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15-744: Computer Networking 

L-22 Security and DoS 
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Overview 

• Security holes in IP stack 

• Denial of service 

• Capabilities 

• Traceback 
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Basic IP 

• End hosts create IP packets and routers process 
them purely based on destination address alone 
(not quite in reality) 

• Problem – End host may lie about other fields and 
not affect delivery 
• Source address – host may trick destination into 

believing that packet is from trusted source 
• Many applications use IP address as a simple authentication 

method 

• Solution – reverse path forwarding checks, better 
authentication 

• Fragmentation – can consume memory resources or 
otherwise trick destination/firewalls 

• Solution – disallow fragments 
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Routing 

• Source routing 

• Destinations are expected to reverse source 

route for replies 

• Problem – Can force packets to be routed 

through convenient monitoring point  

• Solution – Disallow source routing – doesn’t work 

well anyway! 



2 

5 

Routing 

• Routing protocol 

• Malicious hosts may advertise routes into 

network 

• Problem – Bogus routes may enable host to 

monitor traffic or deny service to others 

• Solutions 

• Use policy mechanisms to only accept routes from or to 

certain networks/entities 

• In link state routing, can use something like source routing 
to force packets onto valid route 

• Routing registries and certificates 
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ICMP 

• Reports errors and other conditions from 
network to end hosts 

• End hosts take actions to respond to error 

• Problem 

• An entity can easily forge a variety of ICMP 
error messages 
• Redirect – informs end-hosts that it should be using 

different first hop route 

• Fragmentation – can confuse path MTU discovery 

• Destination unreachable – can cause transport 
connections to be dropped 
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TCP 

• Each TCP connection has an agreed upon/
negotiated set of associated state 
• Starting sequence numbers, port numbers 

• Knowing these parameters is sometimes used to 
provide some sense of security 

• Problem 

• Easy to guess these values 

• Listening ports #’s are well known and connecting port #’s are 
typically allocated sequentially 

• Starting sequence number are chosen in predictable way 

• Solution – make sequence number selection more 
random 
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Sequence Number Guessing Attack 

Attacker  Victim: SYN(ISNx), SRC=Trusted Host 

Victim  Trusted Host: SYN(ISNs), ACK(ISNx) 

Attacker  Victim: ACK(ISNguess of s), SRC=Trusted Host 

Attacker  Victim: ACK(ISNguess of s), SRC=T, data = “rm -r /” 

• Attacker must also make sure that Trusted 

Host does not respond to SYNACK 

• Can repeat until guess is accurate 
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TCP 

• TCP senders assume that receivers behave in certain 

ways (e.g. when they send acks, etc.) 

• Congestion control is typically done on a “packet” basis while the 
rest of TCP is based on bytes 

• Problem – misbehaving receiver can trick sender into 

ignoring congestion control 

• Ack every byte in packet! 

• Send extra duplicate acks 

• Ack before the data is received (needs some application level 

retransmission – e.g. HTTP 1.1 range requests) 

• Solutions 

• Make congestion control byte oriented 

• Add nonces to packets – acks return nonce to truly indicate reception 
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DNS 

• Users/hosts typically trust the host-address 

mapping provided by DNS 

• Problems  

• Zone transfers can provide useful list of target 

hosts 

• Interception of requests or comprise of DNS 

servers can result in bogus responses 

• Solution – authenticated requests/responses 
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Overview 

• Security holes in IP stack 

• Denial of service 

• Capabilities 

• Traceback 

Denial of Service: What is it? 

• Crash victim (exploit software flaws) 

• Attempt to exhaust victim's resources 

• Network: Bandwidth 

• Host 

• Kernel: TCP connection state tables, etc. 

• Application: CPU, memory, etc. 

• Often high-rate attacks, but not always 
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Attacker Victim 
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TCP Reminder: 3-Way Handshake 
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slide credit: Feamster 

Example DoS:  TCP SYN Floods 

• Each arriving SYN stores state at the server 
• TCP Control Block (TCB)  

• ~ 280 bytes 
• FlowID, timer info, Sequence number, flow control status, 

out-of-band data, MSS, other options 

• Attack: 
• Send TCP SYN packets with bogus src addr 

• Half-open TCB entries exist until timeout 

• Kernel limits on # of TCBs 

• Resources exhausted  requests rejected 
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Preventing SYN floods 

• Principle 1:  Minimize state before auth 

• (3 way handshake == auth)? 

• Compressed TCP state 

• Very tiny state representation for half-open 

conns 

• Don't create the full TCB 

• A few bytes per connection == can store 

100,000s of half-open connections 
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SYN Cookies 

• Idea:  Keep no state until auth. 
• In response to SYN send back self-validating token 

to source that source must attach to ACK  

• SYN  SYN/ACK+token  ACK+token 

• Validates that the receiver's IP is valid 

• How to do in SYN?  sequence #s! 

• top 5 bits:  time counter 

• next 3:  Encode the MSS 

• bottom 24:  F(client IP, port, server IP, port, t)? 

• Downside to this encoding:  Loses options. 
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Bandwidth Floods 

• 1990s:  Brute force from a few machines 

• Pretty easy to stop:  Filter the sources 

• Until they spoof their src addr! 

• Late 90s, early 00s:  Traffic Amplifiers 

• Spoofed source addrs (next)? 

• Modern era:  Botnets 

• Use a worm to compromise 1000s+ of 

machines 

• Often don't need to bother with spoofing 
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Reflector Attacks 

• Spoof source address 

• Send query to service 

• Response goes to victim 

• If response >> query, “amplifies” attack 

• Hides real attack source from victim 

• Amplifiers: 

• DNS responses (50 byte query  400 byte resp)? 

• ICMP to broadcast addr (1 pkt  50 pkts) (“smurf”) 
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Inferring DoS Activity: Backscatter 
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IP address spoofing creates random backscatter. 

Bandwidth DOS Attacks - Solutions 

• Ingress filtering – examine packets to identify bogus 
source addresses 

• Link testing – have routers either explicitly identify 
which hops are involved in attack or use controlled 
flooding and a network map to perturb attack traffic 

• Logging – log packets at key routers and post-
process to identify attacker’s path 

• ICMP traceback – sample occasional packets and 
copy path info into special ICMP messages 

• Capabilities 

• IP traceback + filtering 
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Spoofing 1: Ingress/Egress Filtering 

• RFC 2827: Routers install filters to drop 

packets from networks that are not 

downstream 

• Feasible at edges;  harder at “core” 
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204.69.207.0/24  

Internet 

Drop all packets with source 

address other than 

204.69.207.0/24 

Spoofing 2: RPF Checks 

• Unicast Reverse Path Forwarding 

• Cisco: “ip verify unicast reverse-path” 

• Requires symmetric routing 
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Accept packet from interface only if forwarding table entry for 

source IP address matches ingress interface 

Strict Mode  
uRPF Enabled 

“A” Routing Table 
Destination       Next Hop 

10.0.1.0/24       Int. 1 

10.0.18.0/24      Int. 2 

10.0.18.3 from wrong interface 

Slide Credit:  Feamster 
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Secure Overlay Services 

• Authenticate client communication 

• Longer/slower route 

• Closed network 

Keromytis, Misra, Rubenstein, 02 

Source point 

Overlay 

Access 

Point 

Beacon 

Secret servlet 

Overlay Nodes target 

Filtered region 
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Overview 

• Security holes in IP stack 

• Denial of service 

• Capabilities 

• Traceback 
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Capabilities 

• Filters:  prevent the bad stuff 

• Capabilities:  must have permission to talk 

• Sender must first ask dst for permission 

• If OK, dst gives capabilitiy to src 

• capability proves to routers that traffic is OK 

• Good feature:  stateless at routers 
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Unforgeable Capabilities 

• It is required that a set of capabilities be not easily 
forgeable or usable if stolen from another party 

• Each router computes a cryptographic hash when it 
forwards a request packet 

• The destination receives a list of pre-capabilities 
with fixed source and destination IP, hence 
preventing spoofed attacks 

TVA (Capability) 
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Yang, Wetherall, Anderson 05 
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CNN 

• RTS rate limited 

– 1-5% of bandwidth 

• Pi Queue at Router  

• Most recent Pi 

Fine-Grained Capabilities 

• False authorizations even in small number 

can cause a denial of service until the 

capability expires 

• An improved mechanism would be for the 

destination to decide the amount of data (N) 

and also the time (T) along with the list of 

pre-capabilities 
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TVA (Capability) 
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• N bytes, T seconds 

• Stateless receiver 

– Does not store N, T 

Bounded Router State 

• The router state could be exhausted as it 

would be counting the number of bytes sent 

• Router state is only maintained for flows 

that send faster than N/T 

• When new packets arrive, new state is created 

and a byte counter is initialized along with a 

time-to-live field that is decremented/

incremented 

Balancing Authorized Traffic 

• It is quite possible for a compromised insider to 
allow packet floods from outside 

• A fair-queuing policy is implemented and the 
bandwidth is decreased as the network becomes 
busier 

• To limit the number of queues, a bounded policy is 
used which only queues those flows that send faster 
than N/T 

• Other senders are limited by FIFO service 

Short, Slow or Asymmetric Flows 

• Even for short or slow connections, since most byte 
belong to long flows the aggregate efficiency is not 
affected 

• No added latency are involved in exchanging 
handshakes 

• All connections between a pair of hosts can use single 
capability  

• TVA experiences reduced efficiency only when all the 
flows near the host are short; this can be countered by 
increasing the bandwidth 
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Overview 

• Security holes in IP stack 

• Denial of service 

• Capabilities 

• Traceback 

Filters & Pushback 

• Assumption:  Can identify anomalous traffic? 
• Add “filters” that drop this traffic 

• Access control lists in routers 

• e.g. deny ip from dave.cmu.edu to victim.com tcp port 80 

• Pushback:  Push filters further into network 
towards the source 
• Need to know where to push the filters 

(traceback)? 

• Need authentication of filters... 

• Tough problems.  Filters usually deployed near 
victim. 
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The Need for Traceback 

• Internet hosts are vulnerable 

• Many attacks consist of very few packets 

• Fraggle, Teardrop, ping-of-death, etc. 

• Internet Protocol permits anonymity 

• Attackers can “spoof” source address 

• IP forwarding maintains no audit trails 

• Need a separate traceback facility 

• For a given packet, find the path to source 
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Approaches to Traceback 

• Path data can be noted in several places 

• In the packet itself [Savage et al.], 

• At the destination [I-Trace], or 

• In the network infrastructure 

• Logging: a naïve in-network approach 

• Record each packet forwarding event 

• Can trace a single packet to a source router, 

ingress point, or subverted router(s) 

39 
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IP Traceback 

• Node append (record route) – high computation 

and space overhead 

• Node sampling – each router marks its IP address 

with some probability p 

• P(receiving mark from router d hops away) = p(1 – p)d-1 

• p > 0.5 prevents any attacker from inserting false router 

• Must infer distance by marking rate  relatively slow 

• Doesn’t work well with multiple routers at same 

distance  I.e. multiple attackers 
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IP Traceback 

• Edge sampling 

• Solve node sampling problems by encoding edges & 

distance from victim in messages 

• Start router sets “start” field with probability p and sets 

distance to 0 

• If distance is 0, router sets “end” field 

• All routers increment distance 

• As before, P(receiving mark from router d hops away) = 

p(1 – p)d-1 

• Multiple attackers can be identified since edge 

identifies splits in reverse path 
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Edge Sampling 

• Major problem – need to add about 72bits (2 

address + hop count) of info into packets 

• Solution 

• Encode edge as xor of nodes  reduce 64 bits to 32 

bits 

• Ship only 8bits at a time and 3bits to indicate offset  

32 bits to 11bits 

• Use only 5 bit for distance  8bits to 5bits 

• Use IP fragment field to store 16 bits 

• Some backward compatibility issues  

• Fragmentation is rare so not a big problem 

Log-Based Traceback 
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Challenges to Logging 

• Attack path reconstruction is difficult 

• Packet may be transformed as it moves 

through the network 

• Full packet storage is problematic 

• Memory requirements are prohibitive at high 

line speeds (OC-192 is ~10Mpkt/sec) 

• Extensive packet logs are a privacy risk 

• Traffic repositories may aid eavesdroppers 
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Solution: Packet Digesting 

• Record only invariant packet content 

• Mask dynamic fields (TTL, checksum, etc.) 

• Store information required to invert packet 

transformations at performing router 

• Compute packet digests instead 

• Use hash function to compute small digest 

• Store probabilistically in Bloom filters 

• Impossible to retrieve stored packets 
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Invariant Content 

Total Length 

Identification 

Checksum 

Ver TOS HLen 

TTL Protocol 

Source Address 

Destination Address 

Fragment Offset 
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D 

F 

Options 

Remainder of Payload 

First 8 bytes of Payload 

28 

bytes 
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Bloom Filters 

• Fixed structure size  
• Uses 2n bit array 

• Initialized to zeros 

• Insertion is easy 
• Use n-bit digest as 

indices into bit array 

• Mitigate collisions by 
using multiple digests 

• Variable capacity 
• Easy to adjust 

• Page when full 
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Mistake Propagation is Limited 

• Bloom filters may be mistaken 

• Mistake frequency can be controlled 

• Depends on capacity of full filters 

• Neighboring routers won’t be fooled 

• Vary hash functions used in Bloom filters 

• Each router select hashes independently  

• Long chains of mistakes highly unlikely 

• Probability drops exponentially with length 
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Adjusting Graph Accuracy 

• False positives rate depends on: 

• Length of the attack path 

• Complexity of network topology 

• Capacity of Bloom filters 

• Bloom filter capacity is easy to adjust 

• Required filter capacity varies with router speed 
and number of neighbors 

• Appropriate capacity settings achieve linear 
error growth with path length 
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How long can digests last?  

• Filters require 0.5% of link capacity 

• Four OC-3s require 47MB per minute 

• A single drive can store a whole day 

• Access times are equally important 

• Current drives can write >3GB per minute 

• OC-192 needs SRAM access times 

• Still viable tomorrow 

• 128 OC-192 links need <100GB per minute 
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