

Mobile Routing

- Mobile IP
- Ad-hoc network routing
- Assigned reading
 - Performance Comparison of Multi-Hop Wireless Ad Hoc Routing Protocols
 - A High Throughput Path Metric for MultiHop Wireless Routing

© Srinivasan Seshan, 2004

L-8; 11-12-04

Overview

- Internet routing
- Ad hoc routing
- Ad hoc routing metrics

Srinivasan Seshan, 200

How to Handle Mobile Nodes?

- Dynamic Host Configuration (DHCP)
 - Host gets new IP address in new locations
 - Problems
 - Host does not have constant name/address → how do others contact host
 - What happens to active transport connections?
- Naming
 - Use DHCP and update name-address mapping whenever host changes address
 - Fixes contact problem but not broken transport connections

Srinivasan Seshan, 200

8; 11-12-04

Handling Mobile Nodes (Transport)

- TCP currently uses 4 tuple to describe connection
 - <Src Addr, Src port, Dst addr, Dst port>
- Modify TCP to allow peer's address to be changed during connection
- Security issues
 - Can someone easily hijack connection?
- Difficult deployment → both ends must support mobility

© Srinivasan Seshan, 2004

. -8; 11-12-04

Handling Mobile Node

- Link layer mobility
 - Learning bridges can handle mobility → this is how it is handled at CMU
 - Encapsulated PPP (PPTP) → Have mobile host act like he is connected to original LAN
 - Works for IP AND other network protocols
- Multicast
 - Solves similar problem → how to route packets to different sets of hosts at different times
 - · Can't we just reuse same solutions?
 - Don't really have solution for multicast either!

© Srinivasan Seshan, 2004

L-8; 11-12-04

Handling Mobile Nodes (Routing)

- Allow mobile node to keep same address and name
- How do we deliver IP packets when the endpoint moves?
 - Why can't we just have nodes advertise route to their address?
- What about packets from the mobile host?
 - Routing not a problem
 - What source address on packet?
- Key design considerations
 - Scale
 - Incremental deployment

© Srinivasan Seshan, 2004

I -8: 11-12-04

Basic Solution to Mobile Routing

- Same as other problems in Computer Science
 - Add a level of indirection
- Keep some part of the network informed about current location
 - Need technique to route packets through this location (interception)
- Need to forward packets from this location to mobile host (delivery)

Srinivasan Seshan, 2004

L -8: 11-12-04

Interception

- · Somewhere along normal forwarding path
 - · At source
 - Any router along path
 - Router to home network
 - Machine on home network (masquerading as mobile host)
- Clever tricks to force packet to particular destination
 - "Mobile subnet" assign mobiles a special address range and have special node advertise route

© Srinivasan Seshan, 2004

L-8; 11-12-04

Delivery

- Need to get packet to mobile's current location
- Tunnels
 - Tunnel endpoint = current location
 - Tunnel contents = original packets
- Source routing
 - Loose source route through mobile current location
- Network address translation (NAT)
 - What about packets from the mobile host?

© Srinivasan Seshan, 2004

L-8; 11-12-04

Mobile IP (RFC 2290)

- Interception
 - Typically home agent hosts on home network
- Delivery
 - Typically IP-in-IP tunneling
 - Endpoint either temporary mobile address or foreign agent
- Terminology
 - Mobile host (MH), correspondent host (CH), home agent (HA), foreign agent (FA)
 - · Care-of-address, home address

© Srinivasan Seshan, 2004

I -8: 11-12-04

Mobile IP (MH at Home)

Packet

Correspondent Host (CH)

Internet

Visiting
Location

Mobile Host (MH)

Overview

- Internet routing
- Ad hoc routing
- Ad hoc routing metrics

Srinivasan Seshan, 2004

L-8; 11-12-04

Ad Hoc Routing

- Goal: Communication between wireless nodes
 - No external setup (self-configuring)
 - Often need multiple hops to reach dst

Ad Hoc Routing

- Create multi-hop connectivity among set of wireless, possibly moving, nodes
- Mobile, wireless hosts act as forwarding nodes as well as end systems
- Need routing protocol to find multi-hop paths
 - Needs to be dynamic to adapt to new routes, movement
 - Interesting challenges related to interference and power limitations
 - · Low consumption of memory, bandwidth, power
 - · Scalable with numbers of nodes
 - · Localized effects of link failure

Srinivasan Seshan, 2004

I -8: 11-12-0

Challenges and Variants

- Poorly-defined "links"
 - Probabilistic delivery, etc. Kind of n² links
- Time-varying link characteristics
- No oracle for configuration (no ground truth configuration file of connectivity)
- Low bandwidth (relative to wired)
- Possibly mobile
- Possibly power-constrained

Problems Using DV or LS

- DV protocols may form loops
 - Very wasteful in wireless: bandwidth, power
 - Loop avoidance sometimes complex
- LS protocols: high storage and communication overhead
- More links in wireless (e.g., clusters) may be redundant → higher protocol overhead

Srinivasan Seshan, 2004

L-8; 11-12-04

Problems Using DV or LS

- Periodic updates waste power
 - Tx sends portion of battery power into air
 - Reception requires less power, but periodic updates prevent mobile from "sleeping"
- Convergence may be slower in conventional networks but must be fast in ad-hoc networks and be done without frequent updates

© Srinivasan Seshan, 2004

L -8; 11-12-04

Proposed Protocols

- Destination-Sequenced Distance Vector (DSDV)
 - DV protocol, destinations advertise sequence number to avoid loops, not on demand
- Temporally-Ordered Routing Algorithm (TORA)
 - On demand creation of hbh routes based on linkreversal
- Dynamic Source Routing (DSR)
 - On demand source route discovery
- Ad Hoc On-Demand Distance Vector (AODV)
 - Combination of DSR and DSDV: on demand route discovery with hbh routing

D Srinivasan Seshan, 200

I -8: 11-12-04

DSR Concepts

- Source routing
 - No need to maintain up-to-date info at intermediate nodes
- On-demand route discovery
 - No need for periodic route advertisements

Srinivasan Seshan, 2004

L-8; 11-12-04

DSR Components

- Route discovery
 - The mechanism by which a sending node obtains a route to destination
- Route maintenance
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid

© Srinivasan Seshan, 2004

L -8; 11-12-04

DSR Route Discovery

- Route discovery basic idea
 - Source broadcasts route-request to Destination
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - Target is found, or
 - A node that has a route to Destination is found

© Srinivasan Seshan, 2004

L-8; 11-12-04

Forwarding Route Requests

- A request is forwarded if:
 - Node is not the destination
 - Node not already listed in recorded source route
 - Node has not seen request with same sequence number
 - IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to **Source**

© Srinivasan Seshan, 2004

I -8: 11-12-04

Route Cache

- All source routes learned by a node are kept in Route Cache
 - · Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

Srinivasan Seshan, 2004

-8: 11-12-04

Sending Data

- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

© Srinivasan Seshan, 2004

L-8; 11-12-04

Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - · Caching used to minimize use of discovery
- · Periodic messages avoided
- But need to buffer packets

© Srinivasan Seshan, 2004

L-8; 11-12-04

Overview

- Internet routing
- Ad hoc routing
- Ad hoc routing metrics

© Srinivasan Seshan, 2004

I -8: 11-12-04

ETX measurement results

- Delivery is probabilistic
 - A 1/r^2 model wouldn't really predict this!
 - Sharp cutoff (by spec) of "good" vs "no" reception.
 Intermediate loss range band is just a few dB wide!
- Why?
 - · Biggest factor: Multi-path interference
 - 802.11 receivers can suppress reflections < 250ns
 - Outdoor reflections delay often > 1 \mu sec
 - Delay offsets == symbol time look like valid symbols (large interferece)
 - Offsets != symbol time look like random noise
 - Small changes in delay == big changes in loss rate

Deciding Between Links

- Most early protocols: Hop Count
 - Link-layer retransmission can mask some loss
 - But: a 50% loss rate means your link is only 50% as fast!
- Threshold?
 - Can sacrifice connectivity. 🕾
 - Isn't a 90% path better than an 80% path?
- Real life goal: Find highest throughput paths

Is there a better metric?

- Cut-off threshold
 - Disconnected network
- Product of link delivery ratio along path
 - Does not account for inter-hop interference
- Bottleneck link (highest-loss-ratio link)
 - Same as above
- End-to-end delay
 - Depends on interface queue lengths

ETX Metric Design Goals

- Find high throughput paths
- · Account for lossy links
- · Account for asymmetric links
- Account for inter-link interference
- Independent of network load (don't incorporate congestion)

Forwarding Packets is Expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - $\bullet A \rightarrow B \rightarrow C$
 - . .
 - $\bullet A \rightarrow B \rightarrow C \rightarrow D$
 - Assume minimum power for radios.
- Routing metric should take this into account! Affects throughput

ETX

- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = (d_f * d_r) (ACK must be delivered too...)
- Link ETX = 1 / P(delivery)
- Route ETX = Σ link ETX
 - Assumes all hops interfere not true, but seems to work okay so far

ETX: Sanity Checks

- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3
- (So, e.g., a 50% loss path is better than a perfect 3-hop path! A threshold would probably fail here...)

Rate Adaptation

- What if links @ different rates?
- ETT expected transmission time
 - ETX / Link rate
 - = 1 / (P(delivery) * Rate)
- What is best rate for link?
 - The one that maximizes ETT for the link!
 - SampleRate is a technique to adaptively figure this out.

Discussion

- Value of implementation & measurement
 - Simulators did not "do" multipath
 - Routing protocols dealt with the simulation environment just fine
 - Real world behaved differently and really broke a lot of the proposed protocols that worked so well in simulation!
- Rehash: Wireless differs from wired...
- Metrics: Optimize what matters; hop count often a very bad proxy in wireless
- What we didn't look at: routing protocol overhead
 - One cool area: Geographic routing