15-744: Computer Networking

L-14 Network Topology

Sensor Networks
- Structural generators
- Power laws
- HOT graphs
- Graph generators
- Assigned reading
 - On Power-Law Relationships of the Internet Topology
 - A First Principles Approach to Understanding the Internet's Router-level Topology

Outline
- Motivation/Background
- Power Laws
- Optimization Models
- Graph Generation

Why study topology?
- Correctness of network protocols typically independent of topology
- Performance of networks critically dependent on topology
 - e.g., convergence of route information
- Internet impossible to replicate
- Modeling of topology needed to generate test topologies
Internet topologies

Router level topologies reflect physical connectivity between nodes
- Inferred from tools like traceroute or well known public measurement projects like Mercator and Skitter
- AS graph reflects a peering relationship between two providers/clients
- Inferred from inter-domain routers that run BGP and public projects like Oregon Route Views
- Inferring both is difficult, and often inaccurate

Hub-and-Spoke Topology
- Single hub node
 - Common in enterprise networks
 - Main location and satellite sites
 - Simple design and trivial routing
- Problems
 - Single point of failure
 - Bandwidth limitations
 - High delay between sites
 - Costs to backhaul to hub

Simple Alternatives to Hub-and-Spoke
- Dual hub-and-spoke
 - Higher reliability
 - Higher cost
 - Good building block
- Levels of hierarchy
 - Reduce backhaul cost
 - Aggregate the bandwidth
 - Shorter site-to-site delay
Points-of-Presence (PoPs)

- Inter-PoP links
 - Long distances
 - High bandwidth
- Intra-PoP links
 - Short cables between racks or floors
 - Aggregated bandwidth
- Links to other networks
 - Wide range of media and bandwidth

Deciding Where to Locate Nodes and Links

- Placing Points-of-Presence (PoPs)
 - Large population of potential customers
 - Other providers or exchange points
 - Cost and availability of real-estate
 - Mostly in major metropolitan areas
- Placing links between PoPs
 - Already fiber in the ground
 - Needed to limit propagation delay
 - Needed to handle the traffic load
Trends in Topology Modeling

Observation
- Long-range links are expensive
- Real networks are not random, but have obvious hierarchy
- Internet topologies exhibit power law degree distributions (Faloutsos et al., 1999)
- Physical networks have hard technological (and economic) constraints.

Modeling Approach
- Random graph (Waxman 1988)
- Structural models (GT-ITM Calvert/Zegura, 1996)
- Degree-based models replicate power-law degree sequences
- Optimization-driven models topologies consistent with design tradeoffs of network engineers

Waxman model (Waxman 1988)
- Router level model
- Nodes placed at random in 2-d space with dimension L
- Probability of edge (u,v): $ae^{-d/(bL)}$, where d is Euclidean distance (u,v), a and b are constants
- Models locality

Real world topologies
- Real networks exhibit
 - Hierarchical structure
 - Specialized nodes (transit, stub..)
 - Connectivity requirements
 - Redundancy

Transit-stub model (Zegura 1997)
- Router level model
- Transit domains
 - placed in 2-d space
 - populated with routers
 - connected to each other
- Stub domains
 - placed in 2-d space
 - populated with routers
 - connected to transit domains
- Models hierarchy
So...are we done?

• No!
• In 1999, Faloutsos, Faloutsos and Faloutsos published a paper, demonstrating power law relationships in Internet graphs
• Specifically, the node degree distribution exhibited power laws

That Changed Everything.....

Outline

• Motivation/Background
• Power Laws
• Optimization Models
• Graph Generation

Power laws in AS level topology

Power Laws

• Faloutsos³ (Sigcomm’99)
 • frequency vs. degree

topology from BGP tables of 18 routers
Power Laws

- Faloutsos\(^3\) (Sigcomm'99)
 - frequency vs. degree

topology from BGP tables of 18 routers

Power Laws

- Faloutsos\(^3\) (Sigcomm'99)
 - frequency vs. degree

Power Laws

- Faloutsos
 - frequency vs. degree
 - empirical ccdf
 \(P(d>x) \sim x^{-\alpha}\)

\(\alpha \approx 1.15\)
GT-ITM abandoned...

- GT-ITM did not give power law degree graphs
- New topology generators and explanation for power law degrees were sought
- Focus of generators to match degree distribution of observed graph

Inet (Jin 2000)

- Generate degree sequence
- Build spanning tree over nodes with degree larger than 1, using preferential connectivity
 - randomly select node u not in tree
 - join u to existing node v with probability \(\frac{d(v)}{\sum d(w)} \)
- Connect degree 1 nodes using preferential connectivity
- Add remaining edges using preferential connectivity

Power law random graph (PLRG)

- Operations
 - assign degrees to nodes drawn from power law distribution
 - create \(kv \) copies of node v; \(kv \) degree of v.
 - randomly match nodes in pool
 - aggregate edges

- may be disconnected, contain multiple edges, self-loops
- contains unique giant component for right choice of parameters

Barabasi model: fixed exponent

- incremental growth
 - initially, \(m_0 \) nodes
 - step: add new node i with m edges
- linear preferential attachment
 - connect to node i with probability
 \(\prod (ki) = \frac{ki}{\sum kj} \)

- may contain multi-edges, self-loops
Features of Degree-Based Models

- Degree sequence follows a power law (by construction)
- High-degree nodes correspond to highly connected central “hubs”, which are crucial to the system
- Achilles' heel: robust to random failure, fragile to specific attack

Does Internet graph have these properties?

- No…(There is no Memphis!)
- Emphasis on degree distribution - structure ignored
- Real Internet very structured
- Evolution of graph is highly constrained

Problem With Power Law

- ... but they’re descriptive models!
- No correct physical explanation, need an understanding of:
 - the driving force behind deployment
 - the driving force behind growth

Outline

- Motivation/Background
- Power Laws
- Optimization Models
- Graph Generation
Li et al.

- Consider the explicit design of the Internet
 - Annotated network graphs (capacity, bandwidth)
 - Technological and economic limitations
 - Network performance
- Seek a theory for Internet topology that is explanatory and not merely descriptive.
 - Explain high variability in network connectivity
 - Ability to match large scale statistics (e.g. power laws) is only secondary evidence
Heuristically Optimal Topology

- Mesh-like core of fast, low degree routers
- High degree nodes are at the edges.

Likelihood-Related Metric

Define the metric \(L(g) = \sum_{i,j} d_i d_j \) (\(d_i \) = degree of node \(i \))

- Easily computed for any graph
- Depends on the structure of the graph, not the generation mechanism
- Measures how “hub-like” the network core is
- For graphs resulting from probabilistic construction (e.g. PLRG/GRG),
 \[\text{LogLikelihood (LLH)} = L(g) \]
- Interpretation: How likely is a particular graph (having given node degree distribution) to be constructed?

Comparison Metric: Network Performance

Given realistic technology constraints on routers, how well is the network able to carry traffic?

Step 1: Constrain to be feasible

Step 2: Compute traffic demand

\[x_{ij} = B_i B_j \]

Step 3: Compute max flow

\[\max_{\alpha} \sum x_{ij} = \max_{\alpha} \sum \alpha B_i B_j \]

s.t. \[\sum x_{ij} \leq B_k, \forall k \]

Likelihood-Related Metric

- Easily computed for any graph
- Depends on the structure of the graph, not the generation mechanism
- Measures how “hub-like” the network core is
- For graphs resulting from probabilistic construction (e.g. PLRG/GRG),
 \[\text{LogLikelihood (LLH)} = L(g) \]
- Interpretation: How likely is a particular graph (having given node degree distribution) to be constructed?
Structure Determines Performance

Summary Network Topology
- Faloutsos [SIGCOMM99] on Internet topology
 - Observed many “power laws” in the Internet structure
 - Router level connections, AS-level connections, neighborhood sizes
 - Power law observation refuted later, Lakhina [INFOCOM00]
- Inspired many degree-based topology generators
 - Compared properties of generated graphs with those of measured graphs to validate generator
 - What is wrong with these topologies? Li et al [SIGCOMM04]
 - Many graphs with similar distribution have different properties
 - Random graph generation models don’t have network-intrinsic meaning
 - Should look at fundamental trade-offs to understand topology
 - Technology constraints and economic trade-offs
 - Graphs arising out of such generation better explain topology and its properties, but are unlikely to be generated by random processes!

Outline
- Motivation/Background
- Power Laws
- Optimization Models
- Graph Generation
dK-series approach

- Look at inter-dependencies among topology characteristics
- See if by reproducing most basic, simple, but not necessarily practically relevant characteristics, we can also reproduce (capture) all other characteristics, including practically important
- Try to find the one(s) defining *all others*

0K

Average degree \(<k>\)

1K

Degree distribution \(P(k) \)

2K

Joint degree distribution \(P(k_1, k_2) \)
Joint edge degree distribution $P(k_1, k_2, k_3)$

3K, more exactly

$P(k_1, k_2, k_3)$

Definition of dK-distributions

dK-distributions are degree correlations within simple connected graphs of size d
Nice properties of properties P_d

- **Constructability**: we can construct graphs having properties P_d (dK-graphs)
- **Inclusion**: if a graph has property P_d, then it also has all properties P_i with $i < d$ (dK-graphs are also iK-graphs)
- **Convergence**: the set of graphs having property P_n consists only of one element, G itself (dK-graphs converge to G)