
Small Forwarding Tables for Fast Routing Lookups

Mikael Degermark,2 Andrej Brodnik,3 Svante Carlsson,2 and Stephen Pink 24

micke@cdt.luth.se, Andrej.BrodnikQIMFM.Uni-Lj.SI, svanteQsm.luth.se, steveQsics.se

Department of Computer Science and Electrical Engineering

Luleg University of Technology

S-971 87 Luleb, Sweden

Abstract

For some time, the networking community has assumed
that it is impossible to do IP routing lookups in soft-
ware fast enough to support gigabit speeds. IP routing
lookups must find the routing entry with the longed
matching prefix, a task that has been thought to require
hardware support at lookup frequencies of millions per
second.

We present a forwarding table data structure de-
signed for quick routing lookups. Forwarding tables are
small enough to fit in the cache of a conventional general
purpose processor. With the table in cache, a 200 MHz
Pentium Pro or a 333 MHz Alpha 21164 can perform a
few million lookups per second. This means that it is
feasible to do a full routing lookup for each IP packet
at gigabit speeds without special hardware.

The forwarding tables are very small, a large routing
table with 40,000 routing entries can be compacted to a
forwarding table of 150-160 Kbytes. A lookup typically
requires less than 100 instructions on an Alpha, using
eight memory references accessing a total of 14 bytes.

1 Introduction

For some time, the networking community has assumed
that it is impossible to do full IP routing lookups in soft-
ware running on general purpose microprocessors fast

2 With the Centre for Distance-spanning Technology (CDT),
Luleb, Sweden.

3Als~ at the Department of Theoretical Computer Science, In-
stitute of Mathematics, Physics, and Mechanics, Jadranska 19,
1111 Ljubljana, Slovenia.

‘Also at the Swedish Institute of Computer Science, PO box
1263, S-164 28 Kista, Sweden.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyrlght notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM ‘97 Connes, France
0 1997 ACM 0.89791.905.X/97/0009...$3.50

enough to support routing at gigabit speeds. In fact,
some believe that IP routing lookups cannot be done
quickly at low cost in hardware [23].

We present a forwarding table that allows fast IP
routing lookups in software. Pessimistic calculations
based on experimental data show that Pentium Pro and
Alpha 21164 processors can do at least two million full
IP routing lookups per second. No traffic locality is
assumed.

IP routers do a routing lookup in a routing fable to
determine where IP datagrams are to be forwarded. The
result of the operation is the nezt hop on the path to-
wards the destination. An entry in a routing table is
conceptually an arbitrary length prefix with associated
next-hop information. Routing lookups must find the
routing entry with the longest matching prefix.

The belief that IP routing lookups are inherently
slow and complex operations has lead to a prolifera-
tion of techniques to avoid doing them. Various link
layer switching technologies below IP, IP layer bypass
methods [15, 19, 201 and the development of alternative
network layers based on virtual circuit technologies such
as ATM, are, to some degree, results of a wish to avoid
IP routing lookups.

The use of switching link layers and flow or tag
switching architectures below the IP level adds complex-
ity and redundancy to the network. Link layer switching
and IP layer routing perform the same functions, so it
would be simpler to have only one of these in the net-
work.

Most current IP router designs use caching tech-
niques where the routing entries of the most recently
used destination addresses are kept in a cache. The
technique relies on there being enough locality in the
traffic so that the cache hit rate is sufficiently high and
the cost of a routing lookup is amortized over several
packets. These caching methods have worked well in
the past. However, as the current rapid growth of the
Internet increases the required size of address caches,
hardware caches might become uneconomical.

3

Figure 1: Router design with forwarding engines

Traditional implementations of routing tables use a
version of Patricia trees [13], a data structure invented
almost thirty years ago, with modifications for longest
prefix matching. By applying modern results in algo-
rithm theory, routing lookup performance can be im-
proved by orders of magnitude compared to Patricia
trees,

A straightforward implementation of Patricia trees
for routing lookup purposes, for example in the NetBSD
1,2 implementation, uses 24 bytes for leaves and inter-
nal nodes, With 40,000 entries, the tree structure alone
is almost 2 megabytes, and in a perfectly balanced tree
16 or 16 nodes must be traversed to find a routing en-
try, In some cases, due to the longest matching pre-
fix rule, additional nodes need to be traversed to find
the proper routing information as it is not guaranteed
that the initial search will find the proper leaf. There
are optimizations that can reduce the size of a Patri-
cia tree and improve lookup speeds. Nevertheless, the
data structure is large and too many expensive memory
references are needed to search it. In short, Internet
routing tables were too large to fit into on-chip caches
and off-chip memory references onto DRAMS are too
slow to support gigabit routing speeds.

In the rest of this paper we present a data struc-
ture that can represent large routing tables in a very
compact form and can be searched quickly using few
memory references. For the largest routing tables we
have found at key interconnection points in the Internet
[21, 221, the data structure is 150 - 160 Kbytes. That
is small enough to fit entirely in the secondary cache of
Pentium Pro processors, and to almost fit in the sec-
ondary cache of Alpha 21164 processors. A lookup with
an Alpha processor typically requires less than 100 in-
structions, uses eight memory references, and accesses a
total of 14 bytes. In the worst case, where the prefix is
longer than 28 bits (very rare), an additional 50 instruc-
tions, four memory references, and 7 bytes are needed.
With the data structure in secondary cache, both Al-
pha and Pentium Pro processors can do more than two

I I

Figure 2: Router design with processing power on interfaces

million routing lookups per second. With a packet size
of 1000 bits (125 bytes), that is equivalent to more than
2 Gbit/s.

2 Routing and forwarding tables

A router design is schematically shown in Figure 1. A
number of network interfaces, forwarding engines, and a
network processor are interconnected with a switching
fabric. Inbound interfaces send packet headers to the
forwarding engines through the switching fabric. The
forwarding engines in turn determine which outgoing
interface the packet should be sent to. This information
is sent back to the inbound interface, which forwards
the packet to the outbound interface. The only task of
a forwarding engine is to process packet headers. All
other tasks such as participating in routing protocols,
resource reservation, handling packets that need extra
attention, and other administrative duties, are handled
by the network processor. The BBN Multigigabit router
[17] is an example of this design.

Another router design is shown in Figure 2. Here,
processing elements in the inbound interface decide
to which outbound interface packets should be sent.
The GRF routers from Ascend communications, for in-
stance, use this design.

The forwarding engines in Figure 1 and the process-
ing elements in Figure 2 uses a local version of the rout-
ing table, a forwarding table, downloaded from the net-
work processor to make their routing decisions. It is
not necessary to download a new forwarding table for
each routing update. Routing updates can be frequent
but since routing protocols need time in the order of
minutes to converge, forwarding tables can grow a little
stale and need not change more than at most once per
second [6].

The network processor needs a dynamic routing table
designed for fast updates and fast generation of forward-
ing tables. The forwarding tables, on the other hand,

4

can be optimized for lookup speed and need not be dy-
namic,

3 Design goals and parameters

When designing the data structure used in the forward-
ing table, the primary goal was to minimize lookup time.
To reach that goal, we simultaneously minimize two pa-
rameters;

l the number of memory accesses required during
lookup, and

l the size of the data structure.

Reducing the number of memory accesses required dur-
ing a lookup is important because memory accesses are
relatively slow and usually the bottleneck of lookup
procedures. If the data structure can be made small
enough, it can fit entirely in the cache of a conventional
microprocessor. This means that memory accesses will
be orders of magnitude faster than if the data structure
needs to reside in memory consisting of relatively slow
DRAM, as is the case for Patricia trees.

If the forwarding table does not fit entirely in the
cache, it is still beneficial if a large fraction of the table
can reside in cache, Locality in traffic patterns will keep
the most frequently used pieces of the data structure in
cache, so that most lookups will be fast. Moreover, it
becomes feasible to use fast SRAM for the small amount
of needed external memory. SRAM is expensive, and
more expensive the faster it is. For a given cost, the
SRAM can be faster if less is needed.

As secondary design goals, the data structure should

l need few instructions during lookup, and

l keep the entities naturally aligned as much as pos-
sible to avoid expensive instructions and cumber-
some bit-extraction operations.

These goals have a second-order effect on the perfor-
mance of the data structure.

To determine quantitative design parameters for the
data structure, we have investigated a number of large
routing tables (see section 5). In these tables there
are fairly few distinct next-hops, less than 60 distinct
next-hops in tables consisting of up to 40,000 routing
entries. If next-hops are identical, the rest of the rout-
ing information is also the same, and thus all routing
entries specifying the same next-hop can share routing
information. The number of distinct next-hops in the
routing table of a router is limited by the number of
other routers or hosts that can be reached in one hop,
so it is not surprising that these numbers can be small
even for large backbone routers. However, if a router
is connected to, for instance, a large ATM network, the
number of next-hops can be much higher.

The forwarding table datastructure is designed to ac-
commodate 214 or 16K different next-hops. This should
be sufficient for most cases. If there are fewer than 256
distinct next-hops, so that an index into the next-hop
table can be stored in a single byte, the forwarding ta-
bles described here can be modified to occupy consider-
ably less space.

4 The data structure

The forwarding table is essentially a tree with three lev-
els. Searching one level requires one to four memory ac-
cesses. Consequently, the maximum number of memory
accesses is twelve. However, with the routing tables we
have tried, the vast majority of lookups requires search-
ing one or two levels only, so the most likely number of
memory accesses is eight or less.

2321eaves (IP addresses)

Figure 3: Binary tree spanning the entire IF’ address space.

For the purpose of understanding the data structure,
imagine a binary tree that spans the entire IP address
space (Figure 3). Its height is 32, and the number of
leaves is 232, one for each possible IP address. The prefix
of a routing table entry defines a path in the tree ending
in some node. All IP addresses (leaves) in the subtree
rooted at that node should be routed according to that
routing entry. In this manner each routing table entry
defines a range of IP addresses with identical routing
information.

If several routing entries cover the same IP address,
the rule of the longest match is applied; it states that for
a given IP address, the routing entry with the longest
matching prefix should be used. This situation is illus-
trated in Figure 4; the routing entry el is hidden by e2
for addresses in the range r.

r

Figure 4: Routing entries defining ranges of IP addresses.

The forwarding table is a representation of the binary
tree spanned by all routing entries. This is called the

5

prefix tree. We require that the prefix tree is complete,
Le,, that each node in the tree has either two or no
children, Nodes with a single child must be expanded
to have two children; the children added in this way
are always leaves, and their next-hop information is the
same as the next-hop of the closest ancestor with next-
hop information, or the “undefined” next-hop if no such
ancestor exists.

r-?b i:
Figure 6: Expanding the prefix tree to be complete.

This procedure, illustrated in Figure 5, increases the
number of nodes in the prefix tree, but allows building
a small forwarding table. Note that it is not needed
to actually build the prefix tree to build the forwarding
table, We use the prefix tree to simplify our explanation.
The forwarding table can be built during a single pass
over all routing entries.

A set of routing entries partitions the IP address
space into sets of IP addresses. The problem of finding
the proper routing information is similar to the more
general interval set membership problem [12]. However,
in our case the intervals are defined by nodes in the com-
plete prefix tree and, therefore, has properties that we
can use to obtain an even smaller data structure. For
instance, each range of IP addresses has a length that
is a power of two.

Figure 6: The three levels of the data structure.

As shown in Figure 6, level one of the data structure
covers the prefix tree down to depth 16, level two covers
depths 17 to 24, and level three depths 25 to 32. Wher-
ever a part of the prefix tree extends below level 16, a
level two chunk describes that part of the tree. Simi-
larly, chunks at level three describe parts of the prefix
tree that are deeper than 24. The result of searching
one level of the data structure is either an index into
the next-hop table or an index into an array of chunks
for the next level.

4.1 Core result

Our core result is that we can represent a complete bi-
nary tree of height h using only one bit per possible leaf
at depth h, plus one base index per 64 possible leafs,
plus the information stored in the leaves. For h > 6,
the size in bytes of a tree with 1 leaves holding informa-
tion of size d is

2h-3 + b x 2h-6 + 1 x d (1)

where b is the size of a base index. With two-byte base
indices, a tree of height 8 (a chunk) requires 40 bytes
plus leaf information, and a tree of height 16 requires
10 Kbytes plus leaf information.

To achieve these small sizes, an additional 5408 byte
table is needed. The table can be made smaller, 1352
bytes, but then typical processors will need more in-
structions when using it.

4.2 Level 1 of the data structure

The first level is essentially a tree node with 1 - 64K
children. It covers the prefix tree down to depth 16.

Imagine a cut through the prefix tree at depth 16.
The cut is represented by a bit-vector, with one bit
per possible node at depth 16. 216 bits = 64Kbits =
8 Kbytes are required for this. To find the bit corre-
sponding to the initial part of an IP address, the upper
16 bits of the address is used as an index into the bit-
vector.

Heads. When there is a node in the prefix tree at
depth 16, the corresponding bit in the vector is set.
Also, when the tree has a leaf at a depth less than 16,
the lowest bit in the interval covered by that leaf is set.
All other bits are zero. A bit in the bit vector can thus
be

l a one representing that the prefix tree continues
below the cut; a root head (bits 6, 12 and 13 in
Figure 7), or

a one representing a leaf at depth 16 or less; a gen-
vine head (bits 0, 4, 7, 8, 14 and 15 in Figure 7),
or

zero, which means that this value is a member of
a range covered by a leaf at a depth less than 16
(bits 1, 2, 3, 5, 9, 10 and 11 in Figure 7). Members
have the same next-hop as the largest head smaller
than the member.

The bit-vector is divided into bit-masks of length 16.
There are 2r2 = 4096 of those.

Head information. For genuine heads we need to
store an index into the next-hop table. Members will
use the same next-hop as the largest head smaller than
the member. For root heads, we need to store an index

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7: Part of cut with corresponding bit-vector

1ooo1m10000000 1011100010001010 1OOOOOOOOOOOOOOO 1OOOOOOOlOOOOOOO lOOOOOOOlOlOlOOO

co&wordaIray: rl 1 0 1 l-2 1
. . .

3 1 r3 1 10 r4 Ill I I5 IO .,.
0 1 2 3 4

I
.

Basdndexway: 0 13
0 1

Figure 8: Bit-masks vs code words and base indices.

to the level two chunk that represents the corresponding
subtree,

The head information is encoded in 16-bit pointers
stored consecutively in an array. Two bits of each
pointer encode what kind of pointer it is, and the 14
remaining bits either form an index into the next-hop
table or an index into an array containing level two
chunks, Note that there are as many pointers associ-
ated with a bit-mask as its number of set bits.

Finding pointer groups. Figure 8 is an illustra-
tion of how the data structure for finding pointers corre-
sponds to the bit-masks. The data structure consists of
an array of code words, as many as there are bit-masks,
plus an array of base indices, one per four code words.
The code words consists of a lo-bit value (rl, r2,. . .)
and a 6-bit offset (0,3,10,11,. . .).

The first bit-mask in Figure 8 has three set bits. The
second code word thus has an offset of three because
three pointers must be skipped over to find the first
pointer associated with that bit-mask. The second bit-
mask has 7 set bits and consequently the offset in the
third code word is 3 + 7 = 10.

After four code words, the offset value might be too
large to represent with 6 bits. Therefore, a base index is
used together with the offset to find a group of pointers.
There can be at most 64K pointers in level 1 of the data
structure, so the base indices need to be at most 16 bits
(210 = 64K). In Figure 8, the second base index is 13
because there are 13 set bits in the first four bit-masks.

This explains how a group of pointers is located. The
first 12 bits of the IP address are an index to the proper

code word, and the first 10 bits are an index to the array
of base indices.

Maptable. It remains to explain how to find the
correct pointer in the group of pointers. This is what
the lo-bit value is for (rl, r2,. . .in Figure 8). The value
is an index into a table that maps bit-numbers in the
IP address to pointer offsets. Since the bit-masks are
16 bits long, one might think that the table needs 64K
entries. However, bit-masks are generated from a com-
plete prefix tree, so not all combinations of the 16 bits
are possible.

A non-zero bit-mask of length 2n can be any combi-
nation of two bit-masks of length n or the bit-mask with
value 1. Let a(n) be the number of possible non-zero
bit-masks of length 2”. Q(YZ) is defined by the recurrence

a(O)=l, a(n)=1+a(n-1)2 (2)

The number of possible bit-masks with length 16 are
thus a(4) + 1 = 678, the additional one is because the
bit-mask can be zero. An index into a table with an
entry for each bit-mask thus only needs 10 bits.

We keep such a table, maptable, to map bit numbers
within a bit-mask to Chit offsets. The offset specifies
how many pointers to skip over to find the wanted one,
so it is equal to the number of set bits smaller than the
bit index. These offsets are the same for all forwarding
tables, regardless of what values the pointers happen to
have. Maptable is constant, it is generated once and for
all.

Searching. The steps in Figure 10 are required to
search the first level of the data structure; the array of

7

Figure 9: Finding the pointer index.

code words is called code, and the array of base indices
is called base, Figure 9 illustrates the procedure. The

IX := high 12 bits of IP address
bix := high 10 bits of IP address
bit := low 4 of high 16 bits of IP address
codeword : = code [ix]
ten := ten bits from codeword
six := six bits from codeword

Pi% := baseCbix1 t six + maptable[ten] [bit]
pointer : = levell-pointers Cpixl

Figure 10: Steps to search the first level

index of the code word, ix, the index of the base index,
bix, and the bit number, bit, are first extracted from
the IP address. Then the code word is retrieved and its
two parts are extracted into ten and six. The pointer
index, pix, is then obtained by adding the base index,
the B-bit offset six, and the pointer offset obtained by
retrieving column bit from row ten of maptable. After
the pointer is retrieved from the pointer array, it will be
examined to determine if the next-hop has been found
or if the search should continue on the next level.

The code is extremely simple. A few bit extractions,
array references, and additions is all that is needed. No
multiplication or division instructions are required ex-
cept for the implicit multiplications when indexing an
array.

A total of 7 bytes needs to be accessed to search the
first level: a two byte code word, a two byte base ad-
dress, one byte (4 bits, really) in maptable, and finally
a two byte pointer, The size of the first level is 8K
bytes for the code word array, 2K bytes for the array of
base indices, plus a number of pointers. The 5.3 Kbytes
required by maptable are shared among all three levels.

4.2.1 Optimizations at level 1

When the bit-mask is zero or has a single bit set, the
pointer must be an index into the next-hop table. Such
pointers can be encoded directly into the code word and
thus maptable need not contain entries for bit-masks
one and zero. The number of maptable entries is thus
reduced to 676 (indices 0 through 675). When the ten
bits in the code word (ten above) are larger than 675,
the code word represents a direct index into the next-
hop table. The six bits from the code word are used as
the lowest 6 bits in the index, and (ten-676) are the
upper bits of the index. This encoding allows at most
(1024 - 676) x 2’j = 22272 next-hop indices, which is
more than the 16K we are designing for. The optimiza-
tion eliminates three memory references when a routing
entry is located at depth 12 or higher, and reduces the
number of pointers in the pointer array considerably.
The cost is a comparison and a conditional branch.

4.3 Levels 2 and 3 of the data structure

Levels two and three of the data structure consist of
chunks. A chunk covers a subtree of height 8 and can
contain at most 28 = 256 heads. A root head in level
n - 1 points to a chunk in level n.

There are three varieties of chunks depending on how
many heads the imaginary bit-vector contains. When
there are

l-8 heads, the chunk is sparse and is represented
by an array of the 8-bit indices of the heads, plus
eight 16-bit pointers; a total of 24 bytes.

9-64 heads, the chunk is dense. It is represented
analogously with level 1, except for the number of
base indices. The difference is that only one base
index is needed for all 16 code words, because g-bit
offsets can cover all 64 pointers. A total of 34 bytes
are needed, plus 18 to 128 bytes for pointers.

65-256 heads, the chunk is very dense. It is repre-
sented analogously with level 1. 16 code words and

8

4 base indices give a total of 40 bytes. In addition
the 65 to 256 pointers require 130 to 512 bytes.

Dense and very dense chunks are searched analo-
gously with the first level. For sparse chunks, the 1
to 8 values are placed in decreasing order. To avoid a
bad worst-case when searching, the fourth value is ex-
amined to determine if the desired element is among
the first four or last four elements. After that, a linear
scan determines the index of the desired element, and
the pointer with that index can be extracted. The first
element less than or equal to the search key is the de-
sired element. At most 7 bytes need to be accessed to
search a sparse chunk.

4.3.1 Optimizations at levels two and three

Dense and very dense chunks are optimized analogously
with level 1 as described in section 4.2.1. In sparse
chunks, consecutive heads can be merged and repre-
sented by the smallest if their next-hops are identi-
cal. When deciding whether a chunk is sparse or dense,
this merging is taken into account so that the chunk is
deemed sparse when the number of merged heads is 8
or less. Many of the leaves that were added to make
the tree complete will occur in order and have identical
next-hops. Heads corresponding to such leaves will be
merged in sparse chunks.

This optimization shifts the chunk distribution from
the larger dense chunks towards the smaller sparse
chunks, For large tables, the size of the forwarding table
is typically decreased by 5 to 15 per cent.

4.4 Growth limitations in the current
design

The data structure can accommodate considerable
growth in the number of routing entries. There are three
limits in the current design.

1, The number of chunks of each kind is limited to
214 = 16384 per level.

Table 1 shows that this is about 16 times more than
is currently used. If the limit is ever exceeded, the
data structure can be modified so that pointers are
encoded differently to give more room for indices,
or so that the pointer size is increased.

2. The number of pointers in levels two and three is
limited by the size of the base indices.

The current implementation uses 16-bit base in-
dices and can accommodate a growth factor of 3
to 5. If the limit is exceeded it is straightforward
to increase the size of base pointers to three bytes.
The chunk size is then increased by 3 per cent for
dense chunks and 10 per cent for very dense chunks.
Sparse chunks are not affected.

3. The number of distinct next-hops is limited to
214 = 16384.

If this limit is exceeded all next-hop indices cannot
be encoded directly into code words, as explained
in section 4.2.1. It is possible to avoid storing a
pointer when the bit-mask is zero. When the bit-
mask has one head, however, it is necessary that
a pointer is stored. Consequently the size of the
data structure will increase because there needs to
be one pointer per interval and pointers are larger.

To conclude, with small modifications the data struc-
ture can accommodate a large increase in the number
of routing entries.

5 Performance measurements

To investigate the performance of the forwarding tables,
a number of IP routing tables were collected. Internet
routing tables are currently available at the web site
for the Internet Performance Measurement and Analysis
(IPMA) project [22], and were previously made avail-
able by the now terminated Routing Arbiter project
[24. The collected routing tables are daily snapshots
of the routing tables used at various large Internet in-
terconnection points. Some of the routing entries in
these tables contain multiple next-hops. In that case,
one of them was randomly selected as the next-hop to
use in the forwarding table.

5.1 Size of forwarding table

Table 1 shows data on forwarding tables constructed
from various routing tables. For each site, it shows
data and results for the routing table that generated the
largest forwarding table. Routing entries is the number
of routing entries in the routing table, and Next-hops
is the number of distinct next-hops found in the table.
Leaves is the number of leaves in the prefix tree after
leaves have been added to make it complete.

Build time in Table 1 is the time required to gener-
ate the forwarding table from an in-memory binary tree
representation of the routing table. Times were mea-
sured on a 333 MHz Alpha 21164 running DEC OSFl.
Subsequent columns show the total number of sparse,
dense, and very dense chunks in the generated table fol-
lowed by the number of chunks in the lowest level of the
data structure.

It is clear from Table 1 that new forwarding tables
can be generated quickly. At a regeneration frequency
of one Hz, less than one tenth of the Alpha’s capacity
is consumed. As discussed in section 2, higher regener-
ation frequencies than 1 Hz are not required.

The larger tables in Table 1 do not fit entirely in the
96 Kbyte secondary cache of the Alpha. It is feasible,

9

Routing next- Size Build sparse dense dense+ level 3
Site Date Year entries Leaves hops (Kb) time chunks chunks chunks chunks
Mae East Jan 9 ‘97 32732 58714 56 160 99 ms 1199 587 186 2
Mae East Ott 21 ‘96 38141 36607 50 148 91 ms 1060 593 149 4
Sprint Jan 1 ‘97 21797 43513 17 123 72 ms 988 483 98 3
PacBell Jan 28 ‘97 18308 33250 2 99 49 ms 873 357 67 0
Mae West Jan 1 ‘97 12049 28273 51 86 46 ms 775 312 42 3
AADS Jan 4 ‘97 1109 5670 12 28 11 ms 320 38 0 2

Table 1: Forwarding table generation data

Clock Primary Cache Secondary Cache Tertiary Cache
Processor cycle Size Latency Size Latency Size Latency
Alpha 21164 3 ns 8 Kbyte 6 ns 96 Kbyte 24 ns 2 Mbyte 72 ns
Pentium Pro 5 ns 8 Kbvte 10 ns 256 Kbvte 30 ns

Table 2: Processor and cache data

however, to have a small amount of very fast SRAM
in the third level cache for the pieces that do not fit
in the secondary cache, and thus reduce the cost of a
miss in the secondary cache. With locality in traffic
patterns, most memory references would be to the sec-
ondary cache.

An interesting observation is that the size of these ta-
bles are comparable to what it would take to just store
all prefixes in an array. For the larger tables, no more
than 6,6 bytes per prefix is needed. More than half of
these bytes are consumed by pointers. In the Sprint ta-
ble there are 33469 pointers that require over 65 Kbytes
of storage, It is clear that further reductions of the for-
warding table size could be accomplished by reducing
the number of pointers.

5.2 Lookup performance

Our measurements of lookup speed are done on a C
function compiled with the GNU C-compiler gee. Re-
ported times do not include the function call or the
memory access to the next-hop table. gee generates
code that uses approximately 50 Alpha instructions to
search one level of the data structure in the worst case.
On a Pentium Pro, gee generates code that uses 35 to
46 instructions per level in the worst case. It is conceiv-
able that better code can be obtained by hand-coding
the lookup routine in assembler; we have not tried this.

It is possible to read the current value of the clock
cycle counter on Alphas and Pentium Pros. We have
used this facility to measure lookup times with high
precision: one clock tick is 5 nanoseconds at 200 MHz
and 3 nanoseconds at 333 MHz.

Ideally, we would like to place the entire forward-
ing table in cache so lookups would be performed with
an undisturbed cache. That would emulate the cache
behavior of a dedicated forwarding engine. However,
we have access to conventional general-purpose work-
stations only and it is difficult to control the cache con-
tents on such systems. The cache is disturbed whenever
I/O is performed, an interrupt occurs, or another pro-
cess gets to run. It is not even possible to print out
measurement data or read a new IP address from a file
without disturbing the cache.

The best method we could devise is to perform each
lookup twice, measuring the lookup time for the sec-
ond lookup. In this way, the first lookup is done with
a disturbed cache and the second in a cache where all
necessary data has been forced into the primary cache
by the first lookup. After each pair of lookups measure-
ment data is printed out and a new address is fetched,
a procedure that again disturbs the cache.

The second lookup will perform better than lookups
in a forwarding engine because data and instructions
have moved into the primary cache closest to the pro-
cessor. To get an upper limit on the lookup time, the
additional time required for memory accesses to the sec-
ondary cache must be added to the measured times. To
test all paths through the forwarding table, lookup time
was measured for each entry in the routing table, includ-
ing the entries added by the expansion to a complete
tree.

Average lookup times can not be inferred from these
experiments because it is not likely that a realistic traffic
mix would have a uniform probability for accessing each
routing entry. Moreover, locality in traffic patterns will

10

maa

maa

6ooo

4ma

2x0

0
a

Figure 11: Lookup time distribution, Alpha 21164 Figure 12: Lookup time distribution, Pentium Pro

keep frequently accessed parts of the data structure in
the primary cache and, thus, reduce the average lookup
time, The performance figures calculated below are con-
servative because it is assumed that all memory accesses
miss in the primary cache, and that the worst case ex-
ecution time will always occur. Realistic lookup speeds
would be higher.

Table 1 show that there are very few chunks in level
three of the data structure. That makes it likely that the
vast majority of lookups need to search no more than
two levels to find the next hop. Therefore, the addi-
tional time for memory accesses to the secondary cache
is calculated for eight instead of the worst-case twelve
memory accesses. If a significant fraction of lookups
were to access those few chunks, they would migrate
into the primary cache and all twelve memory accesses
would become less expensive.

Lookup performance for Alpha 21164

The Alpha 21164 we experimented with has a clock fre-
quency of 333 MHz; one cycle takes 3 nanoseconds. Ac-
cesses to the 8 Kbyte primary data cache completes in
2 cycles and accesses to the secondary 96 Kbyte cache
requires 8 cycles. See Table 2,

Figure 11 shows the distribution of clock ticks elapsed
during the second lookup for the Alpha on the Sprint
routing table from January 1st. The fastest observed
lookups require 17 clock cycles. This is the case when
the code word in the first level directly encodes the in-
dex to the next-hop table. There are very few such
routing entries, However, as each such routing entry
covers many IP addresses, actual traffic might contain
many such destination addresses. Some lookups take 22
cycles, which must be the same case as the previous.
Experiments have confirmed that when the clock cycle
counter is read with two consecutive instructions, the
difference is sometimes 5 cycles instead of the expected
0.

The next spike in Figure 11 is at 41 clock cycles,
which is the case when the pointer found in the first
level is an index to the next-hop table. Traditional class

Em

mcc

sm

a

Looblp fime cns&ibalioa

. . I. . . I.. I
1 20 40 60 P

%ckcyda

B addresses fall in this category. Spikes at 52-53,57,62,
67, and 72 ticks correspond to finding the pointer after
examining one, two, three, four, or five values in a sparse
level 2 chunk. The huge spikes at 75 and 83 ticks are
because that many ticks are required to search a dense
and very dense chunk, respectively. A few observations
above 83 correspond to pointers found after searching a
sparse level 3 chunk, but we believe that most are due to
variations in execution time. Cache conflicts in the sec-
ondary cache, or differences in the state of pipelines and
cache system before the lookup, can cause such varia-
tions. The tail of observations above 100 clock cycles
are either due to such variations or to cache misses. 300
nanoseconds should be sufficient for a lookup when all
data is in the primary cache.

The difference between a data access in the primary
cache and the secondary cache is 8 - 2 = 6 cycles. Thus,
searching two levels of the data structure in the worst
case requires 8 x 6 = 48 clock cycles more than indicated
by Figure 11. That means at most 100+48 = 148 cycles
or 444 nanoseconds for the worst case lookup when 2
levels are sufficient. The Alpha should thus be able to
do at least 2.2 million routing lookups per second with
the forwarding table in the secondary cache.

Lookup performance for Pentium Pro

The Pentium Pro we experimented with has a clock fre-
quency of 200 MHz; one cycle takes 5 nanoseconds. The
primary 8 Kbyte data cache has a latency of 2 cycles
and the secondary cache of 256 Kbytes has a latency of
6 cycles. See Table 2. The latency of the Pentium Pro
caches were measured using the tool lmbench [lo, 111 as
we were unable to obtain this information otherwise,

Figure 12 shows the distribution of clock ticks elapsed
during the second lookup for the Pentium Pro with
the same forwarding table as in the previous section.
The sequence of instructions that fetches the clock cy-
cle counter takes 33 clock cycles. When two fetches
occur immediately after each other the counter values
differ by 33. For this reason, all reported times have
been reduced by 33.

11

The fastest observed lookups are 11 clock cycles,
about the same speed as for the Alpha. The spike corre-
sponding to the case when the next-hop index is found
immediately after the first level occurs at 25 clock cy-
cles, The spikes corresponding to a sparse level 2 chunk
are grouped closely together in the range 36 to 40 clock
cycles, The different caching structure of the Pentium
seems to deal better with linear scans than the caching
structure of the Alpha.

When the second level chunks are dense and very
dense, the lookup requires 48 and 50 cycles, respec-
tively, There are some additional irregular spikes up
to 69, above which there are very few observations. It
is clear that 69 cycles (345 nanoseconds) is sufficient to
do a lookup when all data is in the primary cache.

The difference in access time between the primary
and secondary cache is 20 nanoseconds (4 cycles). The
lookup time for on the Pentium Pro when two levels
need to be examined is then at worst 69 + 8 x 4 = 101
cycles or 505 nanoseconds. The Pentium Pro can do
at least 2.0 million routing lookups per second with the
forwarding table in secondary cache.

6 Scaling

The number of instructions used for lookup is indepen-
dent of the size of the forwarding table. Thus, the
number of routing entries does not affect lookup per-
formance as long as the forwarding table fits in cache.
If it does not fit entirely in cache, some lookups will ac-
cess slower memory. Traffic locality will then determine
how much average lookup performance decreases.

E’orwarding table size

The table size is at least 15.3 Kbyte, because that is
what is needed for maptable and the first level (exclud-
ing pointers). The rest of the table size is at most linear
in the number of leaves in the prefix tree.

The relation between the number of prefixes and the
number of leaves in the prefix tree is not simple. It
will depend on how prefixes are spread out over the
address space, It is easy to construct a prefix set that
maximizes the table size by maximizing the number of
sparse chunks, This is the worst case for the table size.
If such prefix distributions were to become common,
however, it would be simple to introduce a new kind of
chunk that dealt better with this situation.

Because the address space is limited, it is not appro-
priate to use O()- notation to describe how forwarding
tables grow with the number of routing entries. O()-
notation is defined to capture the assymptotical growth.
However, when the number of prefixes approaches the
number of possible addresses, the number of leaves in
the prefix tree will approach the number of prefixes as-

symptotically. Assymptotical growth is a bad indication
of how the table size increases with the number of rout-
ing entries for the table sizes we worry about.

Our experimental data indicate that, for larger ta-
bles, the table size is around 4-5 bytes per prefix plus
the fixed cost of 15.3 Kbytes. However, the forwarding
table includes the table of next-hop information, which
increases linearly with the number of distinct next-hops.
The cost per prefix will grow significantly if most rout-
ing entries have distinct next-hops.

Table building time

The reported table building times (Table 1) are for
building the forwarding table from an in-memory prefix
tree. We have devised a way to build the table that is
linear in the number of routing entries and in the size of
the resulting forwarding table. The table is built during
a single pass over all routing entries.

Larger addresses

With the coming of IPv6 [4, 81 it is desirable to do fast
lookups for 128-bit IPv6 addresses as well. With such
large addresses, there is a danger of inflating the table
size if the address space is sparsely utilized everywhere.
However, there are techniques to adapt depths of chunks
to the density and sparsity of the prefix tree so that a
small size can be guaranteed. To tune the data struc-
ture to the actual properties of the IPv6 address space,
a number of representative IPv6 routing tables would
have to be examined, but such tables do not yet ex-
ist. We strongly believe that small forwarding tables
and fast routing lookups are possible for IPv6 as well as
IPv4.

7 Related work

We are not aware of any substantial improvements in
the performance of software for full IP routing lookups
in recent years. However, [5] shows how to extend Pa-
tricia trees to deal better with longest matching prefix
searches, insertions and deletions. The resulting data
structure is called dynamic prefix tn’es. There are at
least as many nodes in a dynamic prefix trie as in the
corresponding Patricia tree. Nodes contain five point-
ers, a bit-index, and a prefix, so the resulting data struc-
ture is fairly large. Consequently, the lookup time is re-
ported to be between 6 and 13 microseconds when the
data structure holds 40 000 entries. However, the inser-
tion and deletion operations appear efficient, so dynamic
prefix tries might be a good candidate for the routing
table maintained by the network processor.

An early work on improving IP routing performance
by avoiding full routing lookups [7] found that a small

12

destination address cache can improve routing lookup
performance by at least 65 per cent. Less than 10 slots
was needed to get a hit rate over 90 per cent. Much
larger destination address caches are needed with the
larger traffic intensities and number of hosts in today’s
Internet; several thousand slots are necessary.

ATM avoids doing routing lookups by having a sig-
naling protocol that passes addresses to the network
during connection setup. Forwarding state, accessed by
a virtual circuit identifier (VCI), is installed in switches
along the path of the connection during setup. ATM
cells are labeled with the VCI which can then be used
as a direct index into a table with forwarding state or
as the key to a hash function. The routing decision is
simpler for ATM, However, when packet sizes are larger
than 48 bytes, more ATM routing decisions need to be
made, When packets are large, it can be more efficient
to make a few IP routing lookups instead of a large
number of ATM VCI lookups. If network traffic con-
sists mostly of large packets in the future, IP will be
more efficient.

Tag switching and flow switching [15] are two IP by-
pass methods that were originally meant to be operated
over ATM. The general idea is to let IP control link-
level ATM hardware that performs actual data forward-
ing, Special purpose protocols [14] are needed between
routers to agree on what ATM virtual circuit identifiers
to use and which packet should use which VCI. If IP
processing was fast enough, that extra machinery would
not be needed.

Another approach with the same goal of avoiding IP
processing is taken in the IP/ATM architecture [19,20],
where an ATM backplane connects a number of line
cards and routing cards. IP processing elements located
in the routing cards process IP headers. When a packet
stream arrives, only the first IP header is examined and
the later packets are routed the same way as the first
one, The main purpose of these shortcuts seems to be
to amortize the cost of IP processing over many packets.
Again, that would not be necessary if IP processing was
fast enough.

IP router designs can use special-purpose hardware
to do IP processing, as in the IBM router [l]. This can
be an inflexible solution. Any changes in the IP format
or protocol could invalidate such designs. The flexibility
of software and the rapid performance increase of gen-
eral purpose processors makes such solutions preferable.
Another hardware approach is to use CAMS to do rout-
ing lookups [9], This is a fast but expensive solution.

BBN is currently building a pair of multi-gigabit
routers that use general purpose processors as forward-
ing engines [17]. Little information has been published
50 far, The idea, however, seems to be to use Alpha pro-
cessors as forwarding engines and do all IP processing in
software, [18] shows that it is possible to do IP process-

ing in no more than 200 instructions, assuming a hit in
a route cache. Less than 100 instructions are necessary
according to [17]. The secondary cache of the Alpha
is used as a large LRU cache of destination addresses.
The scheme presumes locality in traffic patterns. With
low locality the cache hit rate could become too low and
performance would suffer.

8 Discussion and further work

A processor in a router or forwarding engine would pre-
sumably do other IP processing than routing lookups.
However, assuming that other IP processing requires
100 instructions in the common path, Pentium Pros and
Alphas are still powerful enough to process a million IP
packets per second.

Our analysis of the performance of forwarding table
lookups is conservative. The longest observed lookup
time was used and it was assumed that memory ac-
cesses always missed in the primary cache. Even if the
access probability for routing entries was uniformly dis-
tributed, there would be several hits in the primary
cache. With locality, many accesses would be to the
primary cache and performance would increase even fur-
ther. A natural way to continue this work is to study
cache behavior using realistic packet traces. Signifi-
cantly lower average lookup times are expected.

Increased routing lookup speeds will make caching
of destination addresses less sensitive to low locality
in traffic patterns. Designs using route caching will
be sound for much lower cache hit rates when routing
lookups are fast.

The current forwarding table sizes of around 150-160
Kbytes for the largest routing tables are still not small
enough to fit entirely in the second level cache of Alpha
21164s. The current small size and fast lookups has been
realized by applying recent work in algorithm theory
[2, 3, 161 and by careful tuning of the data structure.
There is reason to believe that this field of algorithm
theory will develop even further. Moreover, a number
of techniques to reduce the table size even further are
still untried. There is still hope of making forwarding
tables small enough to fit entirely in the secondary 96
Kbyte cache of Alpha 21164 processors.

This paper is focused on performing routing lookups
with general-purpose processors. It is also possible to
do routing lookups with special-purpose hardware. It
should be straightforward to implement the lookup al-
gorithm presented here in hardware. The small memory
consumption is beneficial for hardware implementations
as well as software implementations. It is easy to see
that two of the memory accesses in Figure 7 can be
done in parallel. With pipelining, the lookup time can
be reduced to what it takes to search one level of the
data structure.

13

9 Conclusion

We have shown the feasibility of doing full IP routing

loolcups per packet at gigabit speeds. The technique in-
volves generating a compact forwarding table that can
be searched quickly to find the longest matching prefix.
No special hardware is required. Pessimistic calcula-
tions based on experimental data show that general pur-
pose processors are capable of performing several mil-

lion full IP routing lookups per second. With locality
in traffic, lookup speeds will be even higher.

These forwarding tables can scale to accommodate
arbitrary growth in the size of routing tables. With
small modifications, there is practically no limit. The
solution is general. Similar techniques can be applied

to the larger addresses of IPv6.

References

PI

PI

PI

[41

El

PI

[71

PI

PI

PO1

Abhaya Asthana, Catherine Delph, H. V. Jagadish, and
Paul Krzyzanowski. Towards a gigabit IP router. Jour-
nal of High Speed Networks, 1(4):281-288, 1993.

A. Brodnik and J.I. Munro. Membership in a constant

time and a minimum space. In Proceedings %@European
Symporrium on Algorithms, volume 855 of Lecture Notes
in Computer Science, pages 72-81. Springer-Verlag,
1994.

A. Brodnik and J.I. Munro. Neighbours on a grid. In

Proceedings SthScandinavian Workshop on Algorithm
Theory, volume 1097 of Lecture Notes in Computer Sci-
ence, pages 307-320. Springer-Verlag, 1996.

S, Deering and R. Hinden. Internet Protocol, Version 6
(IPv6) Specification. Request for Comments (Proposed
Standard) RFC 1883, Internet Engineering Task Force,
January 1996.

Wiibald Doeringer, Giinter Karjoth, and Mehdi
Nassehi. Routing on longest-matching prefixes.
IEEE/ACM Transactions on Networking, 4(1):86-97,
February 1996.

Stanford University Workshop on Fast Routing and
Switching, December 1996.
http://tiny-tera.stanford.edu/WorkshopDec96/ .

David C. Feldmeier. Improving gateway performance
with a routing-table cache. In Proceedings of the Con-
ference on Computer Communications (IEEE Infocom),
New Orleans, Louisiana, March 1988. IEEE.

Robert Hinden. IP Next Generation Home Page.
http://playground.sun.com/pub/ipng/html/
ipng-main. html ,

A. J. McAuley and P. Francis. Fast routing table
lookup using CAMS. In Proceedings of the Confer-
ence on Computer Communications (IEEE Infocom),
volume 3, pages 1382-1391, San Francisco, 1993.

Larry McVoy. lmbench home page.
http://reality.sgi.com/lm/lmbench/lmbench.html

ml

El21

P41

D51

[If51

[I71

[I81

Dl

PO1

WI

[221

1231

Larry McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In USENIX Winter Confer-
ence, January 1996. Available at
http://reality.sgi.com/lm/lmbench/
lmbench-usenix.ps .

K. Mehlhorn, S. N%her, and H. Alt. A lower bound
on the complexity of the union-split-find problem.
SIAM Journal on Computing, 17(1):1093-1102, Decem-
ber 1988.

Donald R. Morrison. PATRICIA - Practical Algo-
rithm to Retreive Information Coded In Alfanumeric.
Journal of the ACM, 15(4):514-534, October 1968.

P. Newman, W. L. Edwards, R. Hinden, E. Hoffman,
F. Ching Liaw, T. Lyon, and G. Minshall. Ipsilon Flow
Management Protocol Specification for IPv4, Version
1.0. Request For Comment RFC 1953, Internet Engi-
neering Task Force, May 1996.

Peter Newman, Tom Lyon, and Greg Minshall. Flow
labeled IP: a connectionless approach to ATM. In Pro-
ceedings of the Conference on Computer Communica-
tions (IEEE Infocom), San Francisco, California, March
1996.

S. Nilsson. Radix Sorting d Searching. PhD thesis, De-
partment of Computer Science, Lund University, 1996.

C. Partridge, P. Carvey, E. Burgess, I. Castineyra,
T. Clarke, L. Graham, M. Hathaway, P. Herman,
A. King, S. KohIami, T. Ma, T. Mendez, W. Mil-
liken, R. OsterIind, R. Pettyjohn, J. Rokosz, J. Seeger,
M. SolIins, S. Starch, B. Tober, G. Troxel, D. Waitz-
man, and S. Winterble. A fifty gigabit per second ip
router. IEEE/ACM Transactions on Networking, To
Appear.

Craig Partridge. Gigabit networking. Addison-Wesley,
Reading, Massachusetts, 1993.

Guru ParuIkar, Douglas C. Schmidt, and Jonathan
Turner. IP/ATM: A strategy for integrating IP with
ATM. Computer Communication Reuiew, 25(4):49-58,
October 1995. Proceedings ACM SIGCOMM ‘95 Con-
ference.

Gurudatta Parulkar, Douglas C. Schmidt, and
Jonathan S. Turner. GIPR: a gigabit IP router. In
Proc. of Gigabit Networking Workshop, Boston, Mas-
sachusetts, April 1995.

The Routing Arbiter Project. Internet routing and net-
work statistics.
http://uvu.ra.net/statistics/ .

Michigan University and Merit Network. Internet Per-
formance Management and Analysis (IPMA) Project.
Details available at
http://nic.merit.edu/‘ipma/ .

Washington Utiversity Workshop on Integration of IP
and ATM, November 1996. Proceedings from session 5.
Available at
http://vvv.arl.uustl.edu/arl/vorkshops/atmip/ .

14

