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L-10 Wireless in the Real World

uter Networking I

Wireless in the Real World

» Real world deployment patterns
* Mesh networks and deployments
* Assigned reading

+ Self-Management in Chaotic Wireless
Deployments

* Architecture and Evaluation of an Unplanned
802.11b Mesh Network
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Wireless Challenges

» Force us to rethink many assumptions
* Need to share airwaves rather than wire
» Don’t know what hosts are involved
* Host may not be using same link technology
* Mobility
» Other characteristics of wireless
* Noisy - lots of losses
* Slow
* Interaction of multiple transmitters at receiver
» Collisions, capture, interference
* Multipath interference
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Overview
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* 802.11
* Deployment patterns
» Reaction to interference
* Interference mitigation

* Mesh networks
» Architecture
» Measurements
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Characterizing Current Deployments ;& 7
» Datasets
* Place Lab: 28,000 APs
« MAC, ESSID, GPS
» Selected US cities
* www.placelab.org
» Wifimaps: 300,000 APs
* MAC, ESSID, Channel, GPS (derived)
» wifimaps.com
 Pittsburgh Wardrive: 667 APs
* MAC, ESSID, Channel, Supported Rates, GPS
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AP Stats, Degrees: Placelab me
(Placelab: 28000 APs, MAC, ESSID, GPS)
#APs Max.
degree
Portland | 8683 54
San Diego | 7934 76
L 3037 | 85
Francisco
Boston 2551 39
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Unmanaged Devices S0

WifiMaps.com
(300,000 APs, MAC, ESSID, Channel)

Channel %age

6 51
11 21
1 14
10 4

* Most users don’t
change default
channel

* Channel selection
must be automated
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Growing Interference in Unlicensed Bands * Xy

* Anecdotal evidence of problems, but how
severe?

» Characterize how 802.11 operates under
interference in practice
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What do we expect?

» Throughput to decrease

linearly with interference

» There to be lots of options

for 802.11 devices to
tolerate interference

+ Bit-rate adaptation

» Power control

 FEC

» Packet size variation

» Spread-spectrum processing

* Transmission and reception
diversity

Throughput (linear)
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Interferer power
(log-scale)
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Key Questions

» How damaging can a low-power and/or
narrow-band interferer be?
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* How can today’s hardware tolerate
interference well?
» What 802.11 options work well, and why?
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What we see

« Effects of interference

more severe in
practice

Caused by hardware
limitations of
commodity cards,
which theory doesn’t
model

Throughput (linear)
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» Extend SINR model to capture these vulnerabilities

* Interested in worst-case natural or adversarial interference
» Have developed range of “attacks” that trigger these vulnerabilities
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"+ Interference will get worse
» Density/device diversity is increasing
* Unlicensed spectrum is not keeping up

 Spectrum management

* “Channel hopping” 802.11 effective at mitigating some
performance problems [SigcommO07]

» Coordinated spectrum use — based on RF sensor network

» Transmission power control

» Enable spatial reuse of spectrum by controlling transmit
power

» Must also adapt carrier sense behavior to take advantage




Impact of frequency separation
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» Even small frequency separation (i.e.,
adjacent 802.11 channel) helps
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Transmission Power Control in Practice

» For simple scenario - easy to
compute optimal transmit power

* May or may not enable simultaneous
transmit

* Protocol builds on iterative pair-wise
optimization

» Adjusting transmit power >
requires adjusting carrier sense
thresholds

» Echos, Alpha or eliminate carrier sense

« Altrusitic Echos — eliminates starvation
in Echos
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Transmission Power Control v
» Choose transmit power levels to maximize
physical spatial reuse
* Tune MAC to ensure nodes transmit
simultaneously when possible
» Spatial reuse = network capacity / link
capacity
C\\EHE; D Concurrent transmissions Clwemf$h
AP, | AP, increase spatial reuse | AP,
&\atﬂﬁ %Aﬁ&*
Spatial Reuse = 1 Spatial Reuse = 2
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Details of Power Control Py

» Hard to do per-packet with many NICs
* Some even might have to re-init (many ms)
* May have to balance power with rate
* Reasonable goal: lowest power for max rate
 But finding ths empirically is hard! Many {power, rate}
combinations, and not always easy to predict how each
will perform
+ Alternate goal: lowest power for max needed rate

« But this interacts with other people because you use more
channel time to send the same data. Uh-oh.

» Nice example of the difficulty of local vs. global optimization




Rate Adaptation
-_Genermcga:

* Observe channel conditions like SNR (signal-
to-noise ratio), bit errors, packet errors

* Pick a transmission rate that will get best
goodput
» There are channel conditions when reducing the
bitrate can greatly increase throughput — e.g., ifa /2

decrease in bitrate gets you from 90% loss to 10%
loss.
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Simple rate adaptation scheme

» Watch packet error rate over window (K
packets or T seconds)

* If loss rate > threshy;y, (or SNR <, etc)
* Reduce Tx rate

* If loss rate < thresh,,,
* Increase Tx rate

* Most devices support a discrete set of rates
» 802.11 -1, 2,5.5, 11, etc.

Challenges in rate adaptation

» Channel conditions change over time
* Loss rates must be measured over a window
* SNR estimates from the hardware are
coarse, and don’t always predict loss rate
« May be some overhead (time, transient
interruptions, etc.) to changing rates
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Power and Rate Selection Algorithms
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-_Rate Se@rioT T o
» Auto Rate Fallback: ARF
« Estimated Rate Fallback: ERF

+ Goal: Transmit at minimum necessary power to reach
receiver

» Minimizes interference with other nodes
+ Paper: Can double or more capacity, if done right.

» Joint Power and Rate Selection
* Power Auto Rate Fallback: PARF
» Power Estimated Rate Fallback: PERF
» Conservative Algorithms
« Always attempt to achieve highest possible modulation rate
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Power Control/Rate Control summary 3¢

+ Complex interactions....

* More power:
» Higher received signal strength
* May enable faster rate (more S in S/N)

« May mean you occupy media for less time

* Interferes with more people

* Less power
* Interfere with fewer people

* Less power + less rate
» Fewer people but for a longer time

» Gets even harder once you consider
» Carrier sense
» Calibration and measurement error

- Mobility
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Overview ¥3

* 802.11
* Deployment patterns
» Reaction to interference
* Interference mitigation

¢ Mesh networks
» Architecture
» Measurements
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Community Wireless Network

» Share a few wired Internet connections
» Construction of community networks

* Multi-hop network
* Nodes in chosen locations
« Directional antennas
» Require well-coordination

» Access point
« Clients directly connect
» Access points operates independently
* Do not require much coordination

o,
o
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Roofnet

* Goals
* Operate without extensive planning or central
management
» Provide wide coverage and acceptable

performance
» Design decisions
» Unconstrained node placement
* Omni-directional antennas
» Multi-hop routing
» Optimization of routing for throughput in a slowly
changing network
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Roofnet Design P Roofnet Node Map sle;
= Deploym;t_ e = m— E—— T___ e E =
» Over an area of about four square kilometers in Cambridge, 1" Sl »
Messachusetts e
* Most nodes are located in buildings -
* 3~4 story apartment buildings nf WS —
* 8 nodes are in taller buildings T e =
:‘.:.. :_i. ='
L] " -
b ¢

» Each Rooftnet node is hosted by a volunteer user

* Hardware
* PC, omni-directional antenna, hard drive ...

» 802.11b card
* RTS/CTS disabled
» Share the same 802.11b channel
* Non-standard “pseudo-IBSS” mode
 Similar to standard 802.11b IBSS (ad hoc)
Omit beacon and BSSID (network ID)

1 kilometer
—>
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A Roofnet Self-Installation Kit

Antenna ($65)
8dBi, 20 degree vertical

Computer ($340)
533 MHz PC, hard
disk, CDROM

802.11b card ($155)
Engenius Prism 2.5,
200mw
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50 ft. Cable ($40)
Low loss (3dB/100ft)

Miscellaneous ($75)
Chimney Mount,
Lightning Arrestor, etc.

Software (“free”)
Our networking
software based on
Click

‘:j Total: $685

Takes a user about 45 minutes to install on a flat roof
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Software and Auto-Configuration v
* Linux, routing software, DHCP server, web server ...
+ Automatically solve a number of problems
» Allocating addresses
» Finding a gateway between Roofnet and the Internet
* Choosing a good multi-hop route to that gateway
+ Addressing
» Roofnet carries IP packets inside its own header format and
routing protocol
+ Assign addresses automatically
+ Only meaningful inside Roofnet, not globally routable
* The address of Roofnet nodes
» Low 24 bits are the low 24 bits of the node’s Ethernet address
 High 8 bits are an unused class-A IP address block
* The address of hosts

« Allocate 192.168.1.x via DHCP and use NAT between the
Ethernet and Roofnet
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Software and Auto-Configuration

» Gateway and Internet Access
« A small fraction of Roofnet users will share their

wired Internet access links

* Nodes which can reach the Internet
 Advertise itself to Roofnet as an Internet gateway
» Acts as a NAT for connection from Roofnet to the

Internet
« Other nodes

 Select the gateway which has the best route metric
» Roofnet currently has four Internet gateways
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Evaluation
-_Method_ e
* Multi-hop TCP

» 15 second one-way bulk TCP transfer between each pair
of Roofnet nodes

» Single-hop TCP
» The direct radio link between each pair of routes
* Loss matrix
» The loss rate between each pair of nodes using 1500-
byte broadcasts
* Multi-hop density
» TCP throughput between a fixed set of four nodes

* Varying the number of Roofnet nodes that are
participating in routing
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Evaluation Vel
. BaS|c Performance (Mult| hop TCP)

* The routes with low hop-count have much higher
throughput
* Multi-hop routes suffer from inter-hop collisions
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. L|nk Quallty and Dlstance (Slngle hop TCP
Multi-hop TCP)
* Most available links are between 500m and
1300m and 500 kbits/s
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Evaluation I
Basic Performance (Multi-hop TCP)
» TCP throughput to each node from its chosen
gateway
» Round-trip latencies for 84-byte ping packets to
estimate interactive delay
Hops Number | Throughput | Latency
of nodes (kbits/sec) (ms)
1 12 2752 9
2 8 940 19
3 5 552 27
4 7 379 43
5 1 89 37
Avg: 2.3 [ Total: 33 | CAvg: 1399)[ Avg: 22
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. L|nk Quallty ‘and Distance ( (Multl hop TCP Loss matrix
* Median delivery probability is 0.8
* 1/4 links have loss rates of 50% or more

» 802.11 detects the losses with its ACK mechanism and
resends the packets
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Cumulzive Fracton of Links
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Delivery probability
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-_Architectural Alternatives

* Maximize the number of additional nodes with non-zero
throughput to some gateway

 Ties are broken by average throughput

Single-Hop Multi-Hop Single-Hop
GWs | € Conn | Throughput GWe | Conn | Throughput | Conn | Thronghput
(khits/sec) (khits fsec) (khbits /sec)
1 iy 174 1 ET) SOl 10 35
2 47 LY 2 45 1051 17
3 47 1102 3 45 1485 | 22
I av 1140 i a5 2021 25
5 a7 1364 5 36 1565 28
[ 37 123 G £ 1954 a0
T ar 12 7 R i 1931 a1
" 173 8 @ 1447 | a2
0 4 0 i 1700 | a3
10 650 10 37 1945 | 34
1 -} i1 &) 2180 1 3 305 36 1714
) 1508 d T mn 3 S00 | 56 269
1721 7 65 5 TG ‘I’ il
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Roofnet Summary }f*f{

* The network’s architectures favors

+ Ease of deployment

* Omni-directional antennas

* Self-configuring software

* Link-quality-aware multi-hop routing
 Evaluation of network performance

» Average throughput between nodes is 627kbits/s

» Well served by just a few gateways whose position
is determined by convenience

* Multi-hop mesh increases both connectivity and
throughput
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Evaluation I
* Inter-hop Interference (Multi-hop TCP, Single-hop TCP)

» Concurrent transmissions on different hops of a route collide
and cause packet loss
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Roofnet Link Level Measurements %%

» Analyze cause of packet loss
* Neighbor Abstraction

* Ability to hear control packets or No
Interference

+ Strong correlation between BER and S/N
* RoofNet pairs communicate

» Atintermediate loss rates

» Temporal Variation

 Spatial Variation
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Delivery Probabilities are Uniformly
Llstributed__
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Lossy Links are Common Py
fiana s Broadcast packet
=1 S delivery probability
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* SNR not a good predictor

o
o

Broadcast packet
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» May interfere but not impact SNR
measurement
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Two Different Roofnet Links

» Top is typical of bursty interference, bottom
is not

* Most links are like the bottom

I ] avg: 0.5
[ 1 stddev: 0.28
| avg: 0.5
1 stddev: 0.03
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* Multi-path can produce intermediate loss
rates

« Appropriate multi-path delay is possible due
to long-links

A Plausible Explanation f
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Is it Multipath Interference? v
« Simulate with channel emulator
|Sender } :
A 4
| delay I-bl attenuation I
By £ a
Key Implications Py

» Lack of a link abstraction!
» Links aren’t on or off... sometimes in-between

» Protocols must take advantage of these
intermediate quality links to perform well

* How unique is this to Roofnet?

» Cards designed for indoor environments used
outdoors
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