

Outline • Active Networks • Overlay Routing (Detour) • Overlay Routing (RON) • Multi-Homing

Adding New Functionality to the Internet

- · Overlay networks
- Active networks
- Assigned reading
 - Resilient Overlay Networks
 - Active network vision and reality: lessons from a capsule-based system

Srinivasan Seshan, 200

-6: 2-26-02

Why Active Networks?

- Traditional networks route packets looking only at destination
 - Also, maybe source fields (e.g. multicast)
- Problem
 - Rate of deployment of new protocols and applications is too slow
- Solution
 - Allow computation in routers to support new protocol deployment

© Srinivasan Seshan, 2002

Active Networks

- Nodes (routers) receive packets:
 - Perform computation based on their internal state and control information carried in packet
 - Forward zero or more packets to end points depending on result of the computation
- Users and apps can control behavior of the routers
- End result: network services richer than those by the simple IP service model

C Srinivasan Seshan, 200

L -6; 2-26-02

Why not IP?

- Applications that do more than IP forwarding
 - Firewalls
 - · Web proxies and caches
 - · Transcoding services
 - · Nomadic routers (mobile IP)
 - · Transport gateways (snoop)
 - Reliable multicast (lightweight multicast, PGM)
 - Online auctions
 - · Sensor data mixing and fusion
- Active networks makes such applications easy to develop and deploy

Srinivasan Seshan, 2002

-6; 2-26-02

Variations on Active Networks

- Programmable routers
 - More flexible than current configuration mechanism
 - · For use by administrators or privileged users
- Active control
 - Forwarding code remains the same
 - Useful for management/signaling/measurement of traffic
- "Active networks"
 - Computation occurring at the network (IP) layer of the protocol stack → capsule based approach
 - Programming can be done by any user
 - · Source of most active debate

© Srinivasan Seshan, 20

L -6; 2-26

Case Study: MIT ANTS System

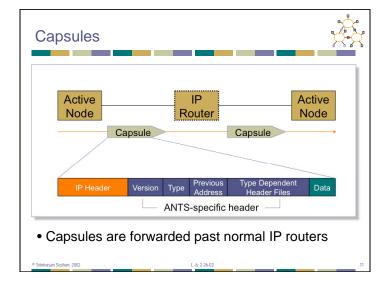
- Conventional Networks:
 - All routers perform same computation
- Active Networks:
 - · Routers have same runtime system
- Tradeoffs between functionality, performance and security

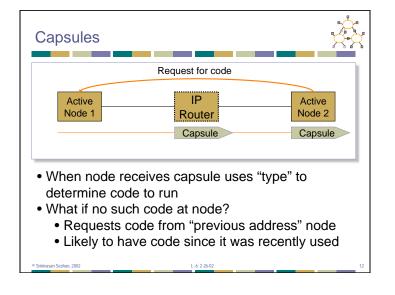
© Srinivasan Seshan, 2002

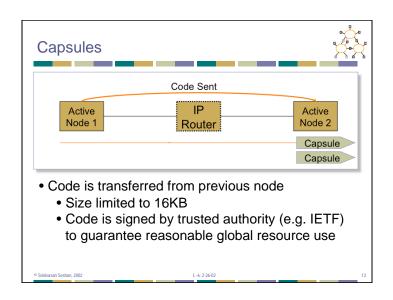
System Components

- Capsules
- Active Nodes:
 - Execute capsules of protocol and maintain protocol state
 - Provide capsule execution API and safety using OS/ language techniques
- Code Distribution Mechanism
 - Ensure capsule processing routines automatically/ dynamically transfer to node as needed

© Srinivasan Seshan, 20


L -6; 2-26-0


Capsules



- Each user/flow programs router to handle its own packets
 - Code sent along with packets
 - Code sent by reference
- Protocol:
 - Capsules that share the same processing code
- May share state in the network
- Capsule ID (i.e. name) is MD5 of code

Srinivasan Seshan, 2003

Functions Provided to Capsule

- Environment Access
 - Querying node address, time, routing tables
- Capsule Manipulation
 - · Access header and payload
- Control Operations
 - Create, forward and suppress capsules
 - How to control creation of new capsules?
- Storage
 - Soft-state cache of app-defined objects

Research Questions

- Execution environments
 - What can capsule code access/do?
- Safety, security & resource sharing
 - How isolate capsules from other flows, resources?
- Performance
 - Will active code slow the network?
- Applications
 - What type of applications/protocols does this enable?

inivasan Seshan, 2002

L -6; 2-26-02

Safety, Resource Mgt, Support

- · Safety:
 - Provided by mobile code technology (e.g. Java)
- Resource Management:
 - Node OS monitors capsule resource consumption
- Support:
 - If node doesn't have capsule code, retrieve from somewhere on path

Srinivasan Seshan, 2002

Applications/Protocols

- Limitations
 - Expressible → limited by execution environment
 - Compact → less than 16KB
 - Fast → aborted if slower than forwarding rate
 - Incremental → not all nodes will be active
- Proof by example
 - Host mobility, multicast, path MTU, Web cache routing, etc.

Srinivasan Seshan, 200

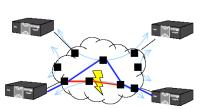
L -6; 2-26-02

Discussion

- Active nodes present lots of applications with a desirable architecture
- Key questions
 - Is all this necessary at the forwarding level of the network?
 - Is ease of deploying new apps/services and protocols a reality?

© Srinivasan Seshan, 200

Outline



- Active Networks
- Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

© Srinivasan Seshan, 200

1.6:2.26.02

The Internet Ideal

- Dynamic routing routes around failures
- End-user is none the wiser

20

Lesson from Routing Overlays

End-hosts are often better informed about performance, reachability problems than routers.

- End-hosts can measure path performance metrics on the (small number of) paths that matter
- Internet routing scales well, but at the cost of performance

Overlay for Features

- How do we add new features to the network?
 - Does every router need to support new feature?
 - Choices
 - Reprogram all routers → active networks
 - · Support new feature within an overlay
 - Basic technique: tunnel packets
- Tunnels
 - IP-in-IP encapsulation
 - · Poor interaction with firewalls, multi-path routers, etc.

Overlay Routing

- Basic idea:
 - Treat multiple hops through IP network as one hop in "virtual" overlay network
 - Run routing protocol on overlay nodes
- Why?
 - For performance can run more clever protocol on
 - For functionality can provide new features such as multicast, active processing, IPv6

Examples

- IP V6 & IP Multicast
 - Tunnels between routers supporting feature
- Mobile IP
 - Home agent tunnels packets to mobile host's location
- QOS
 - Needs some support from intermediate routers → maybe not?

Overlay for Performance [S+99]

- Why would IP routing not give good performance?
 - Policy routing limits selection/advertisement of routes
 - Early exit/hot-potato routing local not global incentives
 - Lack of performance based metrics AS hop count is the wide area metric
- How bad is it really?
 - · Look at performance gain an overlay provides

© Srinivasan Seshan, 200

L -6; 2-26-02

Quantifying Performance Loss

- Measure round trip time (RTT) and loss rate between pairs of hosts
 - ICMP rate limiting
- Alternate path characteristics
 - 30-55% of hosts had lower latency
 - 10% of alternate routes have 50% lower latency
 - 75-85% have lower loss rates

Srinivasan Seshan, 2003

1 -6: 2-26-02

Bandwidth Estimation

- RTT & loss for multi-hop path
 - RTT by addition
 - Loss either worst or combine of hops why?
 - Large number of flows -> combination of probabilities
 - Small number of flows→ worst hop
- Bandwidth calculation
 - TCP bandwidth is based primarily on loss and RTT
- 70-80% paths have better bandwidth
- 10-20% of paths have 3x improvement

© Srinivasan Seshan, 2002

1 .6: 2.26.02

Possible Sources of Alternate Paths

- A few really good or bad AS's
 - · No, benefit of top ten hosts not great
- Better congestion or better propagation delay?
 - · How to measure?
 - Propagation = 10th percentile of delays
 - Both contribute to improvement of performance
- What about policies/economics?

© Srinivasan Seshan, 2002

Overlay Challenges

- "Routers" no longer have complete knowledge about link they are responsible for
- · How do you build efficient overlay
 - Probably don't want all N² links which links to create?
 - Without direct knowledge of underlying topology how to know what's nearby and what is efficient?

P Srinivasan Seshan, 200

L -6; 2-26-02

Future of Overlay

- Application specific overlays
 - Why should overlay nodes only do routing?
- Caching
 - Intercept requests and create responses
- Transcoding
 - Changing content of packets to match available bandwidth
- Peer-to-peer applications

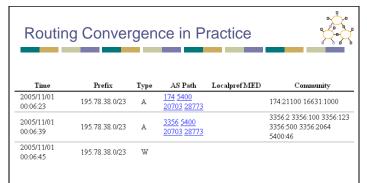
Srinivasan Seshan, 200

1 -6: 2-26-02

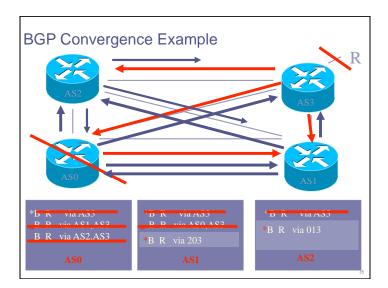
Outline

- Active Networks
- Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

© Srinivacan Sochan, 200

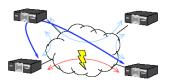

1.4:2.26.02

How Robust is Internet Routing?



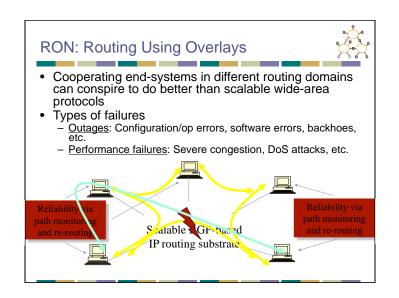
- Slow outage detection and recovery
- Inability to detect badly performing paths
- Inability to efficiently leverage redundant paths
- Inability to perform application-specific routing
- · Inability to express sophisticated routing policy

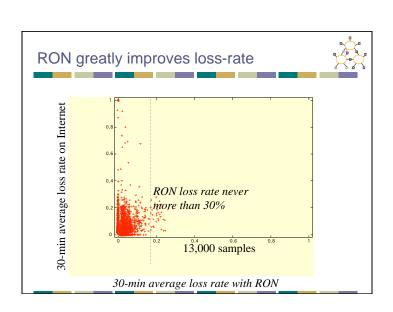
Paxson 95-97	• 3.3% of all routes had serious problems
Labovitz 97-00	 10% of routes available < 95% of the time 65% of routes available < 99.9% of the time 3-min minimum detection+recovery time; often 15 mins 40% of outages took 30+ mins to repair
Chandra 01	• 5% of faults last more than 2.75 hours

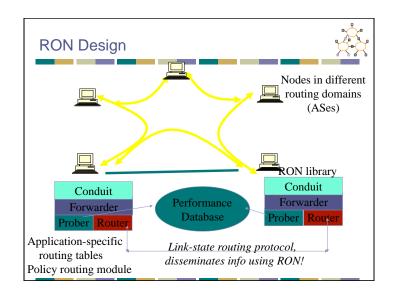

• Route withdrawn, but stub cycles through backup path...

Resilient Overlay Networks: Goal

- Increase reliability of communication for a small (i.e., < 50 nodes) set of connected hosts
- Main idea: End hosts discover network-level path failure and cooperate to re-route.


34


The RON Architecture



- Outage detection
 - · Active UDP-based probing
 - Uniform random in [0,14]
 - O(n²)
 - 3-way probe
 - Both sides get RTT information
 - Store latency and loss-rate information in DB
- Routing protocol: Link-state between overlay nodes
- Policy: restrict some paths from hosts
 - E.g., don't use Internet2 hosts to improve non-Internet2 paths

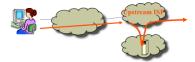
36

	30-minute average	loss rates	
Loss Rate	RON Better	No Change	RON Worse
10%	479	57	47
20%	127	4	15
30%	32	0	0
50%	20	0	0
80%	14	0	0
100%	10	0	0
12 "path h 76 "path h	th hours" represented nours" of essentially gours" of TCP outage ON routed around all	complete out	ige

Main results

- RON can route around failures in ~ 10 seconds
- · Often improves latency, loss, and throughput
- Single-hop indirection works well enough
 - Motivation for second paper (SOSR)
 - Also begs the question about the benefits of overlays

Open Questions


- Efficiency
 - Requires redundant traffic on access links
- Scaling
 - Can a RON be made to scale to > 50 nodes?
 - How to achieve probing efficiency?
- Interaction of overlays and IP network
- · Interaction of multiple overlays

42

Efficiency

Problem: traffic must traverse bottleneck link both inbound and outbound

- Solution: in-network support for overlays
 - End-hosts establish reflection points in routers
 - · Reduces strain on bottleneck links
 - Reduces packet duplication in application-layer multicast (next lecture)

Scaling

- Problem: O(n²) probing required to detect path failures. Does not scale to large numbers of hosts.
- Solution: ?
 - Probe some subset of paths (which ones)
 - Is this any different than a routing protocol, one layer higher?

Routing overlays

(e.g., RON)

Scalability

Performance (convergence speed, etc.)

Interaction of Overlays and IP Network

- Supposed outcry from ISPs: "Overlays will interfere with our traffic engineering goals."
 - Likely would only become a problem if overlays became a significant fraction of all traffic
 - Control theory: feedback loop between ISPs and overlays
 - Philosophy/religion: Who should have the final say in how traffic flows through the network?

End-hosts observe conditions, react Traffic matrix ISP measures traffic matrix, changes routing config.

Changes in endto-end paths

Interaction of multiple overlays

- End-hosts observe qualities of end-to-end paths
- Might multiple overlays see a common "good path"
- Could these multiple overlays interact to create increase congestion, oscillations, etc.?
 - Selfish routing

46

Benefits of Overlays

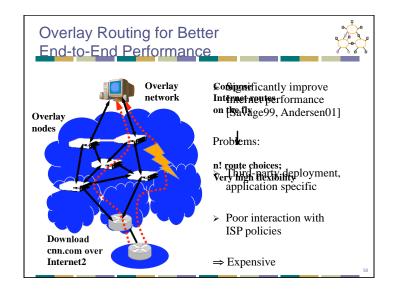
- Access to multiple paths
 - Provided by BGP multihoming
- Fast outage detection
 - But...requires aggressive probing; doesn't scale

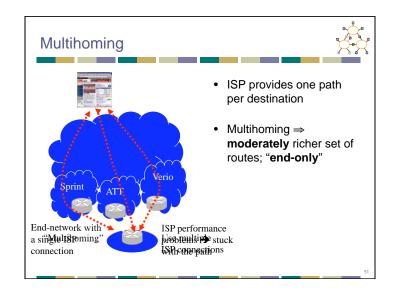
Question: What benefits does overlay routing provide over traditional multihoming + intelligent routing selection

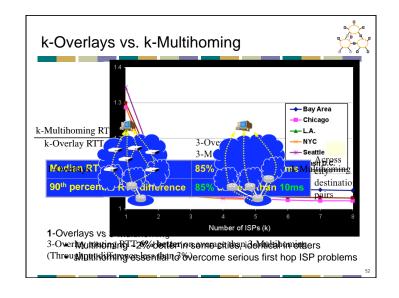
Outline

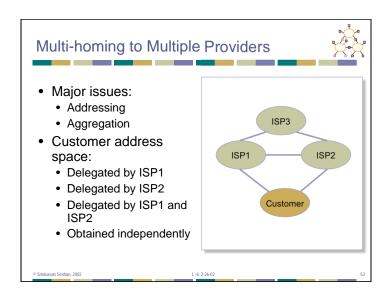
- Active Networks
- Overlay Routing (Detour)
- Overlay Routing (RON)
- Multi-Homing

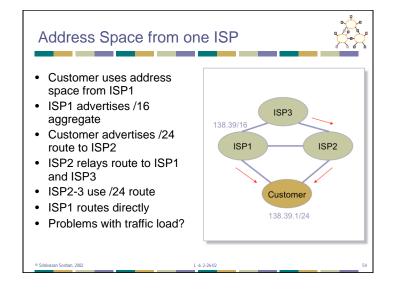
© Srinivasan Seshan, 2002


-6; 2-26-02


Multi-homing




- With multi-homing, a single network has more than one connection to the Internet.
- Improves reliability and performance:
 - · Can accommodate link failure
 - · Bandwidth is sum of links to Internet
- Challenges
 - Getting policy right (MED, etc..)
 - Addressing


© Srinivasan Seshan, 200

