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Abstract 

For some time, the networking community has assumed 
that it is impossible to do IP routing lookups in soft- 
ware fast enough to support gigabit speeds. IP routing 
lookups must find the routing entry with the longed 
matching prefix, a task that has been thought to require 
hardware support at lookup frequencies of millions per 
second. 

We present a forwarding table data structure de- 
signed for quick routing lookups. Forwarding tables are 
small enough to fit in the cache of a conventional general 
purpose processor. With the table in cache, a 200 MHz 
Pentium Pro or a 333 MHz Alpha 21164 can perform a 
few million lookups per second. This means that it is 
feasible to do a full routing lookup for each IP packet 
at gigabit speeds without special hardware. 

The forwarding tables are very small, a large routing 
table with 40,000 routing entries can be compacted to a 
forwarding table of 150-160 Kbytes. A lookup typically 
requires less than 100 instructions on an Alpha, using 
eight memory references accessing a total of 14 bytes. 

1 Introduction 

For some time, the networking community has assumed 
that it is impossible to do full IP routing lookups in soft- 
ware running on general purpose microprocessors fast 
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enough to support routing at gigabit speeds. In fact, 
some believe that IP routing lookups cannot be done 
quickly at low cost in hardware [23]. 

We present a forwarding table that allows fast IP 
routing lookups in software. Pessimistic calculations 
based on experimental data show that Pentium Pro and 
Alpha 21164 processors can do at least two million full 
IP routing lookups per second. No traffic locality is 
assumed. 

IP routers do a routing lookup in a routing fable to 
determine where IP datagrams are to be forwarded. The 
result of the operation is the nezt hop on the path to- 
wards the destination. An entry in a routing table is 
conceptually an arbitrary length prefix with associated 
next-hop information. Routing lookups must find the 
routing entry with the longest matching prefix. 

The belief that IP routing lookups are inherently 
slow and complex operations has lead to a prolifera- 
tion of techniques to avoid doing them. Various link 
layer switching technologies below IP, IP layer bypass 
methods [15, 19, 201 and the development of alternative 
network layers based on virtual circuit technologies such 
as ATM, are, to some degree, results of a wish to avoid 
IP routing lookups. 

The use of switching link layers and flow or tag 
switching architectures below the IP level adds complex- 
ity and redundancy to the network. Link layer switching 
and IP layer routing perform the same functions, so it 
would be simpler to have only one of these in the net- 
work. 

Most current IP router designs use caching tech- 
niques where the routing entries of the most recently 
used destination addresses are kept in a cache. The 
technique relies on there being enough locality in the 
traffic so that the cache hit rate is sufficiently high and 
the cost of a routing lookup is amortized over several 
packets. These caching methods have worked well in 
the past. However, as the current rapid growth of the 
Internet increases the required size of address caches, 
hardware caches might become uneconomical. 
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Figure 1: Router design with forwarding engines 

Traditional implementations of routing tables use a 
version of Patricia trees [13], a data structure invented 
almost thirty years ago, with modifications for longest 
prefix matching. By applying modern results in algo- 
rithm theory, routing lookup performance can be im- 
proved by orders of magnitude compared to Patricia 
trees, 

A straightforward implementation of Patricia trees 
for routing lookup purposes, for example in the NetBSD 
1,2 implementation, uses 24 bytes for leaves and inter- 
nal nodes, With 40,000 entries, the tree structure alone 
is almost 2 megabytes, and in a perfectly balanced tree 
16 or 16 nodes must be traversed to find a routing en- 
try, In some cases, due to the longest matching pre- 
fix rule, additional nodes need to be traversed to find 
the proper routing information as it is not guaranteed 
that the initial search will find the proper leaf. There 
are optimizations that can reduce the size of a Patri- 
cia tree and improve lookup speeds. Nevertheless, the 
data structure is large and too many expensive memory 
references are needed to search it. In short, Internet 
routing tables were too large to fit into on-chip caches 
and off-chip memory references onto DRAMS are too 
slow to support gigabit routing speeds. 

In the rest of this paper we present a data struc- 
ture that can represent large routing tables in a very 
compact form and can be searched quickly using few 
memory references. For the largest routing tables we 
have found at key interconnection points in the Internet 
[21, 221, the data structure is 150 - 160 Kbytes. That 
is small enough to fit entirely in the secondary cache of 
Pentium Pro processors, and to almost fit in the sec- 
ondary cache of Alpha 21164 processors. A lookup with 
an Alpha processor typically requires less than 100 in- 
structions, uses eight memory references, and accesses a 
total of 14 bytes. In the worst case, where the prefix is 
longer than 28 bits (very rare), an additional 50 instruc- 
tions, four memory references, and 7 bytes are needed. 
With the data structure in secondary cache, both Al- 
pha and Pentium Pro processors can do more than two 
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Figure 2: Router design with processing power on interfaces 

million routing lookups per second. With a packet size 
of 1000 bits (125 bytes), that is equivalent to more than 
2 Gbit/s. 

2 Routing and forwarding tables 

A router design is schematically shown in Figure 1. A 
number of network interfaces, forwarding engines, and a 
network processor are interconnected with a switching 
fabric. Inbound interfaces send packet headers to the 
forwarding engines through the switching fabric. The 
forwarding engines in turn determine which outgoing 
interface the packet should be sent to. This information 
is sent back to the inbound interface, which forwards 
the packet to the outbound interface. The only task of 
a forwarding engine is to process packet headers. All 
other tasks such as participating in routing protocols, 
resource reservation, handling packets that need extra 
attention, and other administrative duties, are handled 
by the network processor. The BBN Multigigabit router 
[17] is an example of this design. 

Another router design is shown in Figure 2. Here, 
processing elements in the inbound interface decide 
to which outbound interface packets should be sent. 
The GRF routers from Ascend communications, for in- 
stance, use this design. 

The forwarding engines in Figure 1 and the process- 
ing elements in Figure 2 uses a local version of the rout- 
ing table, a forwarding table, downloaded from the net- 
work processor to make their routing decisions. It is 
not necessary to download a new forwarding table for 
each routing update. Routing updates can be frequent 
but since routing protocols need time in the order of 
minutes to converge, forwarding tables can grow a little 
stale and need not change more than at most once per 
second [6]. 

The network processor needs a dynamic routing table 
designed for fast updates and fast generation of forward- 
ing tables. The forwarding tables, on the other hand, 
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can be optimized for lookup speed and need not be dy- 
namic, 

3 Design goals and parameters 

When designing the data structure used in the forward- 
ing table, the primary goal was to minimize lookup time. 
To reach that goal, we simultaneously minimize two pa- 
rameters; 

l the number of memory accesses required during 
lookup, and 

l the size of the data structure. 

Reducing the number of memory accesses required dur- 
ing a lookup is important because memory accesses are 
relatively slow and usually the bottleneck of lookup 
procedures. If the data structure can be made small 
enough, it can fit entirely in the cache of a conventional 
microprocessor. This means that memory accesses will 
be orders of magnitude faster than if the data structure 
needs to reside in memory consisting of relatively slow 
DRAM, as is the case for Patricia trees. 

If the forwarding table does not fit entirely in the 
cache, it is still beneficial if a large fraction of the table 
can reside in cache, Locality in traffic patterns will keep 
the most frequently used pieces of the data structure in 
cache, so that most lookups will be fast. Moreover, it 
becomes feasible to use fast SRAM for the small amount 
of needed external memory. SRAM is expensive, and 
more expensive the faster it is. For a given cost, the 
SRAM can be faster if less is needed. 

As secondary design goals, the data structure should 

l need few instructions during lookup, and 

l keep the entities naturally aligned as much as pos- 
sible to avoid expensive instructions and cumber- 
some bit-extraction operations. 

These goals have a second-order effect on the perfor- 
mance of the data structure. 

To determine quantitative design parameters for the 
data structure, we have investigated a number of large 
routing tables (see section 5). In these tables there 
are fairly few distinct next-hops, less than 60 distinct 
next-hops in tables consisting of up to 40,000 routing 
entries. If next-hops are identical, the rest of the rout- 
ing information is also the same, and thus all routing 
entries specifying the same next-hop can share routing 
information. The number of distinct next-hops in the 
routing table of a router is limited by the number of 
other routers or hosts that can be reached in one hop, 
so it is not surprising that these numbers can be small 
even for large backbone routers. However, if a router 
is connected to, for instance, a large ATM network, the 
number of next-hops can be much higher. 

The forwarding table datastructure is designed to ac- 
commodate 214 or 16K different next-hops. This should 
be sufficient for most cases. If there are fewer than 256 
distinct next-hops, so that an index into the next-hop 
table can be stored in a single byte, the forwarding ta- 
bles described here can be modified to occupy consider- 
ably less space. 

4 The data structure 

The forwarding table is essentially a tree with three lev- 
els. Searching one level requires one to four memory ac- 
cesses. Consequently, the maximum number of memory 
accesses is twelve. However, with the routing tables we 
have tried, the vast majority of lookups requires search- 
ing one or two levels only, so the most likely number of 
memory accesses is eight or less. 

2321eaves (IP addresses) 

Figure 3: Binary tree spanning the entire IF’ address space. 

For the purpose of understanding the data structure, 
imagine a binary tree that spans the entire IP address 
space (Figure 3). Its height is 32, and the number of 
leaves is 232, one for each possible IP address. The prefix 
of a routing table entry defines a path in the tree ending 
in some node. All IP addresses (leaves) in the subtree 
rooted at that node should be routed according to that 
routing entry. In this manner each routing table entry 
defines a range of IP addresses with identical routing 
information. 

If several routing entries cover the same IP address, 
the rule of the longest match is applied; it states that for 
a given IP address, the routing entry with the longest 
matching prefix should be used. This situation is illus- 
trated in Figure 4; the routing entry el is hidden by e2 
for addresses in the range r. 

r 

Figure 4: Routing entries defining ranges of IP addresses. 

The forwarding table is a representation of the binary 
tree spanned by all routing entries. This is called the 
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prefix tree. We require that the prefix tree is complete, 
Le,, that each node in the tree has either two or no 
children, Nodes with a single child must be expanded 
to have two children; the children added in this way 
are always leaves, and their next-hop information is the 
same as the next-hop of the closest ancestor with next- 
hop information, or the “undefined” next-hop if no such 
ancestor exists. 

r-?b i: 
Figure 6: Expanding the prefix tree to be complete. 

This procedure, illustrated in Figure 5, increases the 
number of nodes in the prefix tree, but allows building 
a small forwarding table. Note that it is not needed 
to actually build the prefix tree to build the forwarding 
table, We use the prefix tree to simplify our explanation. 
The forwarding table can be built during a single pass 
over all routing entries. 

A set of routing entries partitions the IP address 
space into sets of IP addresses. The problem of finding 
the proper routing information is similar to the more 
general interval set membership problem [12]. However, 
in our case the intervals are defined by nodes in the com- 
plete prefix tree and, therefore, has properties that we 
can use to obtain an even smaller data structure. For 
instance, each range of IP addresses has a length that 
is a power of two. 

Figure 6: The three levels of the data structure. 

As shown in Figure 6, level one of the data structure 
covers the prefix tree down to depth 16, level two covers 
depths 17 to 24, and level three depths 25 to 32. Wher- 
ever a part of the prefix tree extends below level 16, a 
level two chunk describes that part of the tree. Simi- 
larly, chunks at level three describe parts of the prefix 
tree that are deeper than 24. The result of searching 
one level of the data structure is either an index into 
the next-hop table or an index into an array of chunks 
for the next level. 

4.1 Core result 

Our core result is that we can represent a complete bi- 
nary tree of height h using only one bit per possible leaf 
at depth h, plus one base index per 64 possible leafs, 
plus the information stored in the leaves. For h > 6, 
the size in bytes of a tree with 1 leaves holding informa- 
tion of size d is 

2h-3 + b x 2h-6 + 1 x d (1) 

where b is the size of a base index. With two-byte base 
indices, a tree of height 8 (a chunk) requires 40 bytes 
plus leaf information, and a tree of height 16 requires 
10 Kbytes plus leaf information. 

To achieve these small sizes, an additional 5408 byte 
table is needed. The table can be made smaller, 1352 
bytes, but then typical processors will need more in- 
structions when using it. 

4.2 Level 1 of the data structure 

The first level is essentially a tree node with 1 - 64K 
children. It covers the prefix tree down to depth 16. 

Imagine a cut through the prefix tree at depth 16. 
The cut is represented by a bit-vector, with one bit 
per possible node at depth 16. 216 bits = 64Kbits = 
8 Kbytes are required for this. To find the bit corre- 
sponding to the initial part of an IP address, the upper 
16 bits of the address is used as an index into the bit- 
vector. 

Heads. When there is a node in the prefix tree at 
depth 16, the corresponding bit in the vector is set. 
Also, when the tree has a leaf at a depth less than 16, 
the lowest bit in the interval covered by that leaf is set. 
All other bits are zero. A bit in the bit vector can thus 
be 

l a one representing that the prefix tree continues 
below the cut; a root head (bits 6, 12 and 13 in 
Figure 7), or 

a one representing a leaf at depth 16 or less; a gen- 
vine head (bits 0, 4, 7, 8, 14 and 15 in Figure 7), 
or 

zero, which means that this value is a member of 
a range covered by a leaf at a depth less than 16 
(bits 1, 2, 3, 5, 9, 10 and 11 in Figure 7). Members 
have the same next-hop as the largest head smaller 
than the member. 

The bit-vector is divided into bit-masks of length 16. 
There are 2r2 = 4096 of those. 

Head information. For genuine heads we need to 
store an index into the next-hop table. Members will 
use the same next-hop as the largest head smaller than 
the member. For root heads, we need to store an index 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 7: Part of cut with corresponding bit-vector 
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Figure 8: Bit-masks vs code words and base indices. 

to the level two chunk that represents the corresponding 
subtree, 

The head information is encoded in 16-bit pointers 
stored consecutively in an array. Two bits of each 
pointer encode what kind of pointer it is, and the 14 
remaining bits either form an index into the next-hop 
table or an index into an array containing level two 
chunks, Note that there are as many pointers associ- 
ated with a bit-mask as its number of set bits. 

Finding pointer groups. Figure 8 is an illustra- 
tion of how the data structure for finding pointers corre- 
sponds to the bit-masks. The data structure consists of 
an array of code words, as many as there are bit-masks, 
plus an array of base indices, one per four code words. 
The code words consists of a lo-bit value (rl, r2,. . .) 
and a 6-bit offset (0,3,10,11,. . .). 

The first bit-mask in Figure 8 has three set bits. The 
second code word thus has an offset of three because 
three pointers must be skipped over to find the first 
pointer associated with that bit-mask. The second bit- 
mask has 7 set bits and consequently the offset in the 
third code word is 3 + 7 = 10. 

After four code words, the offset value might be too 
large to represent with 6 bits. Therefore, a base index is 
used together with the offset to find a group of pointers. 
There can be at most 64K pointers in level 1 of the data 
structure, so the base indices need to be at most 16 bits 
(210 = 64K). In Figure 8, the second base index is 13 
because there are 13 set bits in the first four bit-masks. 

This explains how a group of pointers is located. The 
first 12 bits of the IP address are an index to the proper 

code word, and the first 10 bits are an index to the array 
of base indices. 

Maptable. It remains to explain how to find the 
correct pointer in the group of pointers. This is what 
the lo-bit value is for (rl, r2,. . .in Figure 8). The value 
is an index into a table that maps bit-numbers in the 
IP address to pointer offsets. Since the bit-masks are 
16 bits long, one might think that the table needs 64K 
entries. However, bit-masks are generated from a com- 
plete prefix tree, so not all combinations of the 16 bits 
are possible. 

A non-zero bit-mask of length 2n can be any combi- 
nation of two bit-masks of length n or the bit-mask with 
value 1. Let a(n) be the number of possible non-zero 
bit-masks of length 2”. Q(YZ) is defined by the recurrence 

a(O)=l, a(n)=1+a(n-1)2 (2) 

The number of possible bit-masks with length 16 are 
thus a(4) + 1 = 678, the additional one is because the 
bit-mask can be zero. An index into a table with an 
entry for each bit-mask thus only needs 10 bits. 

We keep such a table, maptable, to map bit numbers 
within a bit-mask to Chit offsets. The offset specifies 
how many pointers to skip over to find the wanted one, 
so it is equal to the number of set bits smaller than the 
bit index. These offsets are the same for all forwarding 
tables, regardless of what values the pointers happen to 
have. Maptable is constant, it is generated once and for 
all. 

Searching. The steps in Figure 10 are required to 
search the first level of the data structure; the array of 
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Figure 9: Finding the pointer index. 

code words is called code, and the array of base indices 
is called base, Figure 9 illustrates the procedure. The 

IX := high 12 bits of IP address 
bix := high 10 bits of IP address 
bit := low 4 of high 16 bits of IP address 
codeword : = code [ix] 
ten := ten bits from codeword 
six := six bits from codeword 

Pi% := baseCbix1 t six + maptable[ten] [bit] 
pointer : = levell-pointers Cpixl 

Figure 10: Steps to search the first level 

index of the code word, ix, the index of the base index, 
bix, and the bit number, bit, are first extracted from 
the IP address. Then the code word is retrieved and its 
two parts are extracted into ten and six. The pointer 
index, pix, is then obtained by adding the base index, 
the B-bit offset six, and the pointer offset obtained by 
retrieving column bit from row ten of maptable. After 
the pointer is retrieved from the pointer array, it will be 
examined to determine if the next-hop has been found 
or if the search should continue on the next level. 

The code is extremely simple. A few bit extractions, 
array references, and additions is all that is needed. No 
multiplication or division instructions are required ex- 
cept for the implicit multiplications when indexing an 
array. 

A total of 7 bytes needs to be accessed to search the 
first level: a two byte code word, a two byte base ad- 
dress, one byte (4 bits, really) in maptable, and finally 
a two byte pointer, The size of the first level is 8K 
bytes for the code word array, 2K bytes for the array of 
base indices, plus a number of pointers. The 5.3 Kbytes 
required by maptable are shared among all three levels. 

4.2.1 Optimizations at level 1 

When the bit-mask is zero or has a single bit set, the 
pointer must be an index into the next-hop table. Such 
pointers can be encoded directly into the code word and 
thus maptable need not contain entries for bit-masks 
one and zero. The number of maptable entries is thus 
reduced to 676 (indices 0 through 675). When the ten 
bits in the code word (ten above) are larger than 675, 
the code word represents a direct index into the next- 
hop table. The six bits from the code word are used as 
the lowest 6 bits in the index, and (ten-676) are the 
upper bits of the index. This encoding allows at most 
(1024 - 676) x 2’j = 22272 next-hop indices, which is 
more than the 16K we are designing for. The optimiza- 
tion eliminates three memory references when a routing 
entry is located at depth 12 or higher, and reduces the 
number of pointers in the pointer array considerably. 
The cost is a comparison and a conditional branch. 

4.3 Levels 2 and 3 of the data structure 

Levels two and three of the data structure consist of 
chunks. A chunk covers a subtree of height 8 and can 
contain at most 28 = 256 heads. A root head in level 
n - 1 points to a chunk in level n. 

There are three varieties of chunks depending on how 
many heads the imaginary bit-vector contains. When 
there are 

l-8 heads, the chunk is sparse and is represented 
by an array of the 8-bit indices of the heads, plus 
eight 16-bit pointers; a total of 24 bytes. 

9-64 heads, the chunk is dense. It is represented 
analogously with level 1, except for the number of 
base indices. The difference is that only one base 
index is needed for all 16 code words, because g-bit 
offsets can cover all 64 pointers. A total of 34 bytes 
are needed, plus 18 to 128 bytes for pointers. 

65-256 heads, the chunk is very dense. It is repre- 
sented analogously with level 1. 16 code words and 
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4 base indices give a total of 40 bytes. In addition 
the 65 to 256 pointers require 130 to 512 bytes. 

Dense and very dense chunks are searched analo- 
gously with the first level. For sparse chunks, the 1 
to 8 values are placed in decreasing order. To avoid a 
bad worst-case when searching, the fourth value is ex- 
amined to determine if the desired element is among 
the first four or last four elements. After that, a linear 
scan determines the index of the desired element, and 
the pointer with that index can be extracted. The first 
element less than or equal to the search key is the de- 
sired element. At most 7 bytes need to be accessed to 
search a sparse chunk. 

4.3.1 Optimizations at levels two and three 

Dense and very dense chunks are optimized analogously 
with level 1 as described in section 4.2.1. In sparse 
chunks, consecutive heads can be merged and repre- 
sented by the smallest if their next-hops are identi- 
cal. When deciding whether a chunk is sparse or dense, 
this merging is taken into account so that the chunk is 
deemed sparse when the number of merged heads is 8 
or less. Many of the leaves that were added to make 
the tree complete will occur in order and have identical 
next-hops. Heads corresponding to such leaves will be 
merged in sparse chunks. 

This optimization shifts the chunk distribution from 
the larger dense chunks towards the smaller sparse 
chunks, For large tables, the size of the forwarding table 
is typically decreased by 5 to 15 per cent. 

4.4 Growth limitations in the current 
design 

The data structure can accommodate considerable 
growth in the number of routing entries. There are three 
limits in the current design. 

1, The number of chunks of each kind is limited to 
214 = 16384 per level. 

Table 1 shows that this is about 16 times more than 
is currently used. If the limit is ever exceeded, the 
data structure can be modified so that pointers are 
encoded differently to give more room for indices, 
or so that the pointer size is increased. 

2. The number of pointers in levels two and three is 
limited by the size of the base indices. 

The current implementation uses 16-bit base in- 
dices and can accommodate a growth factor of 3 
to 5. If the limit is exceeded it is straightforward 
to increase the size of base pointers to three bytes. 
The chunk size is then increased by 3 per cent for 
dense chunks and 10 per cent for very dense chunks. 
Sparse chunks are not affected. 

3. The number of distinct next-hops is limited to 
214 = 16384. 

If this limit is exceeded all next-hop indices cannot 
be encoded directly into code words, as explained 
in section 4.2.1. It is possible to avoid storing a 
pointer when the bit-mask is zero. When the bit- 
mask has one head, however, it is necessary that 
a pointer is stored. Consequently the size of the 
data structure will increase because there needs to 
be one pointer per interval and pointers are larger. 

To conclude, with small modifications the data struc- 
ture can accommodate a large increase in the number 
of routing entries. 

5 Performance measurements 

To investigate the performance of the forwarding tables, 
a number of IP routing tables were collected. Internet 
routing tables are currently available at the web site 
for the Internet Performance Measurement and Analysis 
(IPMA) project [22], and were previously made avail- 
able by the now terminated Routing Arbiter project 
[24. The collected routing tables are daily snapshots 
of the routing tables used at various large Internet in- 
terconnection points. Some of the routing entries in 
these tables contain multiple next-hops. In that case, 
one of them was randomly selected as the next-hop to 
use in the forwarding table. 

5.1 Size of forwarding table 

Table 1 shows data on forwarding tables constructed 
from various routing tables. For each site, it shows 
data and results for the routing table that generated the 
largest forwarding table. Routing entries is the number 
of routing entries in the routing table, and Next-hops 
is the number of distinct next-hops found in the table. 
Leaves is the number of leaves in the prefix tree after 
leaves have been added to make it complete. 

Build time in Table 1 is the time required to gener- 
ate the forwarding table from an in-memory binary tree 
representation of the routing table. Times were mea- 
sured on a 333 MHz Alpha 21164 running DEC OSFl. 
Subsequent columns show the total number of sparse, 
dense, and very dense chunks in the generated table fol- 
lowed by the number of chunks in the lowest level of the 
data structure. 

It is clear from Table 1 that new forwarding tables 
can be generated quickly. At a regeneration frequency 
of one Hz, less than one tenth of the Alpha’s capacity 
is consumed. As discussed in section 2, higher regener- 
ation frequencies than 1 Hz are not required. 

The larger tables in Table 1 do not fit entirely in the 
96 Kbyte secondary cache of the Alpha. It is feasible, 

9 



Routing next- Size Build sparse dense dense+ level 3 
Site Date Year entries Leaves hops (Kb) time chunks chunks chunks chunks 
Mae East Jan 9 ‘97 32732 58714 56 160 99 ms 1199 587 186 2 
Mae East Ott 21 ‘96 38141 36607 50 148 91 ms 1060 593 149 4 
Sprint Jan 1 ‘97 21797 43513 17 123 72 ms 988 483 98 3 
PacBell Jan 28 ‘97 18308 33250 2 99 49 ms 873 357 67 0 
Mae West Jan 1 ‘97 12049 28273 51 86 46 ms 775 312 42 3 
AADS Jan 4 ‘97 1109 5670 12 28 11 ms 320 38 0 2 

Table 1: Forwarding table generation data 

Clock Primary Cache Secondary Cache Tertiary Cache 
Processor cycle Size Latency Size Latency Size Latency 
Alpha 21164 3 ns 8 Kbyte 6 ns 96 Kbyte 24 ns 2 Mbyte 72 ns 
Pentium Pro 5 ns 8 Kbvte 10 ns 256 Kbvte 30 ns 

Table 2: Processor and cache data 

however, to have a small amount of very fast SRAM 
in the third level cache for the pieces that do not fit 
in the secondary cache, and thus reduce the cost of a 
miss in the secondary cache. With locality in traffic 
patterns, most memory references would be to the sec- 
ondary cache. 

An interesting observation is that the size of these ta- 
bles are comparable to what it would take to just store 
all prefixes in an array. For the larger tables, no more 
than 6,6 bytes per prefix is needed. More than half of 
these bytes are consumed by pointers. In the Sprint ta- 
ble there are 33469 pointers that require over 65 Kbytes 
of storage, It is clear that further reductions of the for- 
warding table size could be accomplished by reducing 
the number of pointers. 

5.2 Lookup performance 

Our measurements of lookup speed are done on a C 
function compiled with the GNU C-compiler gee. Re- 
ported times do not include the function call or the 
memory access to the next-hop table. gee generates 
code that uses approximately 50 Alpha instructions to 
search one level of the data structure in the worst case. 
On a Pentium Pro, gee generates code that uses 35 to 
46 instructions per level in the worst case. It is conceiv- 
able that better code can be obtained by hand-coding 
the lookup routine in assembler; we have not tried this. 

It is possible to read the current value of the clock 
cycle counter on Alphas and Pentium Pros. We have 
used this facility to measure lookup times with high 
precision: one clock tick is 5 nanoseconds at 200 MHz 
and 3 nanoseconds at 333 MHz. 

Ideally, we would like to place the entire forward- 
ing table in cache so lookups would be performed with 
an undisturbed cache. That would emulate the cache 
behavior of a dedicated forwarding engine. However, 
we have access to conventional general-purpose work- 
stations only and it is difficult to control the cache con- 
tents on such systems. The cache is disturbed whenever 
I/O is performed, an interrupt occurs, or another pro- 
cess gets to run. It is not even possible to print out 
measurement data or read a new IP address from a file 
without disturbing the cache. 

The best method we could devise is to perform each 
lookup twice, measuring the lookup time for the sec- 
ond lookup. In this way, the first lookup is done with 
a disturbed cache and the second in a cache where all 
necessary data has been forced into the primary cache 
by the first lookup. After each pair of lookups measure- 
ment data is printed out and a new address is fetched, 
a procedure that again disturbs the cache. 

The second lookup will perform better than lookups 
in a forwarding engine because data and instructions 
have moved into the primary cache closest to the pro- 
cessor. To get an upper limit on the lookup time, the 
additional time required for memory accesses to the sec- 
ondary cache must be added to the measured times. To 
test all paths through the forwarding table, lookup time 
was measured for each entry in the routing table, includ- 
ing the entries added by the expansion to a complete 
tree. 

Average lookup times can not be inferred from these 
experiments because it is not likely that a realistic traffic 
mix would have a uniform probability for accessing each 
routing entry. Moreover, locality in traffic patterns will 
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Figure 11: Lookup time distribution, Alpha 21164 Figure 12: Lookup time distribution, Pentium Pro 

keep frequently accessed parts of the data structure in 
the primary cache and, thus, reduce the average lookup 
time, The performance figures calculated below are con- 
servative because it is assumed that all memory accesses 
miss in the primary cache, and that the worst case ex- 
ecution time will always occur. Realistic lookup speeds 
would be higher. 

Table 1 show that there are very few chunks in level 
three of the data structure. That makes it likely that the 
vast majority of lookups need to search no more than 
two levels to find the next hop. Therefore, the addi- 
tional time for memory accesses to the secondary cache 
is calculated for eight instead of the worst-case twelve 
memory accesses. If a significant fraction of lookups 
were to access those few chunks, they would migrate 
into the primary cache and all twelve memory accesses 
would become less expensive. 

Lookup performance for Alpha 21164 

The Alpha 21164 we experimented with has a clock fre- 
quency of 333 MHz; one cycle takes 3 nanoseconds. Ac- 
cesses to the 8 Kbyte primary data cache completes in 
2 cycles and accesses to the secondary 96 Kbyte cache 
requires 8 cycles. See Table 2, 

Figure 11 shows the distribution of clock ticks elapsed 
during the second lookup for the Alpha on the Sprint 
routing table from January 1st. The fastest observed 
lookups require 17 clock cycles. This is the case when 
the code word in the first level directly encodes the in- 
dex to the next-hop table. There are very few such 
routing entries, However, as each such routing entry 
covers many IP addresses, actual traffic might contain 
many such destination addresses. Some lookups take 22 
cycles, which must be the same case as the previous. 
Experiments have confirmed that when the clock cycle 
counter is read with two consecutive instructions, the 
difference is sometimes 5 cycles instead of the expected 
0. 

The next spike in Figure 11 is at 41 clock cycles, 
which is the case when the pointer found in the first 
level is an index to the next-hop table. Traditional class 
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B addresses fall in this category. Spikes at 52-53,57,62, 
67, and 72 ticks correspond to finding the pointer after 
examining one, two, three, four, or five values in a sparse 
level 2 chunk. The huge spikes at 75 and 83 ticks are 
because that many ticks are required to search a dense 
and very dense chunk, respectively. A few observations 
above 83 correspond to pointers found after searching a 
sparse level 3 chunk, but we believe that most are due to 
variations in execution time. Cache conflicts in the sec- 
ondary cache, or differences in the state of pipelines and 
cache system before the lookup, can cause such varia- 
tions. The tail of observations above 100 clock cycles 
are either due to such variations or to cache misses. 300 
nanoseconds should be sufficient for a lookup when all 
data is in the primary cache. 

The difference between a data access in the primary 
cache and the secondary cache is 8 - 2 = 6 cycles. Thus, 
searching two levels of the data structure in the worst 
case requires 8 x 6 = 48 clock cycles more than indicated 
by Figure 11. That means at most 100+48 = 148 cycles 
or 444 nanoseconds for the worst case lookup when 2 
levels are sufficient. The Alpha should thus be able to 
do at least 2.2 million routing lookups per second with 
the forwarding table in the secondary cache. 

Lookup performance for Pentium Pro 

The Pentium Pro we experimented with has a clock fre- 
quency of 200 MHz; one cycle takes 5 nanoseconds. The 
primary 8 Kbyte data cache has a latency of 2 cycles 
and the secondary cache of 256 Kbytes has a latency of 
6 cycles. See Table 2. The latency of the Pentium Pro 
caches were measured using the tool lmbench [lo, 111 as 
we were unable to obtain this information otherwise, 

Figure 12 shows the distribution of clock ticks elapsed 
during the second lookup for the Pentium Pro with 
the same forwarding table as in the previous section. 
The sequence of instructions that fetches the clock cy- 
cle counter takes 33 clock cycles. When two fetches 
occur immediately after each other the counter values 
differ by 33. For this reason, all reported times have 
been reduced by 33. 
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The fastest observed lookups are 11 clock cycles, 
about the same speed as for the Alpha. The spike corre- 
sponding to the case when the next-hop index is found 
immediately after the first level occurs at 25 clock cy- 
cles, The spikes corresponding to a sparse level 2 chunk 
are grouped closely together in the range 36 to 40 clock 
cycles, The different caching structure of the Pentium 
seems to deal better with linear scans than the caching 
structure of the Alpha. 

When the second level chunks are dense and very 
dense, the lookup requires 48 and 50 cycles, respec- 
tively, There are some additional irregular spikes up 
to 69, above which there are very few observations. It 
is clear that 69 cycles (345 nanoseconds) is sufficient to 
do a lookup when all data is in the primary cache. 

The difference in access time between the primary 
and secondary cache is 20 nanoseconds (4 cycles). The 
lookup time for on the Pentium Pro when two levels 
need to be examined is then at worst 69 + 8 x 4 = 101 
cycles or 505 nanoseconds. The Pentium Pro can do 
at least 2.0 million routing lookups per second with the 
forwarding table in secondary cache. 

6 Scaling 

The number of instructions used for lookup is indepen- 
dent of the size of the forwarding table. Thus, the 
number of routing entries does not affect lookup per- 
formance as long as the forwarding table fits in cache. 
If it does not fit entirely in cache, some lookups will ac- 
cess slower memory. Traffic locality will then determine 
how much average lookup performance decreases. 

E’orwarding table size 

The table size is at least 15.3 Kbyte, because that is 
what is needed for maptable and the first level (exclud- 
ing pointers). The rest of the table size is at most linear 
in the number of leaves in the prefix tree. 

The relation between the number of prefixes and the 
number of leaves in the prefix tree is not simple. It 
will depend on how prefixes are spread out over the 
address space, It is easy to construct a prefix set that 
maximizes the table size by maximizing the number of 
sparse chunks, This is the worst case for the table size. 
If such prefix distributions were to become common, 
however, it would be simple to introduce a new kind of 
chunk that dealt better with this situation. 

Because the address space is limited, it is not appro- 
priate to use O()- notation to describe how forwarding 
tables grow with the number of routing entries. O()- 
notation is defined to capture the assymptotical growth. 
However, when the number of prefixes approaches the 
number of possible addresses, the number of leaves in 
the prefix tree will approach the number of prefixes as- 

symptotically. Assymptotical growth is a bad indication 
of how the table size increases with the number of rout- 
ing entries for the table sizes we worry about. 

Our experimental data indicate that, for larger ta- 
bles, the table size is around 4-5 bytes per prefix plus 
the fixed cost of 15.3 Kbytes. However, the forwarding 
table includes the table of next-hop information, which 
increases linearly with the number of distinct next-hops. 
The cost per prefix will grow significantly if most rout- 
ing entries have distinct next-hops. 

Table building time 

The reported table building times (Table 1) are for 
building the forwarding table from an in-memory prefix 
tree. We have devised a way to build the table that is 
linear in the number of routing entries and in the size of 
the resulting forwarding table. The table is built during 
a single pass over all routing entries. 

Larger addresses 

With the coming of IPv6 [4, 81 it is desirable to do fast 
lookups for 128-bit IPv6 addresses as well. With such 
large addresses, there is a danger of inflating the table 
size if the address space is sparsely utilized everywhere. 
However, there are techniques to adapt depths of chunks 
to the density and sparsity of the prefix tree so that a 
small size can be guaranteed. To tune the data struc- 
ture to the actual properties of the IPv6 address space, 
a number of representative IPv6 routing tables would 
have to be examined, but such tables do not yet ex- 
ist. We strongly believe that small forwarding tables 
and fast routing lookups are possible for IPv6 as well as 
IPv4. 

7 Related work 

We are not aware of any substantial improvements in 
the performance of software for full IP routing lookups 
in recent years. However, [5] shows how to extend Pa- 
tricia trees to deal better with longest matching prefix 
searches, insertions and deletions. The resulting data 
structure is called dynamic prefix tn’es. There are at 
least as many nodes in a dynamic prefix trie as in the 
corresponding Patricia tree. Nodes contain five point- 
ers, a bit-index, and a prefix, so the resulting data struc- 
ture is fairly large. Consequently, the lookup time is re- 
ported to be between 6 and 13 microseconds when the 
data structure holds 40 000 entries. However, the inser- 
tion and deletion operations appear efficient, so dynamic 
prefix tries might be a good candidate for the routing 
table maintained by the network processor. 

An early work on improving IP routing performance 
by avoiding full routing lookups [7] found that a small 
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destination address cache can improve routing lookup 
performance by at least 65 per cent. Less than 10 slots 
was needed to get a hit rate over 90 per cent. Much 
larger destination address caches are needed with the 
larger traffic intensities and number of hosts in today’s 
Internet; several thousand slots are necessary. 

ATM avoids doing routing lookups by having a sig- 
naling protocol that passes addresses to the network 
during connection setup. Forwarding state, accessed by 
a virtual circuit identifier (VCI), is installed in switches 
along the path of the connection during setup. ATM 
cells are labeled with the VCI which can then be used 
as a direct index into a table with forwarding state or 
as the key to a hash function. The routing decision is 
simpler for ATM, However, when packet sizes are larger 
than 48 bytes, more ATM routing decisions need to be 
made, When packets are large, it can be more efficient 
to make a few IP routing lookups instead of a large 
number of ATM VCI lookups. If network traffic con- 
sists mostly of large packets in the future, IP will be 
more efficient. 

Tag switching and flow switching [15] are two IP by- 
pass methods that were originally meant to be operated 
over ATM. The general idea is to let IP control link- 
level ATM hardware that performs actual data forward- 
ing, Special purpose protocols [14] are needed between 
routers to agree on what ATM virtual circuit identifiers 
to use and which packet should use which VCI. If IP 
processing was fast enough, that extra machinery would 
not be needed. 

Another approach with the same goal of avoiding IP 
processing is taken in the IP/ATM architecture [19,20], 
where an ATM backplane connects a number of line 
cards and routing cards. IP processing elements located 
in the routing cards process IP headers. When a packet 
stream arrives, only the first IP header is examined and 
the later packets are routed the same way as the first 
one, The main purpose of these shortcuts seems to be 
to amortize the cost of IP processing over many packets. 
Again, that would not be necessary if IP processing was 
fast enough. 

IP router designs can use special-purpose hardware 
to do IP processing, as in the IBM router [l]. This can 
be an inflexible solution. Any changes in the IP format 
or protocol could invalidate such designs. The flexibility 
of software and the rapid performance increase of gen- 
eral purpose processors makes such solutions preferable. 
Another hardware approach is to use CAMS to do rout- 
ing lookups [9], This is a fast but expensive solution. 

BBN is currently building a pair of multi-gigabit 
routers that use general purpose processors as forward- 
ing engines [17]. Little information has been published 
50 far, The idea, however, seems to be to use Alpha pro- 
cessors as forwarding engines and do all IP processing in 
software, [18] shows that it is possible to do IP process- 

ing in no more than 200 instructions, assuming a hit in 
a route cache. Less than 100 instructions are necessary 
according to [17]. The secondary cache of the Alpha 
is used as a large LRU cache of destination addresses. 
The scheme presumes locality in traffic patterns. With 
low locality the cache hit rate could become too low and 
performance would suffer. 

8 Discussion and further work 

A processor in a router or forwarding engine would pre- 
sumably do other IP processing than routing lookups. 
However, assuming that other IP processing requires 
100 instructions in the common path, Pentium Pros and 
Alphas are still powerful enough to process a million IP 
packets per second. 

Our analysis of the performance of forwarding table 
lookups is conservative. The longest observed lookup 
time was used and it was assumed that memory ac- 
cesses always missed in the primary cache. Even if the 
access probability for routing entries was uniformly dis- 
tributed, there would be several hits in the primary 
cache. With locality, many accesses would be to the 
primary cache and performance would increase even fur- 
ther. A natural way to continue this work is to study 
cache behavior using realistic packet traces. Signifi- 
cantly lower average lookup times are expected. 

Increased routing lookup speeds will make caching 
of destination addresses less sensitive to low locality 
in traffic patterns. Designs using route caching will 
be sound for much lower cache hit rates when routing 
lookups are fast. 

The current forwarding table sizes of around 150-160 
Kbytes for the largest routing tables are still not small 
enough to fit entirely in the second level cache of Alpha 
21164s. The current small size and fast lookups has been 
realized by applying recent work in algorithm theory 
[2, 3, 161 and by careful tuning of the data structure. 
There is reason to believe that this field of algorithm 
theory will develop even further. Moreover, a number 
of techniques to reduce the table size even further are 
still untried. There is still hope of making forwarding 
tables small enough to fit entirely in the secondary 96 
Kbyte cache of Alpha 21164 processors. 

This paper is focused on performing routing lookups 
with general-purpose processors. It is also possible to 
do routing lookups with special-purpose hardware. It 
should be straightforward to implement the lookup al- 
gorithm presented here in hardware. The small memory 
consumption is beneficial for hardware implementations 
as well as software implementations. It is easy to see 
that two of the memory accesses in Figure 7 can be 
done in parallel. With pipelining, the lookup time can 
be reduced to what it takes to search one level of the 
data structure. 
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9 Conclusion 

We have shown the feasibility of doing full IP routing 

loolcups per packet at gigabit speeds. The technique in- 
volves generating a compact forwarding table that can 
be searched quickly to find the longest matching prefix. 
No special hardware is required. Pessimistic calcula- 
tions based on experimental data show that general pur- 
pose processors are capable of performing several mil- 

lion full IP routing lookups per second. With locality 
in traffic, lookup speeds will be even higher. 

These forwarding tables can scale to accommodate 
arbitrary growth in the size of routing tables. With 
small modifications, there is practically no limit. The 
solution is general. Similar techniques can be applied 

to the larger addresses of IPv6. 
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