
1

15-744: Computer Networking

L-22 Security and DoS

2

Overview

• Security holes in IP stack

• Denial of service

• Capabilities

• Traceback

3

Basic IP

• End hosts create IP packets and routers process
them purely based on destination address alone
(not quite in reality)

• Problem – End host may lie about other fields and
not affect delivery
• Source address – host may trick destination into

believing that packet is from trusted source
• Many applications use IP address as a simple authentication

method

• Solution – reverse path forwarding checks, better
authentication

• Fragmentation – can consume memory resources or
otherwise trick destination/firewalls

• Solution – disallow fragments

4

Routing

• Source routing

• Destinations are expected to reverse source

route for replies

• Problem – Can force packets to be routed

through convenient monitoring point

• Solution – Disallow source routing – doesn’t work

well anyway!

2

5

Routing

• Routing protocol

• Malicious hosts may advertise routes into

network

• Problem – Bogus routes may enable host to

monitor traffic or deny service to others

• Solutions

• Use policy mechanisms to only accept routes from or to

certain networks/entities

• In link state routing, can use something like source routing
to force packets onto valid route

• Routing registries and certificates

6

ICMP

• Reports errors and other conditions from
network to end hosts

• End hosts take actions to respond to error

• Problem

• An entity can easily forge a variety of ICMP
error messages
• Redirect – informs end-hosts that it should be using

different first hop route

• Fragmentation – can confuse path MTU discovery

• Destination unreachable – can cause transport
connections to be dropped

7

TCP

• Each TCP connection has an agreed upon/
negotiated set of associated state
• Starting sequence numbers, port numbers

• Knowing these parameters is sometimes used to
provide some sense of security

• Problem

• Easy to guess these values

• Listening ports #’s are well known and connecting port #’s are
typically allocated sequentially

• Starting sequence number are chosen in predictable way

• Solution – make sequence number selection more
random

8

Sequence Number Guessing Attack

Attacker Victim: SYN(ISNx), SRC=Trusted Host

Victim Trusted Host: SYN(ISNs), ACK(ISNx)

Attacker Victim: ACK(ISNguess of s), SRC=Trusted Host

Attacker Victim: ACK(ISNguess of s), SRC=T, data = “rm -r /”

• Attacker must also make sure that Trusted

Host does not respond to SYNACK

• Can repeat until guess is accurate

3

9

TCP

• TCP senders assume that receivers behave in certain

ways (e.g. when they send acks, etc.)

• Congestion control is typically done on a “packet” basis while the
rest of TCP is based on bytes

• Problem – misbehaving receiver can trick sender into

ignoring congestion control

• Ack every byte in packet!

• Send extra duplicate acks

• Ack before the data is received (needs some application level

retransmission – e.g. HTTP 1.1 range requests)

• Solutions

• Make congestion control byte oriented

• Add nonces to packets – acks return nonce to truly indicate reception

10

DNS

• Users/hosts typically trust the host-address

mapping provided by DNS

• Problems

• Zone transfers can provide useful list of target

hosts

• Interception of requests or comprise of DNS

servers can result in bogus responses

• Solution – authenticated requests/responses

11

Overview

• Security holes in IP stack

• Denial of service

• Capabilities

• Traceback

Denial of Service: What is it?

• Crash victim (exploit software flaws)

• Attempt to exhaust victim's resources

• Network: Bandwidth

• Host

• Kernel: TCP connection state tables, etc.

• Application: CPU, memory, etc.

• Often high-rate attacks, but not always

12

Attacker Victim

4

TCP Reminder: 3-Way Handshake

13

C S

SYNC

SYNS, ACKC

ACKS

Listening

Create TCB

Wait

Connected

slide credit: Feamster

Example DoS: TCP SYN Floods

• Each arriving SYN stores state at the server
• TCP Control Block (TCB)

• ~ 280 bytes
• FlowID, timer info, Sequence number, flow control status,

out-of-band data, MSS, other options

• Attack:
• Send TCP SYN packets with bogus src addr

• Half-open TCB entries exist until timeout

• Kernel limits on # of TCBs

• Resources exhausted requests rejected

14

Preventing SYN floods

• Principle 1: Minimize state before auth

• (3 way handshake == auth)?

• Compressed TCP state

• Very tiny state representation for half-open

conns

• Don't create the full TCB

• A few bytes per connection == can store

100,000s of half-open connections

15

SYN Cookies

• Idea: Keep no state until auth.
• In response to SYN send back self-validating token

to source that source must attach to ACK

• SYN SYN/ACK+token ACK+token

• Validates that the receiver's IP is valid

• How to do in SYN? sequence #s!

• top 5 bits: time counter

• next 3: Encode the MSS

• bottom 24: F(client IP, port, server IP, port, t)?

• Downside to this encoding: Loses options.

16

5

Bandwidth Floods

• 1990s: Brute force from a few machines

• Pretty easy to stop: Filter the sources

• Until they spoof their src addr!

• Late 90s, early 00s: Traffic Amplifiers

• Spoofed source addrs (next)?

• Modern era: Botnets

• Use a worm to compromise 1000s+ of

machines

• Often don't need to bother with spoofing

17

Reflector Attacks

• Spoof source address

• Send query to service

• Response goes to victim

• If response >> query, “amplifies” attack

• Hides real attack source from victim

• Amplifiers:

• DNS responses (50 byte query 400 byte resp)?

• ICMP to broadcast addr (1 pkt 50 pkts) (“smurf”)

18

Inferring DoS Activity: Backscatter

19

IP address spoofing creates random backscatter.

Bandwidth DOS Attacks - Solutions

• Ingress filtering – examine packets to identify bogus
source addresses

• Link testing – have routers either explicitly identify
which hops are involved in attack or use controlled
flooding and a network map to perturb attack traffic

• Logging – log packets at key routers and post-
process to identify attacker’s path

• ICMP traceback – sample occasional packets and
copy path info into special ICMP messages

• Capabilities

• IP traceback + filtering

21

6

Spoofing 1: Ingress/Egress Filtering

• RFC 2827: Routers install filters to drop

packets from networks that are not

downstream

• Feasible at edges; harder at “core”

22

204.69.207.0/24

Internet

Drop all packets with source

address other than

204.69.207.0/24

Spoofing 2: RPF Checks

• Unicast Reverse Path Forwarding

• Cisco: “ip verify unicast reverse-path”

• Requires symmetric routing

23

Accept packet from interface only if forwarding table entry for

source IP address matches ingress interface

Strict Mode
uRPF Enabled

“A” Routing Table
Destination Next Hop

10.0.1.0/24 Int. 1

10.0.18.0/24 Int. 2

10.0.18.3 from wrong interface

Slide Credit: Feamster

24

Secure Overlay Services

• Authenticate client communication

• Longer/slower route

• Closed network

Keromytis, Misra, Rubenstein, 02

Source point

Overlay

Access

Point

Beacon

Secret servlet

Overlay Nodes target

Filtered region

25

Overview

• Security holes in IP stack

• Denial of service

• Capabilities

• Traceback

7

Capabilities

• Filters: prevent the bad stuff

• Capabilities: must have permission to talk

• Sender must first ask dst for permission

• If OK, dst gives capabilitiy to src

• capability proves to routers that traffic is OK

• Good feature: stateless at routers

26

Unforgeable Capabilities

• It is required that a set of capabilities be not easily
forgeable or usable if stolen from another party

• Each router computes a cryptographic hash when it
forwards a request packet

• The destination receives a list of pre-capabilities
with fixed source and destination IP, hence
preventing spoofed attacks

TVA (Capability)

29
Yang, Wetherall, Anderson 05

R
T

S

Pre1, Pre2

PreCapability (Pi)=

hash(srcIP, destIP, time, secret)

Alic

e

CNN

• RTS rate limited

– 1-5% of bandwidth

• Pi Queue at Router

• Most recent Pi

Fine-Grained Capabilities

• False authorizations even in small number

can cause a denial of service until the

capability expires

• An improved mechanism would be for the

destination to decide the amount of data (N)

and also the time (T) along with the list of

pre-capabilities

8

TVA (Capability)

31

C
A

P

C
A

P

Cap1, Cap2

Cap1, Cap2

Capability =

timestamp || Hash (N, T, PreCap)

CNN

Alic

e

• N bytes, T seconds

• Stateless receiver

– Does not store N, T

Bounded Router State

• The router state could be exhausted as it

would be counting the number of bytes sent

• Router state is only maintained for flows

that send faster than N/T

• When new packets arrive, new state is created

and a byte counter is initialized along with a

time-to-live field that is decremented/

incremented

Balancing Authorized Traffic

• It is quite possible for a compromised insider to
allow packet floods from outside

• A fair-queuing policy is implemented and the
bandwidth is decreased as the network becomes
busier

• To limit the number of queues, a bounded policy is
used which only queues those flows that send faster
than N/T

• Other senders are limited by FIFO service

Short, Slow or Asymmetric Flows

• Even for short or slow connections, since most byte
belong to long flows the aggregate efficiency is not
affected

• No added latency are involved in exchanging
handshakes

• All connections between a pair of hosts can use single
capability

• TVA experiences reduced efficiency only when all the
flows near the host are short; this can be countered by
increasing the bandwidth

9

36

Overview

• Security holes in IP stack

• Denial of service

• Capabilities

• Traceback

Filters & Pushback

• Assumption: Can identify anomalous traffic?
• Add “filters” that drop this traffic

• Access control lists in routers

• e.g. deny ip from dave.cmu.edu to victim.com tcp port 80

• Pushback: Push filters further into network
towards the source
• Need to know where to push the filters

(traceback)?

• Need authentication of filters...

• Tough problems. Filters usually deployed near
victim.

37

The Need for Traceback

• Internet hosts are vulnerable

• Many attacks consist of very few packets

• Fraggle, Teardrop, ping-of-death, etc.

• Internet Protocol permits anonymity

• Attackers can “spoof” source address

• IP forwarding maintains no audit trails

• Need a separate traceback facility

• For a given packet, find the path to source

38

Approaches to Traceback

• Path data can be noted in several places

• In the packet itself [Savage et al.],

• At the destination [I-Trace], or

• In the network infrastructure

• Logging: a naïve in-network approach

• Record each packet forwarding event

• Can trace a single packet to a source router,

ingress point, or subverted router(s)

39

10

40

IP Traceback

• Node append (record route) – high computation

and space overhead

• Node sampling – each router marks its IP address

with some probability p

• P(receiving mark from router d hops away) = p(1 – p)d-1

• p > 0.5 prevents any attacker from inserting false router

• Must infer distance by marking rate relatively slow

• Doesn’t work well with multiple routers at same

distance I.e. multiple attackers

41

IP Traceback

• Edge sampling

• Solve node sampling problems by encoding edges &

distance from victim in messages

• Start router sets “start” field with probability p and sets

distance to 0

• If distance is 0, router sets “end” field

• All routers increment distance

• As before, P(receiving mark from router d hops away) =

p(1 – p)d-1

• Multiple attackers can be identified since edge

identifies splits in reverse path

42

Edge Sampling

• Major problem – need to add about 72bits (2

address + hop count) of info into packets

• Solution

• Encode edge as xor of nodes reduce 64 bits to 32

bits

• Ship only 8bits at a time and 3bits to indicate offset

32 bits to 11bits

• Use only 5 bit for distance 8bits to 5bits

• Use IP fragment field to store 16 bits

• Some backward compatibility issues

• Fragmentation is rare so not a big problem

Log-Based Traceback

V

R

R1 R2

R3

R
R

R
R

R4

A R

RR7

R6R5

43

11

Challenges to Logging

• Attack path reconstruction is difficult

• Packet may be transformed as it moves

through the network

• Full packet storage is problematic

• Memory requirements are prohibitive at high

line speeds (OC-192 is ~10Mpkt/sec)

• Extensive packet logs are a privacy risk

• Traffic repositories may aid eavesdroppers

44

Solution: Packet Digesting

• Record only invariant packet content

• Mask dynamic fields (TTL, checksum, etc.)

• Store information required to invert packet

transformations at performing router

• Compute packet digests instead

• Use hash function to compute small digest

• Store probabilistically in Bloom filters

• Impossible to retrieve stored packets

45

Invariant Content

Total Length

Identification

Checksum

Ver TOS HLen

TTL Protocol

Source Address

Destination Address

Fragment Offset
M

F

D

F

Options

Remainder of Payload

First 8 bytes of Payload

28

bytes

46

Bloom Filters

• Fixed structure size
• Uses 2n bit array

• Initialized to zeros

• Insertion is easy
• Use n-bit digest as

indices into bit array

• Mitigate collisions by
using multiple digests

• Variable capacity
• Easy to adjust

• Page when full

48

1
n bits

2n

bits

H(P) H2(P)

Hk(P)

H3(P)

H1(P)

1

1

1

.
.

.

12

Mistake Propagation is Limited

• Bloom filters may be mistaken

• Mistake frequency can be controlled

• Depends on capacity of full filters

• Neighboring routers won’t be fooled

• Vary hash functions used in Bloom filters

• Each router select hashes independently

• Long chains of mistakes highly unlikely

• Probability drops exponentially with length

49

Adjusting Graph Accuracy

• False positives rate depends on:

• Length of the attack path

• Complexity of network topology

• Capacity of Bloom filters

• Bloom filter capacity is easy to adjust

• Required filter capacity varies with router speed
and number of neighbors

• Appropriate capacity settings achieve linear
error growth with path length

50

How long can digests last?

• Filters require 0.5% of link capacity

• Four OC-3s require 47MB per minute

• A single drive can store a whole day

• Access times are equally important

• Current drives can write >3GB per minute

• OC-192 needs SRAM access times

• Still viable tomorrow

• 128 OC-192 links need <100GB per minute

52

