/N)$
 • C: maximum capacity (bps)
 • B: channel bandwidth (Hz)
 • S/N: signal to noise ratio of the channel
 • Often expressed in decibels (db). $10 \log(S/N)$.

• Example:
 • Local loop bandwidth: 3200 Hz
 • Typical S/N: 1000 (30db)
 • What is the upper limit on capacity?
 • Modems: Teleco internally converts to 56kbit/s digital signal, which sets a limit on B and the S/N.
Time Division Multiplexing

- Different users use the wire at different points in time.
- Aggregate bandwidth also requires more spectrum.
Frequency Division Multiplexing: Multiple Channels

Determines Bandwidth of Link

Determines Bandwidth of Channel

Different Carrier Frequencies

Amplitude
With frequency-division multiplexing different users use different parts of the frequency spectrum.

- I.e. each user can send all the time at reduced rate
- Example: roommates

With time-division multiplexing different users send at different times.

- I.e. each user can send at full speed some of the time
- Example: a time-share condo

The two solutions can be combined.

- Example: a time-share roommate
- Example: GSM
Outline

- Switching and Multiplexing
- Link-Layer
 - Ethernet and CSMA/CD
 - Bridges/Switches
- Routing-Layer
- Physical-Layer
Ethernet MAC (CSMA/CD)

- Carrier Sense Multiple Access/Collision Detection

![Flowchart](image.png)

- Packet?
- Sense Carrier
- Send
- Detect Collision
- Jam channel
- b=CalcBackoff();
- wait(b);
- attempts++;
- Discard Packet
- attempts < 16
- attempts == 16
- No
- Yes

Lecture 7: 9-13-07
Minimum Packet Size

- What if two people sent really small packets
 - How do you find collision?

- Consider:
 - Worst case RTT
 - How fast bits can be sent
Ethernet Frame Structure

- Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame
Ethernet Frame Structure (cont.)

• **Addresses:** 6 bytes
 • Each adapter is given a globally unique address at manufacturing time
 • Address space is allocated to manufacturers
 • 24 bits identify manufacturer
 • E.g., 0:0:15:* → 3com adapter
 • Frame is received by all adapters on a LAN and dropped if address does not match

• **Special addresses**
 • Broadcast – FF:FF:FF:FF:FF:FF:FF is “everybody”
 • Range of addresses allocated to multicast
 • Adapter maintains list of multicast groups node is interested in
Summary

- CSMA/CD → carrier sense multiple access with collision detection
 - Why do we need exponential backoff?
 - Why does collision happen?
 - Why do we need a minimum packet size?
 - How does this scale with speed? (Related to HW)

- Ethernet
 - What is the purpose of different header fields?
 - What do Ethernet addresses look like?

- What are some alternatives to Ethernet design?
Transparent Bridges / Switches

- **Design goals:**
 - Self-configuring without hardware or software changes
 - Bridge do not impact the operation of the individual LANs

- **Three parts to making bridges transparent:**
 - ✖️ Forwarding frames
 - ✖️ Learning addresses/host locations
 - ✔️ Spanning tree algorithm
Frame Forwarding

- A machine with MAC Address lies in the direction of number port of the bridge.
- For every packet, the bridge “looks up” the entry for the packets destination MAC address and forwards the packet on that port.
 - Other packets are broadcast – why?
- Timer is used to flush old entries.
Spanning Tree Bridges

- More complex topologies can provide redundancy.
 - But can also create loops.
- What is the problem with loops?
- Solution: spanning tree
Outline

• Switching and Multiplexing
• Link-Layer
• Routing-Layer
 • IP
 • IP Routing
 • MPLS
• Physical-Layer
IP Addresses

- Fixed length: 32 bits
- Initial classful structure (1981) (not relevant now!!!)
- Total IP address size: 4 billion
 - Class A: 128 networks, 16M hosts
 - Class B: 16K networks, 64K hosts
 - Class C: 2M networks, 256 hosts

<table>
<thead>
<tr>
<th>High Order Bits</th>
<th>Format</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7 bits of net, 24 bits of host</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>14 bits of net, 16 bits of host</td>
<td>B</td>
</tr>
<tr>
<td>110</td>
<td>21 bits of net, 8 bits of host</td>
<td>C</td>
</tr>
</tbody>
</table>
Subnet Addressing
RFC917 (1984)

• Class A & B networks too big
 • Very few LANs have close to 64K hosts
 • For electrical/LAN limitations, performance or administrative reasons

• Need simple way to get multiple “networks”
 • Use bridging, multiple IP networks or split up single network address ranges (subnet)

• CMU case study in RFC
 • Chose not to adopt – concern that it would not be widely supported ☹
Aside: Interaction with Link Layer

- How does one find the Ethernet address of an IP host?
- ARP (Address Resolution Protocol)
 - Broadcast search for IP address
 - E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g., “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent to 0:c0:4f:d:ed:c6
Classless Inter-Domain Routing (CIDR) – RFC1338

- Allows arbitrary split between network & host part of address
 - Do not use classes to determine network ID
 - Use common part of address as network number
 - E.g., addresses 192.4.16 - 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the network number → 192.4.16/20

- Enables more efficient usage of address space (and router tables) → How?
 - Use single entry for range in forwarding tables
 - Combined forwarding entries when possible
IP Addresses: How to Get One?

Network (network portion):
- Get allocated portion of ISP’s address space:

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>
IP Addresses: How to Get One?

• How does an ISP get block of addresses?
 • From **Regional Internet Registries (RIRs)**
 • ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)

• How about a single host?
 • Hard-coded by system admin in a file
 • **DHCP:** **Dynamic Host Configuration Protocol:** dynamically get address: “plug-and-play”
 • Host broadcasts “**DHCP discover**” msg
 • DHCP server responds with “**DHCP offer**” msg
 • Host requests IP address: “**DHCP request**” msg
 • DHCP server sends address: “**DHCP ack**” msg
IP Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>19</th>
<th>24</th>
<th>28</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>HLen</td>
<td>TOS</td>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td>Flag</td>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IP Fragmentation Example

MTU = 1500

Length = 2000, M=1, Offset = 0
1480 bytes
Length = 1500, M=1, Offset = 0
1480 bytes
Length = 1500, M=1, Offset = 1980
500 bytes
Length = 360, M=0, Offset = 3460
340 bytes

IP Header IP Data
IP Header IP Data
IP Header IP Data
IP Header IP Data
IP Data
IP Data
IP Data
Important Concepts

- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP
Distance-Vector Routing

- **Idea**
 - At any time, have cost/next hop of best known path to destination
 - Use cost ∞ when no path known

- **Initially**
 - Only have entries for directly connected nodes

Initial Table for A

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>$-$</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>$-$</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>F</td>
</tr>
</tbody>
</table>
Distance-Vector Update

- **Update**(x,y,z)

 \[
 d \leftarrow c(x,z) + d(z,y)
 \]

 # Cost of path from x to y with first hop z

 if \(d < d(x,y) \)

 # Found better path

 return \(d,z \)

 # Updated cost / next hop

 else

 return \(d(x,y) \), \(\text{nexthop}(x,y) \)

 # Existing cost / next hop
Distance Vector: Link Cost Changes

Link cost changes:
- Good news travels fast
- Bad news travels slow - "count to infinity" problem!

![Diagram showing link cost changes over time](image)

- $c(X,Y)$ change
- Algorithm continues on!
Distance Vector: Split Horizon

If Z routes through Y to get to X:
- Z does not advertise its route to X back to Y

Algorithm terminates
Link State Protocol Concept

• Every node gets complete copy of graph
 • Every node “floods” network with data about its outgoing links
• Every node computes routes to every other node
 • Using single-source, shortest-path algorithm
• Process performed whenever needed
 • When connections die / reappear
Sending Link States by Flooding

- X Wants to Send Information
 - Sends on all outgoing links

- When Node B Receives Information from A
 - Send on all links other than A
Comparison of LS and DV Algorithms

Message complexity
- **LS**: with n nodes, E links, $O(nE)$ messages
- **DV**: exchange between neighbors only $O(E)$

Speed of Convergence
- **LS**: Complex computation
 - But...can forward before computation
 - may have oscillations
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem
 - (faster with triggered updates)

Space requirements:
- LS maintains entire topology
- DV maintains only neighbor state
IP Multicast Control Plane

Service model

Host-to-router protocol (IGMP)

Multicast routing protocols (various)
IP Multicast Service Model (rfc1112)

- Each group identified by a single IP address
- Groups may be of any size
- Members of groups may be located anywhere in the Internet
- Members of groups can join and leave at will
- Senders need not be members
- Group membership not known explicitly
- Analogy:
 - Each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.
How IGMP Works

- On each link, one router is elected the “querier”
- Querier periodically sends a Membership Query message to the all-systems group (224.0.0.1), with TTL = 1
- On receipt, hosts start random timers (between 0 and 10 seconds) for each multicast group to which they belong
Multicast Routing Protocols (Part 2 of Control Plane)

- Basic objective – build distribution tree for multicast packets
- Flood and prune
 - Begin by flooding traffic to entire network
 - Prune branches with no receivers
 - Examples: DVMRP, PIM-DM
 - *Unwanted state where there are no receivers*
- Link-state multicast protocols
 - Routers advertise groups for which they have receivers to entire network
 - Compute trees on demand
 - Example: MOSPF
 - *Unwanted state where there are no senders*
BGP - Border Gateway Protocol

• Covered next week
NAT: Client Request

W: Workstation
S: Server Machine

- Firewall acts as proxy for client
 - Intercepts message from client and marks itself as sender
Extending Private Network

- Supporting Road Warrior
 - Employee working remotely with assigned IP address 198.3.3.3
 - Wants to appear to rest of corporation as if working internally
 - From address 10.6.6.6
 - Gives access to internal services (e.g., ability to send mail)
- Virtual Private Network (VPN)
 - Overlays private network on top of regular Internet
Supporting VPN by Tunneling

- **Concept**
 - Appears as if two hosts connected directly
- **Usage in VPN**
 - Create tunnel between road warrior & firewall
 - Remote host appears to have direct connection to internal network
Implementing Tunneling

- Host creates packet for internal node 10.6.1.1.1
- Entering Tunnel
 - Add extra IP header directed to firewall (243.4.4.4)
 - Original header becomes part of payload
 - Possible to encrypt it
- Exiting Tunnel
 - Firewall receives packet
 - Strips off header
 - Sends through internal network to destination
Virtual Circuit IDs/Switching: Label ("tag") Swapping

- Global VC ID allocation -- ICK! Solution: Per-link uniqueness. \textit{Change VCI each hop.}

<table>
<thead>
<tr>
<th>Input Port</th>
<th>Input VCI</th>
<th>Output Port</th>
<th>Output VCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1:</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>R2:</td>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>R4:</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\[A \quad B \quad R2 \quad R4 \quad Dst \]

\[R1 \quad R3 \]

\[1 \quad 2 \quad 3 \quad 4 \]

\[1 \quad 2 \quad 3 \quad 4 \]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Source Routing</th>
<th>Global Addresses</th>
<th>Virtual Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header Size</td>
<td>Worst</td>
<td>OK – Large address</td>
<td>Best</td>
</tr>
<tr>
<td>Router Table Size</td>
<td>None</td>
<td>Number of hosts (prefixes)</td>
<td>Number of circuits</td>
</tr>
<tr>
<td>Forward Overhead</td>
<td>Best</td>
<td>Prefix matching (Worst)</td>
<td>Pretty Good</td>
</tr>
<tr>
<td>Setup Overhead</td>
<td>None</td>
<td>None</td>
<td>Connection Setup</td>
</tr>
<tr>
<td>Error Recovery</td>
<td>Tell all hosts</td>
<td>Tell all routers</td>
<td>Tell all routers and Tear down circuit and re-route</td>
</tr>
</tbody>
</table>
MPLS core, IP interface

MPLS tag assigned

MPLS tag stripped

MPLS forwarding in core
Take Home Points

- Costs/benefits/goals of virtual circuits
- Cell switching (ATM)
 - Fixed-size pkts: Fast hardware
 - Packet size picked for low voice jitter. Understand trade-offs.
 - Beware packet shredder effect (drop entire pkt)
- Tag/label swapping
 - Basis for most VCs.
 - Makes label assignment link-local. Understand mechanism.
- MPLS - IP meets virtual circuits
 - MPLS tunnels used for VPNs, traffic engineering, reduced core routing table sizes
Outline

- Switching and Multiplexing
- Link-Layer
- Routing-Layer
- Physical-Layer
 - Encodings
From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream

Packets

Packet Transmission

Sender ➔ Receiver
We use two discrete signals, high and low, to encode 0 and 1.

The transmission is synchronous, i.e., there is a clock used to sample the signal.

- In general, the duration of one bit is equal to one or two clock ticks.
Non-Return to Zero (NRZ)

- 1 -> high signal; 0 -> low signal
- Long sequences of 1’s or 0’s can cause problems:
 - Sensitive to clock skew, i.e. hard to recover clock
 - Difficult to interpret 0’s and 1’s
Non-Return to Zero Inverted (NRZI)

- 1 -> make transition; 0 -> signal stays the same
- Solves the problem for long sequences of 1’s, but not for 0’s.
Ethernet Manchester Encoding

- Positive transition for 0, negative for 1
- Transition every cycle communicates clock (but need 2 transition times per bit)
- DC balance has good electrical properties
4B/5B Encoding

- Data coded as symbols of 5 line bits => 4 data bits, so 100 Mbps uses 125 MHz.
 - Uses less frequency space than Manchester encoding
- Uses NRI to encode the 5 code bits
- Each valid symbol has at least two 1s: get dense transitions.
- 16 data symbols, 8 control symbols
 - Data symbols: 4 data bits
 - Control symbols: idle, begin frame, etc.
- Example: FDDI.
Framing

• A link layer function, defining which bits have which function.
• Minimal functionality: mark the beginning and end of packets (or frames).
• Some techniques:
 • out of band delimiters (e.g. FDDI 4B/5B control symbols)
 • frame delimiter characters with character stuffing
 • frame delimiter codes with bit stuffing
 • synchronous transmission (e.g. SONET)
Dealing with Errors
Stop and Wait Case

- Packets can get lost, corrupted, or duplicated.
 - Error detection or correction turns corrupted packet into lost or correct packet
- Duplicate packet: use sequence numbers.
- Lost packet: time outs and acknowledgements.
 - Positive versus negative acknowledgements
 - Sender side versus receiver side timeouts
- Window based flow control: more aggressive use of sequence numbers (see transport lectures).