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Abstract
Routers classify packets to determine which flow they belong to,
and to decide what service they should receive. Classification may,
in general, be based on an arbitrary number of fields in the packet
header. Performing classification quickly on an arbitrary number of
fields is known to be difficult, and has poor worst-case perfor-
mance. In this paper, we consider a number of classifiers taken from
real networks. We find that the classifiers contain considerable
structure and redundancy that can be exploited by the classification
algorithm. In particular, we find that a simple multi-stage classifica-
tion algorithm, called RFC (recursive flow classification), can clas-
sify 30 million packets per second in pipelined hardware, or one
million packets per second in software.

1  Introduction
There are a number of network services that require packet

classification, such as routing, access-control in firewalls, policy-
based routing, provision of differentiated qualities of service, and
traffic billing. In each case, it is necessary to determine which flow
an arriving packet belongs to so as to determine — for example —
whether to forward or filter it, where to forward it to, what class of
service it should receive, or how much should be charged for trans-
porting it. The categorization function is performed by aflow clas-
sifier (also called a packet classifier) which maintains a set of rules,
where each flow obeys at least one rule. The rules classify which
flow a packet belongs to based on the contents of the packet
header(s). For example, a flow could be defined by particular values
of source and destination IP addresses, and by particular transport
port numbers. Or a flow could be simply defined by a destination
prefix and a range of port values. As we shall see, a number of dif-
ferent types of rules are used in practice. This paper describes a
method for fast packet classification based on an almost arbitrary
set of rules. We focus here only on the problem of identifying the
class to which a packet belongs. The actions taken for each class
(e.g. packet scheduling in an output queue, routing decisions, bill-
ing [2][3][4][8][11][12][13]) while interesting in its own right,  is
not the topic of this paper.

The most well-known form of packet classification is used to
route IP datagrams. In this case, all of the packets destined to the set
of addresses described by a common prefix may be considered to be
part of the same flow. Upon arrival to a router, the header of each
packet is examined to determine the Network-layer destination
address, which identifies the flow to which the packet belongs.
Until recently, longest-prefix matching for routing lookups could
not be done at high speeds. Now that several fast routing lookup

† This work was funded by the Center for Integrated Systems at
Stanford University and the Alfred P. Sloan Foundation.

algorithms have been developed (e.g. [1][5][7][9][16]), attention
has turned to the more general problem of packet classification.

To help illustrate the variety of packet classifiers, we start with
some examples of how packet classification can be used by an
Internet Service Provider (ISP) to provide different services. Figure
1 shows ISP1 connected to three different sites: two enterprise net-
works E1 and E2 and a Network Access Point (NAP) which is in
turn connected to ISP2 and ISP3. ISP1 provides a number of differ-
ent services to its customers, as shown in Table 1.

Table 2 shows the categories or classes that the router at inter-
faceX must classify an incoming packet into. Note that the classes
specified may or may not be mutually exclusive (i.e. they may be
overlapping or non-overlapping), for example the first and second
class in Table 2 overlap. When this happens, we will follow the
convention in which rules closer to the top of the list take priority,
with the default rule appearing last.

Table 1:

Service Example

Packet Filtering Deny all traffic from ISP3 (on interfaceX)
destined to E2.

Policy Routing Send all voice-over-IP traffic arriving from
E1 (on interfaceY) and destined to E2 via a
separate ATM network.

Accounting &
Billing

Treat all video traffic to E1 (via interfaceY)
as highest priority and perform accounting
for the traffic sent this way.

Traffic Rate
Limiting

Ensure that ISP2 does not inject more than
10Mbps of email traffic and 50Mbps of total
traffic on interfaceX.

Traffic Shaping Ensure that no more than 50Mbps of web
traffic is injected into ISP2 on interfaceX.

ISP2

ISP3

E1

E2

ISP1

NAP

X
Z

Y

: Router

Figure 1: Example network of an ISP (ISP1) connected to two
enterprise networks (E1 and E2) and to two other ISP networks
across a NAP.



2  The Problem of Packet Classification
Packet classification is performed using a packet classifier,

also called a policy database, flow classifier, or simply a classifier.
A classifier is a collection of rules or policies. Each rule specifies a
class† that a packet may belong to based on some criterion onF
fields of the packet header, and associates with each class an identi-
fier, classID. This identifier uniquely specifies the action associated
with the rule. Each rule hasF components. The ith component of
rule R, referred to asR[i], is a regular expression on theith field of
the packet header (in practice, the regular expression is limited by
syntax to a simple address/mask or operator/number(s) specifica-
tion). A packetP is said tomatch a particular ruleR, if , the ith

field of the header ofP satisfies the regular expressionR[i]. It is
convenient to think of a ruleRas theset of all packet headers which
could match R. When viewed in this way, two distinct rules are said
to be either partially overlapping or non-overlapping, or that one is
a subset of the other, with corresponding set-related definitions. We
will assume throughout this paper that when two rules are not
mutually exclusive, the order in which they appear in the classifier
will determine their relative priority. For example, in a packet clas-
sifier that performs longest-prefix address lookups, each destination
prefix is a rule, the corresponding next hop is its action, the pointer
to the next-hop is the associatedclassID, and the classifier is the
whole forwarding table. If we assume that the forwarding table has
longer prefixes appearing before shorter ones, the lookup is an
example of the packet classification problem.

2.1 Example of a Classifier
All examples used in this paper are classifiers from real ISP

and enterprise networks. For privacy reasons, we have sanitized the
IP addresses and other sensitive information so that the relative
structure in the classifiers is still preserved.‡ First, we’ll take a look
at the data and its characteristics. Then we’ll use the data to evalu-
ate the packet classification algorithm described later.

An example of some rules from a classifier is shown in Table
3. We collected 793 packet classifiers from 101 different ISP and

† For example, each rule in a flow classifier is a flow specifica-
tion, where each flow is in a separate class.

Table 2:

Class Relevant Packet Fields:

Email and from ISP2 Source Link-layer Address, Source
Transport port number

From ISP2 Source Link-layer Address

From ISP3 and going to
E2

Source Link-layer Address,
Destination Network-Layer Address

All other packets —

i∀

enterprise networks and a total of 41,505 rules. Each network pro-
vided up to ten separate classifiers for different services.††

 We found the classifiers to have the following characteristics:
1) The classifiers do not contain a large number of rules. Only

0.7% of the classifiers contain more than 1000 rules, with a
mean of 50 rules. The distribution of number of rules in a clas-
sifier is shown in Figure 2. The relatively small number of
rules per classifier should not come as a surprise: in most net-
works today, the rules are configured manually by network
operators, and it is a non-trivial task to ensure correct behav-
ior.

2) The syntax allows a maximum of 8 fields to be specified:
source/destination Network-layer address (32-bits), source/
destination Transport-layer port numbers (16-bits for TCP and
UDP), Type-of-service (TOS) field (8-bits), Protocol field (8-

‡ We wanted to preserve the properties of set relationship, e.g.
inclusion, among the rules, or their fields. The way a 32-bit IP
addressp0.p1.p2.p3has been sanitized is as follows: (a) A ran-
dom 32-bit numberc0.c1.c2.c3 is first chosen, (b) a random
permutation of the 256 numbers 0...255 is then generated to get
perm[0..255] (c) Another random numberS between 0 and 255
is generated: these randomly generated numbers are common
for all the rules in the classifier, (d) The IP address with bytes:
perm[(p0 ^ c0 + 0 * s) % 256], perm[(p1 ^ c1 + 1 * s) % 256],
perm[(p2 ^ c2 + 2 * s) % 256] andperm[(p3 ^ c3 + 3 * s) %
256] is then returned as the sanitized transformation of the orig-
inal IP address, wherê denotes the exclusive-or operation.

†† In the collected data, the classifiers for different services are
made up of one or more ACLs (access control lists). An ACL
rule has only two types of actions, “deny” or “permit”. In this
discussion, we will assume that each ACL is a separate classi-
fier, a common case in practice.

Table 3:

Network-
layer

Destination
(addr/mask)

Network-
layer

Source
(addr/mask)

Transport-
layer

Destination

Transport-
layer

Protocol

152.163.190.
69/0.0.0.0

152.163.80.1
1/0.0.0.0

* *

152.168.3.0/
0.0.0.255

152.163.200.
157/0.0.0.0

eq www udp

152.168.3.0/
0.0.0.255

152.163.200.
157/0.0.0.0

range 20-21 udp

152.168.3.0/
0.0.0.255

152.163.200.
157/0.0.0.0

eq www tcp

152.163.198.
4/0.0.0.0

152.163.160.
0/0.0.3.255

gt 1023 tcp

152.163.198.
4/0.0.0.0

152.163.36.0
/0.0.0.255

gt 1023 tcp



bits), and Transport-Layer protocol flags (8-bits) with a total
of 120 bits. 17% of all rules had 1 field specified, 23% had 3

fields specified and 60% had 4 fields specified.†

3) The Transport-layer protocol field is restricted to a small set of
values: in all the packet classifiers we examined, it contained
only TCP, UDP, ICMP, IGMP, (E)IGRP, GRE and IPINIP or
the wildcard ‘*’, i.e. the set of all transport protocols.

4) The Transport-layer fields have a wide variety of specifica-
tions. Many (10.2%) of them arerange specifications (e.g. of
the typegt 1023, i.e. greater than 1023, orrange 20-24). In
particular, the specification ‘gt 1023’ occurs in about 9% of
the rules. This has an interesting consequence. It has been sug-
gested in literature (for example in [17]) that to ease imple-
mentation, ranges could be represented by a series of prefixes.
In that case, this common range would require six separate
prefixes (1024-2047, 2048-4095, 4096-8191, 8192-16383,
16384-32767, 32768-65535) resulting in a large increase in
the size of the classifier.

5) About 14% of all the classifiers had a rule with a non-contigu-
ous mask (10.2% of all rules had non-contiguous masks). For
example, a rule which has a Network-layer address/mask spec-
ification of 137.98.217.0/8.22.160.80 has a non-contiguous
mask (i.e.not a simple prefix) in its specification. This obser-
vation came as a surprise. One suggested reason is that some
network operators choose a specific numbering/addressing
scheme for their routers.  It tells us that a packet classification
algorithm cannot always rely on Network-layer addresses
being prefixes.

6) It is common for many different rules in the same classifier to
share a number of field specifications (compare, for example,
the entries in Table 3). These arise because a network operator
frequently wants to specify the same policy for a pair of com-
municating groups of hosts or subnetworks (e.g. deny every
host in group1 to access any host in group2). Hence, given a
simple address/mask syntax specification, a separate rule is
commonly written for each pair in the two (or more) groups.
We will see later how we make use of this observation in our
algorithm.

7) We found that 8% of the rules in the classifiers were redun-
dant. We say that a ruleR is redundant if one of the following
condition holds:
(a) There exists a ruleT appearing earlier thanR in the classi-
fier such thatR is a subset ofT. Thus, no packet will ever

matchR‡ andR is redundant. We call thisbackward redun-
dancy; 4.4% of the rules were backward redundant.
(b) There exists a ruleT appearing afterR in the classifier such
that (i)R is a subset ofT, (ii) R andT have the same actions
and (iii) For each ruleV appearing in betweenR andT in the
classifier, eitherV is disjoint fromR, orV has the same action
asR. We call this,forward redundancy; 3.6% of the rules were
forward redundant. In this case,R can be eliminated to obtain
a new smaller classifier. A packet matchingR in the original

† If a field is not specified, the wildcard specification is assumed.
Note that this is affected by the syntax of the rule specification
language.

‡ Recall that rules are prioritized in order of their appearance in
the classifier.

classifier will matchT in the new classifier, but with the same
action.

3  Goals
In this section, we highlight our objectives when designing a
packet-classification scheme:

1) The algorithm should be fast enough to operate at OC48c lin-
erates (2.5Gb/s) and preferably at OC192c linerates (10Gb/s).
For applications requiring a deterministic classification time,
we need to classify 7.8 million packets/s and 31.2 million
packets/s respectively (assuming a minimum length IP data-
gram of 40 bytes).  In some applications, an algorithm that
performs well in theaverage case may be acceptable using a
queue prior to the classification engine. For these applications,
we need to classify 0.88 million packets/s and 3.53 million
packets/s respectively (assuming an average Internet packet
size of 354-bytes [18]).

2) The algorithm should ideally allow matching on arbitrary
fields, including Link-layer, Network-layer, Transport-layer
and — in some exceptional cases — the Application-layer

headers.†† It makes sense for the algorithm to optimize for the
commonly used header fields, but it should not preclude the
use of other header fields.

3) The algorithm should support general classification rules,
including prefixes, operators (like range, less than, greater
than, equal to, etc.) and wildcards. Non-contiguous masks may
be required.

4) The algorithm should be suitable for implementation in both
hardware and software. Thus it needs to be fairly simple to
allow high speed implementations. For the highest speeds (e.g.
for OC192c at this time), we expect that hardware implemen-
tation will be necessary and therefore the scheme should be
amenable to pipelined implementation.

5) Even though memory prices have continued to fall, the mem-
ory requirements of the algorithm should not be prohibitively
expensive. Furthermore, when implemented in software, a
memory-efficient algorithm can make use of caches. When
implemented in hardware, the algorithm can benefit from
faster on-chip memory.

6) The algorithm should scale in terms of both memory and

†† That is why packet-classifying routers have been called “layer-
less switches”.
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Figure 2: The distribution of the total number of rules per
classifier. Note the logarithmic scale on both axes.



speed with the size of the classifier. An example from the des-
tination routing lookup problem is the popular multiway trie
[16] which can, in the worst case require enormous amounts of
memory, but performs very well and with much smaller stor-
age on real-life routing tables. We believe it to be important to
evaluate algorithms with realistic data sets.

7) In this paper, we will assume that classifiers change infre-
quently (e.g. when a new classifier is manually added or at
router boot time). When this assumption holds, an algorithm
could employ reasonably static data structures. Thus, a pre-
processing time of several seconds may be acceptable to cal-
culate the data structures. Note that this assumption may not
hold in some applications, such as when routing tables are
changing frequently, or when fine-granularity flows are
dynamically or automatically allocated.

Later, we describe a simple heuristic algorithm called RFC†

(Recursive Flow Classification) that seems to work well with a
selection of classifiers in use today. It appears practical to use the
classification scheme for OC192c rates in hardware and up to
OC48c rates in software. However, it runs into problems with space
and preprocessing time for big classifiers (more than 6000 rules
with 4 fields). We describe an optimization which decreases the
storage requirements of the basic RFC scheme and enables it to
handle a classifier with 15,000 rules with 4 fields in less than 4MB.

4  Previous Work
We start with the simplest classification algorithm: for each arriving
packet, evaluate each rule sequentially until a rule is found that
matches all the headers of the packet. While simple and efficient in
its use of memory, this classifier clearly has poor scaling properties;
time to perform a classification grows linearly with the number of
rules.

A hardware-only algorithm could employ a ternary CAM (content-
addressable memory). Ternary CAMs store words with three-val-
ued digits: ‘0’, ‘1’ or ‘X’ (wildcard). The rules are stored in the
CAM array in the order of decreasing priority. Given a packet-
header to classify, the CAM performs a comparison against all of its
entries in parallel, and a priority encoder selects the first matching
rule. While simple and flexible, CAMs are currently suitable only
for small tables; they are too expensive, too small and consume too
much power for large classifiers. Futhermore, some operators are
not directly supported, and so the memory array may be used very
inefficiently. For example, the rule ‘gt 1023’ requires six array
entries to be used. But with continued improvements in semicon-
ductor technology, large ternary CAMs may become viable in the
future.

A solution called ‘Grid of Tries’ was proposed in [17]. In this
scheme, the trie data structure is extended to two fields. This is a
good solution if the filters are restricted to only two fields, but is not
easily extendible to more fields. In the same paper, a general solu-
tion for multiple fields called ‘Crossproducting’ is described. It
takes about 1.5MB for 50 rules and for bigger classifiers, the
authors propose a caching technique (on-demand crossproducting)
with a non-deterministic classification time.

† Not to be confused with “Request For Comments”

Another recent proposal [15] describes a scheme optimized for
implementation in hardware. Employing bit-level parallelism to
match multiple fields concurrently, the scheme is reported to sup-
port up to 512 rules, classifying one million packets per second
with an FPGA device and five 1M-bit SRAMs. As described, the
scheme examines five header fields in parallel and uses bit-level
parallelism to complete the operation. In the basic scheme, the
memory storage is found to scale quadratically and the memory
bandwidth linearly with the size of the classifier. A variation is
described that decreases the space requirement at the expense of
higher execution time. In the same paper, the authors describe an
algorithm for the special case of two fields with one field including
only intervals created by prefixes. This takesO(number-of-prefix-
lengths + logn) time andO(n)space for a classifier withn rules.

There are several standard problems in the field of computational
geometry that resemble packet classification. One example is the
point location problem in multidimensional space, i.e. the problem
of finding the enclosing region of a point, given a set of regions.
However, the regions are assumed to be non-overlapping (as
opposed to our case). Even for non-overlapping regions, the best
bounds forn rules andF fields, for , are O(logn) in time with
O(nF) space; orO(logF-1n) time andO(n) space [6]. Clearly this is
impractical: with just 100 rules and 4 fields,nF space is about
100MB; andlogF-1n time is about 350 memory accesses.

5  Proposed Algorithm RFC (Recursive Flow
Classification)

5.1 Structure of the Classifiers
As the last example above illustrates, the task of classification is
extremely complex in the worst case. However, we can expect there
to bestructure in the classifiers which, if exploited, can simplify the
task of the classification algorithm.

To illustrate the structure we found in our dataset, let’s start with an
example in just two dimensions, as shown in Figure 3. We can rep-
resent a classifier with two fields (e.g. source and destination pre-
fixes) in 2-dimensional space, where each rule is represented by a
rectangle. Figure 3a shows three such rectangles, where each rect-
angle represents a rule with a range of values in each dimension.
The classifier contains three explicitly defined rules, and the default
(background) rule. Figure 3b shows how three rules can overlap to
create five regions (each region is shaded differently), and Figure
3c shows three rules creating seven regions. A classification algo-
rithm must keep a record of each region and be able to determine
the region to which each newly arriving packet belongs. Intuitively,
the more regions the classifier contains, the more storage is
required, and the longer it takes to classify a packet.

Even though the number of rules is the same in each figure, the task
of the classification algorithm becomes progressively harder as it
needs to distinguish more regions. In general, it can be shown that
the number of regions created byn-rules inF dimensions can be as
much asO(nF).

We analyzed the structure in our dataset to determine the number of
overlapping regions, and we found it to be considerably smaller
than the worst case. Specifically for the biggest classifier with 1734
rules, we found the number of distinct overlapping regions in four
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dimensions to be 4316, compared to a worst possible case of
approximately 1013. Similarly we found the number of overlaps to
be relatively small in each of the classifiers we looked at. As we
will see, our algorithm will exploit this structure to simplify its task.

5.2 Algorithm
The problem of packet classification can be viewed as one of map-
ping S bits in the packet header toT bits of classID, (where

, and ) in a manner dictated by theN classifier
rules. A simple and fast (but unrealistic) way of doing this mapping
might be to pre-compute the value ofclassID for each of the
different packet headers. This would yield the answer in one step
(one memory access) but would require too much memory. The
main aim ofRFC is to perform the same mapping but over several
stages, as shown in Figure 4. The mapping is performed recur-
sively; at each stage the algorithm performs areduction, mapping
one set of values to a smaller set.

The RFC algorithm hasP phases, each phase consisting of a set of
parallel memory lookups. Each lookup is a reduction in the sense
that the value returned by the memory lookup is shorter (is
expressed in fewer bits) than the index of the memory access. The
algorithm, as illustrated in Figure 5, operates as follows:

1) In the first phase,F fields of the packet header are split up into
multiple chunks that are used to index into multiple memories
in parallel. For example, the number of chunks equals 8 in Fig-
ure 5; and Figure 6 shows an example of how the fields of a
packet may be split across each memory. Each of the parallel
lookups yields an output value that we will calleqID. (The
reason for the identifiereqID will become clear shortly). The
contents of each memory are chosen so that the result of the
lookup is narrower than the index i.e. requires fewer bits.

2) In subsequent phases, the index into each memory is formed
by combining the results of the lookups from earlier phases.
For example, the results from the lookups may be concate-
nated; we will consider another way to combine them later.

3) In the final phase, we are left with one result from the lookup.
Because of the way the memory contents have been pre-com-

(c) 7 regions

(b) 5 regions(a) 4 regions

Figure 3: Some possible arrangements of three rectangles.
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puted, this value corresponds to theclassID of the packet.

For the scheme to work, the contents of each memory are prepro-
cessed. To illustrate how the memories are populated, we consider a
simple example based on the classifier in Table 3. We’ll see how the
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Simple One-Step Classification

Phase 3

Recursive Classification

Figure 4: Showing the basic idea of Recursive Flow Classifica-
tion. The reduction is carried out in multiple phases, with a
reduction in phaseI  being carried out recursively on the image

of the phaseI-1. The example shows the mapping of  bits to

 bits in 3 phases.
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Tables

Figure 5: The packet flow in RFC.

Src L3 addr Dstn L3addr

L4 protocol and flags
Src L4 port

ToS

Chunk# 0 1 2 3 4 5 6 7

Dstn L4 port

Width(bits) 16 16 16 16 16 16 16 8

Figure 6: Example chopping of the packet header into chunks
for the first RFC phase. L3 refers to Network-layer and L4
refers to Transport-layer fields



24-bits used to express the Transport-layer Destination and Trans-
port-layer Protocol (chunk #6 and #4 respectively) are reduced to
just three bits by Phases 0 and 1 of the RFC algorithm. We start
with chunk #6 that contains the 16-bit Transport-layer Destination.
The corresponding column in Table 3 partitions the possible values
into four sets: (a) {www=80} (b) {20,21} (c) {>1023} (d) {all
remaining numbers in the range 0-65535}; which can be encoded

using two bits  through . We call these two bit values the

“equivalence class IDs” (eqIDs). So, in Phase 0 of the RFC algo-
rithm, the memory corresponding to chunk #6 is indexed using the

 different values of chunk #6. In each location, we place the
eqID for this Transport-layer Destination. For example, the value in

the memory corresponding to “chunk #6 = 20” is , correspond-

ing to the set {20,21}. In this way, a 16-bit to two-bit reduction is
obtained for chunk #6 in Phase 0. Similarly, the eight-bit Transport-
layer Protocol column in Table 3 consists of three sets: (a) {tcp} (b)
{udp} (c) {all remaining numbers in the range 0-255}, which can
be encoded using two-biteqIDs. And so chunk #4 undergoes an
eight-bit to two-bit reduction in Phase 0.

In the second phase, we consider the combination of the Transport-
layer Destination and Protocol fields. From Table 3 we can see that
the five sets are: (a) {({80}, {udp})} (b) {({20-21}, {udp})} (c)
{({80}, {tcp})} (d) {({gt 1023}, {tcp})} (e) {all remaining
crossproducts}; which can be represented using three-biteqIDs.
The index into the memory in Phase 1 is constructed from the two
two-bit eqIDs from Phase 0 (in this case, by concatenating them).
Hence, in Phase 1 we have reduced the number of bits from four to
three. If we now consider the combination of both Phase 0 and
Phase 1, we find that 24 bits have been reduced to just three bits.

In what follows, we will use the term “Chunk Equivalence Set”
(CES) to denote a set above, e.g. each of the three sets: (a) {tcp} (b)
{udp} (c) {all remaining numbers in the range 0-255} is said to be a
CES because if there are two packets with protocol values lying in
the same set and have otherwise identical headers, the rules of the
classifier do not distinguish between them.

Each CES can be constructed in the following manner:

First Phase (Phase 0): Consider a fixed chunk of sizeb bits, and
those component(s) of the rules in the classifier corresponding to
this chunk. Project the rules in the classifier on to the number line

. Each component projects to a set of (not necessarily

contiguous) intervals on the number line. The end points of all the
intervals projected by these components form a set of non-overlap-
ping intervals. Two points in the same interval always belong to the
same equivalence set. Also, two intervals are in the same equiva-
lence set if exactly the same rules project onto them. As an example
consider chunk #6 (Destination port) of the classifier in Table 3.
The end-points of the intervals (I0..I4) and the constructed equiva-
lence sets (E0..E3) are shown in Figure 7. The RFC table for this
chunk is filled with the correspondingeqIDs. Thus, in this example,

table(20) = , table(23) = etc. The pseudocode for com-

puting theeqIDs in Phase 0 is shown in Figure 19 in the Appendix.

To facilitate the calculation of theeqIDs for subsequent RFC
phases, we assign a class bitmap (CBM) for each CES indicating

00
b 11b

216

00
b

0 2, b
1–

00b 11b

which rules in the classifier contain this CES for the corresponding
chunk. This bitmap has one bit for each rule in the classifier. For
example, E0 in Figure 7 will have the CBM  indicating
that the first and the third rules of the classifier in Table 3 contain
E0 in chunk #6. Note that the class bitmap isnot physically stored
in the lookup table: it is just used to facilitate the calculation of the
storedeqIDs by the preprocessing algorithm.

Subsequent Phases:A chunk in a subsequent phase is formed by a
combination of two (or more) chunks obtained from memory look-
ups in previous phases, with a corresponding CES. If, for example,
the resulting chunk is of widthb bits, we again create equivalence
sets such that twob-bit numbers that are not distinguished by the
rules of the classifier belong to the same CES. Thus, (20,udp) and
(21,udp) will be in the same CES in the classifier of Table 3 in
Phase 1. To determine the new equivalence sets for this phase, we
compute all possible intersections of the equivalence sets from the
previous phases being combined. Each distinct intersection is an
equivalence set for the newly created chunk. The pseudocode for
this preprocessing is shown in Figure 20 of the Appendix.

5.3  A simple complete example of RFC
Realizing that the preprocessing steps are involved, we present a
complete example of a classifier, showing how the RFC preprocess-
ing is performed to determine the contents of the memories, and
how a packet can be looked up as part of the RFC operation. The
example is shown in Figure 22 in the Appendix. It is based on a 4-
field classifier of Table 6, also in the Appendix.

6  Implementation Results
In this section, we consider how the RFC algorithm can be imple-
mented and how it performs. First, we consider the complexity of
preprocessing and the resulting storage requirements. Then we con-
sider the lookup performance to determine the rate at which packets
can be classified.

6.1 RFC Preprocessing
With our classifiers, we choose to split the 32-bit Network-layer
source and destination address fields into two 16-bit chunks each.
These are chunks #0,1 and #2,3 respectively. As we found a maxi-
mum of four fields in our classifiers, this means that Phase 0 of
RFC has six chunks: chunk #4 corresponds to the protocol and pro-
tocol-flags field and chunk #5 corresponds to the Transport-layer

0 20 21 80 1023 65535

I0 I1 I2 I3 I4

E0 = {20,21}
E1 = {80}

E2 = {1024-65535}
E3 = {0-19,22-79,81-1023}

Figure 7: An example of computing the four equivalence classes
E0...E3 for chunk #6 (corresponding to the 16-bit Transport-
Layer destination port number) in the classifier of Table 3.

101000
b



Destination field.

The performance of RFC can be tuned with two parameters: (i) The
number of phases,P, that we choose to use, and (ii) Given a value
of P, the reduction tree used. For instance, two of the several possi-
ble reduction trees for P=3 and P=4 are shown in Figure 8 and Fig-
ure 9 respectively. (For P=2, there is only one reduction tree
possible). When there is more than one reduction tree possible for a
given value of P, we choose a tree based on two heuristics: (i) we
combine those chunks together which have the most “correlation”
e.g. we combine the two 16-bit chunks of Network-layer source
address in the earliest phase possible, and (ii) we combine as many
chunks as we can without causing unreasonable memory consump-
tion. Following these heuristics, we find that the “best” reduction
tree for P=3 is tree_B in Figure 8, and the “best” reduction tree for
P=4 is tree_A in Figure 9.

Phase 0 Phase 1 Phase 2

ClassID

ClassID

0

1

2
3

4

5

0

1

2
3

4

5

tree_A

tree_B

Chunk#

Chunk#

Figure 8: Two example reduction trees for P=3 RFC phases.

Phase 0 Phase 1

tree_A

tree_B

ClassID

Phase 3Phase 2

ClassID

0
1

2

3

4

5

0

1

2

3

4
5

Chunk#

Chunk#

Figure 9: Two example reduction trees for P=4 RFC phases.

Now, let us look at the performance of RFC using our set of classi-
fiers. Our first goal is to keep the total amount of memory reason-
ably small. The memory requirements for each of our classifiers is
plotted in Figure 10, Figure 11 and Figure 12 for P=2, 3 and 4
phases respectively. The graphs show how the memory usage
increases with the number of rules in each classifier. For practical
purposes, it is assumed that memory is only available in widths of
8, 12 or 16 bits. Hence, aneqID requiring 13 bits is assumed to
occupy 16 bits in the RFC table.

As we might expect, the graphs show that as we increase the num-
ber of phases from three to four, we require a smaller total amount
of memory. However, this comes at the expense of two additional
memory accesses, illustrating the trade-off between memory con-
sumption and lookup time in RFC. Our second goal is to keep the
preprocessing time small. And so in Figure 13 we plot the prepro-
cessing time required for both three and four phases of RFC.†

The graphs indicate that, for these classifiers, RFC is suitable if

† The case P=2 is not plotted: it was found to take hours of pre-
processing time because of the unwieldy size of the RFC tables.
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Figure 10: The RFC storage requirements in Megabytes for
two Phases using the classifiers available to us. This special
case of RFC is identical to the Crossproducting method of
[17].
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three phases using the classifiers available to us. The reduction
tree used istree_B in Figure 8.



(and only if) the rules change relatively slowly; for example, not
more than once every few seconds. Thus, it may be suitable in envi-
ronments where rules are changed infrequently, for example if they
are added manually, or when a router reboots.

For applications where the tables change more frequently, it may be
possible to make incremental changes to the tables. This is a subject
requiring further investigation.

Finally, note that there are some similarities between the RFC algo-
rithm and the bit-level parallel scheme in [15]; each distinct bitmap
in [15] corresponds to a CES in the RFC algorithm. Also, note that
when there are just two phases, RFC corresponds to the crosspro-
ducting method described in [17].

6.2  RFC Lookup Performance
The RFC lookup operation can be performed both in hardware and
in software.† We will discuss the two cases separately, exploring the

† Note that the RFC preprocessing is always performed in soft-
ware.
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Figure 12: The RFC storage requirements in Kilobytes for
four phases using the classifiers available to us. The reduction
tree used istree_A in Figure 9.
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Figure 13: The preprocessing times for three and four phases in
seconds, using the set of classifiers available to us. This data is
taken by running the RFC preprocessing code on a 333MHz
Pentium-II PC running the Linux operating system.

lookup performance in each case.

Hardware

An example hardware implementation for the treetree_B in Figure
8 (three phases) is illustrated in Figure 14 for four fields (six chunks
in Phase 0). This design is suitable for all the classifiers in our
dataset, and uses two 4Mbit SRAMs and two 4-bank 64Mbit
SDRAMs [19] clocked at 125 MHz.‡ The design is pipelined such
that a new lookup may begin every four clock cycles. The pipelined
RFC lookup proceeds as follows:

1) Pipeline Stage 0: Phase 0(Clock cycles 0-3): In the first three
clock cycles, three accesses are made to the two SRAM
devices in parallel to yield the sixeqIDs of Phase 0. In the
fourth clock cycle, theeqIDs from Phase 0 are combined to
compute the two indices for the next phase.

2) Pipeline Stage 1: Phase 1(Clock cycles 4-7): The SDRAM
devices can be accessed every two clock cycles, but we
assume that a given bank can be accessed again only after
eight clock cycles. By keeping the two memories for Phase 1
in different banks of the SDRAM, we can perform the Phase 1
lookups in four clock cycles. The data is replicated in the other
two banks (i.e. two banks of memory hold a fully redundant
copy of the lookup tables for Phase 1). This allows Phase 1
lookups to be performed on the next packet as soon as the cur-
rent packet has completed. In this way, any given bank is
accessed once every eight clock cycles.

3) Pipeline Stage 2: Phase 2(Clock cycles 8-11): Only one
lookup is to be made. The operation is otherwise identical to
Phase 1.

Hence, we can see that approximately 30 million packets can be

‡ These devices are in production in industry at the time of writ-
ing this paper. In fact, even bigger and faster devices are avail-
able today - see [19]

SRAM1

chks0-2

SRAM2

Chk#0 Chk#0 (replicated)

Chks0 and 1 replicatedPhase 0
Phase 1

Phase 2

ASIC

SDRAM1

SDRAM2

chk1 chk0 chk1chk0

chks3-5

Figure 14: An example hardware design for RFC with three
phases. The latches for holding data in the pipeline and the on-
chip control logic are not shown.This design achieves OC192
rates in the worst case for 40Byte packets, assuming that the
phases are pipelined with 4 clock cycles (at 125MHz clock
rate) per pipeline stage.



classified per second (to be exact, 31.25 million packets per second
with a 125MHz clock) with a hardware cost of approximately $50.†

This is fast enough to process minimum length packets at the
OC192c rate.

Software

Figure 21 (Appendix) provides pseudocode to perform RFC look-
ups. When written in ‘C’, approximately 30 lines of code are
required to implement RFC. When compiled on a 333Mhz Pen-
tium-II PC running Windows NT we found that the worst case path

for the code took for three phases, and

 for four phases, where  is the memory

access time.‡ With , this corresponds to  and

for three and four phases respectively. This implies RFC can
perform close to one million packets per second in the worst case
for our classifiers. The average lookup time was found to be
approximately 50% faster than the worst case; Table 4 shows the
average time taken per lookup for 100,000 randomly generated
packets for some classifiers.

The pseudocode in Figure 21 calculates the indices into each mem-
ory using multiplication/addition operations oneqIDs from previ-
ous phases. Alternatively, the indices can be computed by simple
concatenation. This has the effect of increasing the memory con-
sumed because the tables are then not as tightly packed. Given the
simpler processing, we might expect the classification time to
decrease at the expense of increased memory usage. Indeed the
memory consumed grows approximately two-fold on the classifi-
ers. Surprisingly, we saw no significant reduction in classification
times. We believe that this is because the processing time is domi-
nated by memory access time as opposed to the CPU cycle time.

† Under the assumption that SDRAMs are now available at $1.50
per megabyte, and SRAMs are $12 for a 4Mbyte device.

‡ The performance of the lookup code was analyzed using
VTune[20], an Intel performance analyzer for processors of the
Pentium family.

Table 4:

Number of Rules in
Classifier

Average Time per
lookup (ns)

39 587

113 582

646 668

827 611

1112 733

1734 621

140clks 9 tm⋅+( )

146clks 11 tm⋅+( ) tm

tm 60ns= 0.98µs

1.1µs

6.3 Larger Classifiers
As we have seen, RFC performs well on the real-life classifiers
available to us. But how will RFC perform with larger classifiers
that might appear in the future? Unfortunately, it is difficult to accu-
rately predict the memory consumption of RFC as a function of the
size of the classifier: the performance of RFC is determined by the
structure present in the classifier. With pathological sets of rules,
RFC could scale geometrically with the number of rules. Fortu-
nately, such cases do not seem to appear in practice.

To estimate how RFC might perform with future, larger classifiers,
we synthesized large artificial classifiers. We used two different
ways to create large classifiers (given the importance of the struc-
ture, it did not seem meaningful to generate rules randomly):

1) A large classifier can be created by concatenating the classifi-
ers belonging to the same network, and treating the result as a
single classifier. Effectively, this means merging together the
individual classifiers for different services. Such an implemen-
tation is actually desirable in scenarios where the designer
may not want more than one set of RFC tables for the whole
network. In such cases, theclassID obtained would have to be
combined with some other information (such as classifier ID)
to obtain the correct intended action. By only concatenating
classifiers from the same network, we were able to create clas-
sifiers up to 3,896 rules. For each classifier created, we per-
formed RFC with both three and four phases. The results are
shown in Figure 15.

2) To create even larger classifiers, we concatenated all the clas-
sifiers of a few (up to ten) different networks. The perfor-
mance of RFC with four phases is plotted as the ‘Basic RFC’
curve in Figure 18. We found that RFC frequently runs into
storage problems for classifiers with more than 6000 rules.
Employing more phases does not help as we must combine at
least two chunks in every phase, and end up with one chunk in

the final phase.†† An alternative way to process large classifi-
ers would be to split them into two (or more) parts and con-
struct separate RFC tables for each part. This would of course
come at the expense of doubling the number of memory

accesses.‡‡

7  Variations
Several variations and improvements of RFC are possible. First, it
should be easy to see how RFC can be extended to process a larger
number of fields in each packet header.

Second, we can possibly speed up RFC by taking advantage of
available fast lookup algorithms that find longest matching prefixes
in one field. Note that in our examples, we use three memory
accesses each for the source and destination Network-layer address

†† With six chunks in Phase 0, we could have increased the num-
ber of phases to a maximum of six. However we found no
appreciable improvement by doing so.

‡‡ Actually, for Phase 0, we need not lookup memory twice for the
same chunk if we use wide memories. This would help us
access the contents of both the RFC tables in one memory
access.



lookups during the first two phases of RFC. This is necessary
because of the considerable number of non-contiguous address/
mask specifications. In the event that only prefixes are present in
the specification, one can use a more sophisticated and faster tech-
nique for looking up in one dimension e.g. one of the methods
described in [1][5][7][9] or [16].

Third, we can employ a technique described below to reduce the
memory requirements when processing large classifiers.

7.1 Adjacency Groups
Since the size of the RFC tables depends on the number of

chunk equivalence classes, we focus our efforts on trying to reduce
this number. This we do by merging two or more rules of the origi-
nal classifier as explained below. We find that each additional phase
of RFC further increases the amount of compaction possible on the
original classifier.

First we define some notation. We call two distinct rulesR and
S, with R appearing first, in the classifier to beadjacent in dimen-
sion ‘i’ if all of the following three conditions hold: (1) They have
the same action, (2) All but theith field have the exact same specifi-
cation in the two rules, and (3) All rules appearing in betweenR
and S in the classifier have either the same action or are disjoint
from R. Two rules are said to be simplyadjacent if they are adja-
cent in some dimension. Thus the second and third rules in the clas-
sifier of Table 3 are adjacent† in the dimension corresponding to the
Transport-layer Destination field. Similarly the fifth rule is adjacent
to the sixth but not to the fourth. Once we have determined that two
rules R andS are adjacent, we merge them to form a new ruleT
with the same action asR (or S). It has the same specifications as
that ofR (or S) for all the fields except that of theith which is simply
the logical-OR of the ith field specifications ofR andS. The third

† Adjacency can be also be looked at this way: treat each rule
with F fields as a boolean expression of F (multi-valued) vari-
ables. Initially each rule is a conjunction i.e. a logical-AND of
these variables. Two rules are defined to be adjacent of they are
adjacent vertices in the F-dimensional hypercube created by the
symbolic representation of the F fields.
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Figure 15: The memory consumed by RFC for three and
four phases on classifiers created by merging all the classifi-
ers of one network.

condition above ensures that the relative priority of the rules in
betweenR andS will not be affected by this merging.

An adjacency group (adjGrp) is defined recursively as: (1)
Every rule in the original classifier is an adjacency group, and (2)
Every merged rule which is created by merging two or more adja-
cency groups is an adjacency group.

We compact the classifier as follows. Initially, every rule is in
its own adjGrp. Next, we combine adjacent rules to create a new
smaller classifier. One simple way of doing this is to iterate over all
fields in turn, checking for adjacency in each dimension. After
these iterations are completed, the resulting classifier will have no
more adjacent rules. We do similar merging of adjacent rules after
each RFC phase. As each RFC phase collapses some dimensions,
groups which were not adjacent in earlier phases may become so in
later stages. In this way, the number of adjGrps and hence the size
of the classifier keeps on decreasing with every phase. An example
of this operation is shown in Figure 17.

Note that there is absolutely no change in the actual lookup
operation: the equivalence IDs are now simply pointers to bitmaps
which keep track of adjacency groups rather than the original rules.
To demonstrate the benefits of this optimization for both three and
four phases, we plot in Figure 16 the memory consumed with three
phases on the 101 large classifiers created by concatenating all the
classifiers belonging to one network; and in Figure 18, the memory
consumed with four phases on the even larger classifiers created by
concatenating all the classifiers of different networks together. The
figures show that this optimization helps reduce storage require-
ments. With this optimization, RFC can now handle a 15,000 rule
classifier with just 3.85MB. The reason for the reduction in storage
is that several rules in the same classifier commonly share a number
of specifications for many fields.

However, the space savings come at a cost. For although the classi-
fier will correctly identify the action for each arriving packet, it can-
not tell which rule in the original classifier it matched. Because the
rules have been merged to form adjGrps, the distinction between
each rule has been lost. This may be undesirable in applications that
maintain matching statistics for each rule.
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Figure 16: The memory consumed with three phases with the
adjGrp optimization enabled on the large classifiers created by
concatenating all the classifiers of one network



Table 5:

Scheme Pros Cons

Sequential Evaluation Good storage requirements. Works for arbitrary num-
ber of fields.

Slow lookup rates.

Grid of Tries[17] Good storage requirements and fast lookup rates for
two fields. Suitable for big classifiers.

Not easily extendible to more than two fields. Not suit-
able for non-contiguous masks.

Crossproducting[17] Fast accesses. Suitable for multiple fields. Can be
adapted to non-contiguous masks.

Large memory requirements. Suitable without caching
for small classifiers up to 50 rules.

Bit-level Parallelism[15] Suitable for multiple fields. Can be adapted to non-
contiguous masks.

Large memory bandwidth required. Comparatively
slow lookup rate. Hardware only.

Recursive Flow Classifi-
cation

Suitable for multiple fields. Works for non-contiguous
masks. Reasonable memory requirements for real-life
classifiers. Fast lookup rate.

Large preprocessing time and memory requirements
for large classifiers (i.e. having more than 6000 rules
without adjacency group optimization).

8  Comparison with other packet classification
schemes
Table 5 shows a qualitative comparison of some of the schemes for
doing packet classification.

R(a1,b1,c1,d1)

S(a1,b1,c2,d1)

T(a2,b1,c2,d1)

U(a2,b1,c1,d1)

V(a1,b1,c4,d2)

W(a1,b1,c3,d2)

X(a2,b1,c3,d2)

Y(a2,b1,c4,d2)

RS(a1,b1,c1+c2,d1)

TU(a2,b1,c1+c2,d1)
VW(a1,b1,c3+c4,d2)

XY(a2,b1,c3+c4,d2)

RSTU(a1+a2,b1,c1+c2,d1)

VWXY(a1+a2,b1,c3+c4,d2)

Carry out an RFC Phase.
Assume:chunks 1 and 2 are combined
and also chunks 3 and 4 are combined.

RSTU(m1,n1)

VWXY(m1,n2)

(a1+a2,b1) reduces to m1
(c1+c2,d1) reduces to n1
(c3+c4,d2) reduces to n2

RSTUVWXY(m1,n1+n2)
Merge

Continue with RFC...

Merge along

Dimension 3

Merge along

Dimension 1

Figure 17: Example of Adjacency Groups. Some rules of a
classifier are shown. Each rule is denoted symbolically by
RuleName(FieldName1, FieldName2,...). The ‘+’ denotes a
logical OR. All rules shown are assumed to have the same
action.

9  Conclusions
It is relatively simple to perform packet classification at high speed
using large amounts of storage; or at low speed with small amounts
of storage. When matching multiple fields (dimensions) simulta-
neously, it is difficult to achieve both high classification rate and
modest storage in the worst case. We have found that real classifiers
(today) exhibit considerable amount of structure and redundancy.
This makes possible simple classification schemes that exploit the
structure inherent in the classifier. We have presented one such
algorithm, called RFC which appears to perform well with the
selection of real-life classifiers available to us. For applications in
which the tables do not change frequently (for example, not more
than once every few seconds) a custom hardware implementation
can achieve OC192c rates with a memory cost of less than $50, and
a software implementation can achieve OC48c rates. RFC was
found to consume too much storage for classifiers with four fields
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and more than 6,000 rules. But by further exploiting structure and
redundancy in the classifiers, a modified version of RFC appears to
be practical for up to 15,000 rules.
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12  Appendix
/* Begin Pseudocode */
/* Phase 0, Chunkj of width b bits*/
for each rulerl  in the classifier
begin

project theith component ofrl  onto the number line (from 0 to 2b-1),
marking the start and end points of each of its constituent intervals.

endfor
/* Now scan through the number line looking for distinct equivalence
classes*/
bmp := 0; /* all bits of bmp are initialised to ‘0’ */
for n in 0..2b-1

begin
if (any rule starts or ends at n)
begin

update bmp;
if (bmp not seen earlier)
begin

eq := new_Equivalence_Class();
eq->cbm := bmp;

endif
endif
else eq := the equivalence class whose cbm is bmp;

table_0_j[n] = eq->ID; /* fill ID in the rfc table*/
endfor
/* end of pseudocode */

Figure 19: Pseudocode for RFC preprocessing for chunkj of
Phase 0



.

Table 6:

Rule#
Chunk#0 (Src
L3 bits 31..16)

Chunk#1 (Src
L3 bits 15..0)

Chunk#2 (Dst
L3 bits 31..16)

Chunk#3 (Dst
L3 bits 15..0)

Chunk#4 (L4
protocol) [8

bits]

Chunk#5
(Dstn L4) [16

bits]
Action

(0) 0.83/0.0 0.77/0.0 0.0/0.0 4.6/0.0 udp (17) * permit

(1) 0.83/0.0 1.0/0.255 0.0/0.0 4.6/0.0 udp range 20 30 permit

(2) 0.83/0.0 0.77/0.0 0.0/255.255 0.0/255.255 * 21 permit

(3) 0.0/255.255 0.0/255.255 0.0/255.255 0.0/255.255 * 21 deny

(4) 0.0/255.255 0.0/255.255 0.0/255.255 0.0/255.255 * * permit

/* Begin Pseudocode */

/* Assume that the chunk #i is  formed from combining m distinct chunks
c1, c2, ..., cm of phases p1,p2, ..., pm where p1, p2, ..., pm < j */

indx := 0; /* indx runs through all the entries of the RFC table table_j_i */
listEqs := nil;
for each CES, c1eq, of chunk c1
for each CES, c2eq, of chunk c2
........
for each CES, cmeq of chunk cm
begin
 intersectedBmp := c1eq->cbm & c2eq->cbm & ... & cmeq->cbm;/* bitwise

ANDing */
 neweq := searchList(listEqs, intersectedBmp);
 if (not found in listEqs)
 begin
  /* create a new equivalence class */
  neweq := new_Equivalence_Class();
  neweq->cbm := bmp;
  add neweq to listEqs;
 endif
 /* Fill up the relevant RFC table contents.*/
 table_j_i[indx] := neweq->ID;
 indx++;
endfor
/* end of pseudocode */

Figure 20: Pseudocode for RFC preprocessing for chunki of Phase j,
j>0)

/* Begin Pseudocode */

for (each chunk, chkNum of phase 0)
  eqNums[0][chkNum] = contents of appropriate rfctable at memory address

pktFields[chkNum];
for (phaseNum = 1..numPhases-1)
for (each chunk, chkNum, in Phase phaseNum)
begin
 /* chd stores the number and description about this chunk’s parents chk-

Prants[0..numChkParents]*/
 chd = parent descriptor of (phaseNum, chkNum);
 indx = eqNums[phaseNum of chkParents[0]][chkNum of  chkParents[0]];
 for (i=1..chd->numChkParents-1)
   begin

    indx = indx * (total #equivIDs of chd->chkParents[i]) +
eqNums[phaseNum of chd->chkParents[i]][chkNum of chd->chkPar-
ents[i]];

     /*** Alternatively: indx = (indx << (#bits of equivID of chd->chk-
Parents[i])) ^ (eqNums[phaseNum of chkParents[i]][chkNum of chkPar-
ents[i]] ***/

   endfor
 eqNums[phaseNum][chkNum] = contents of appropriate rfctable at

address indx.
endfor
return eqNums[0][numPhases-1]; /* this contains the desired classID

*/
/* end of pseudocode */

Figure 21:  Pseudocode for the RFC Lookup operation with the
fields of the packet inpktFields.
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Figure 22: This figure shows the contents of RFC tables for the example classifier of  Table 6.  The sequence of accesses made by the
example packet have also been shown using big gray arrows. The memory locations accessed in this sequence have been marked in
bold.


