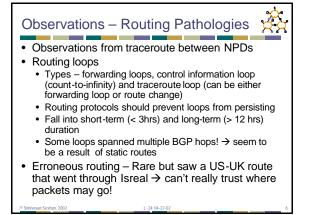
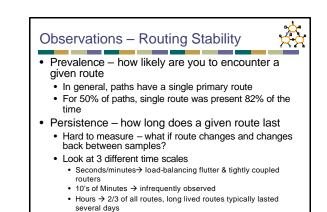


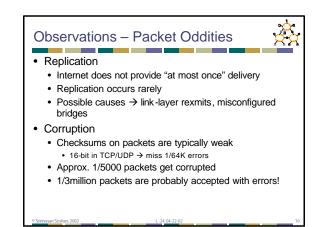
Motivation


Answers many questions

- How does the Internet really operate?
- Is it working efficiently?
- How will trends affect its operation?
- How should future protocols be designed?
- · Aren't simulation and analysis enough?
 - We really don't know what to simulate or analyze
 Need to understand how Internet is being used!
 - Too difficult to analyze or simulate parts we do understand

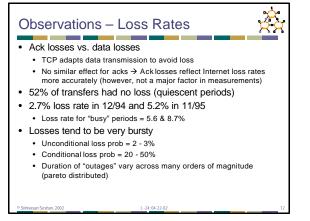

Traces Characteristics

- Some available at http://ita.ee.lbl.gov
- E.g. tcpdump files and HTTP logs
- · Public ones tend to be old (2+ years)
- · Privacy concerns tend to reduce useful content
- · Paxson's test data
 - Network Probe Daemon (NPD) performs transfers & traceroutes, records packet traces
 - Approximately 20-40 sites participated in various NPD based studies
 - The number of "paths" tested by NPD framework scaled with (number of hosts)^2 $% \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right) \left(\frac{1}{2}$
 - 20-40 hosts = 400-1600 paths!



Observations - Routing Pathologies

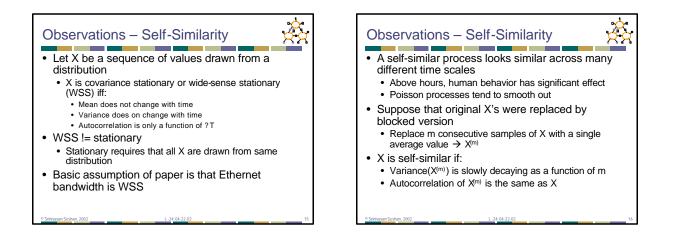
- · Route change between traceroutes
 - Associated outages have bimodal duration distribution
 Perhaps due to the difference in addition/removal of link in
- routing protocols
- Temporary outages
 - Traceroute probes (1-2%) experienced > 30sec outages
 - Outage likelihood strongly correlated with time of day/load
- Most pathologies seem to be getting worse over time



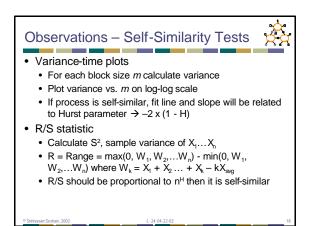
- Observations Re-ordering
- 12-36% of transfers had re-ordering
- 1-2% of packets were re-ordered
- Very much dependent on path
 - Some sites had large amount of re-ordering
 - Forward and reverse path may have different amounts
- Impact \rightarrow ordering used to detect loss
 - TCP uses re-order of 3 packets as heuristic
 - Decrease in threshold would cause many "bad" rexmits
 - But would increase rexmit opportunities by 65-70%
 - A combination of delay and lower threshold would be satisfactory though → maybe Vegas would work well!

Observations - Bottleneck Bandwidth

- Typical technique, packet pair, has several weaknesses
 - Out-of-order delivery \rightarrow pair likely used different paths
 - Clock resolution \rightarrow 10msec clock and 512 byte packets limit estimate to 51.2 KBps
 - Changes in BW
 - Multi-channel links \rightarrow packets are not queued behind each other
- Solution Packet Bunch Mode (PBM)
 - Send a group of packets and analyze modes of different bunch sizes



Observations – TCP Behavior


- Recorded every packet sent to Web server for 1996 Olympics
 - Can re-create outgoing data based on TCP behavior → must use some heuristics to identify timeouts, etc.
- How is TCP used clients and how does TCP recover from losses
 - · Lots of small transfers done in parallel

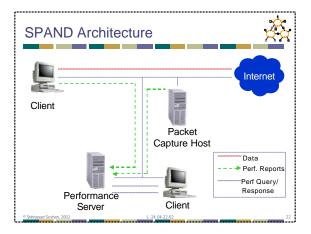
Trace Statistic	Value	%Age
Total connections	1,650,103	100
With packet reordering	97,036	(
With rcvr window bottleneck	233,906	14
Total packets	7,821,638	100
During slow start	6,662,050	8
Slow start packets lost	354,566	(
During congestion avoidance	1,159,588	15
Congestion avoidance loss	82,181	1
Total retransmissions	857,142	100
Fast retransmissions	375,306	44
Slow start following timeout	59,811	1
Coarse timeouts	422,025	49
Avoidable with SACK	18,713	4

Observations - Self-Similarity

- Variance(X^(m)) is slowly decaying as a function of m
 - Implication → process has a heavy tail since tail probabilities do not fall (I.e. large variance)
- Autocorrelation decays slowly
 - Autocorrelation goes with k^B (i.e. hyperbolically)
 - Termed long-range dependence

Other Motivations

- Can also measure current state of network to provide status and short-term predictions
- Need on-line real-time analysis of traffic and conditions
- Example systems include IDMAP, Remos, Sonar, SPAND


SPAND Assumptions

- Geographic Stability: Performance observed by nearby clients is similar → works within a domain
- Amount of Sharing: Multiple clients within domain access same destinations within reasonable time period → strong locality exists
- Temporal Stability: Recent measurements are indicative of future performance → true for 10's of minutes

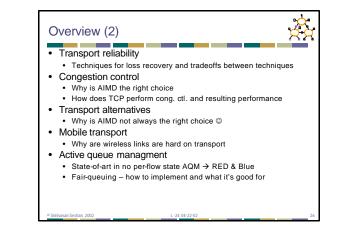
SPAND Design Choices

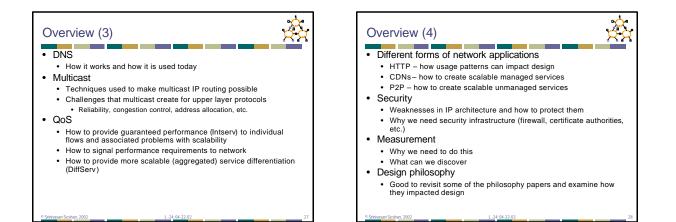
- Measurements are *shared*Hosts share performance information by placing it in a per-domain repository
- Measurements are *passive* Application-to-application traffic is used to measure network performance
- Measurements are application-specific
 - When possible, measure application response time, not bandwidth, latency, hop count, etc.

Measurement Summary

- Internet is a large and heterogeneous
 - There is no "typical" behavior → each path or region may be very different
 - · Protocols must be able to handle this
- Internet changes quickly
 - New applications change the way the network is used
 - Some invariants remain across these changes

Beginning of Semester Objectives


- Understand the state-of-the-art in network protocols, architectures and applications
- Understand how networking research is done
- Training network programmers vs. training network researchers



Fast forwarding/routing

- Typical structure of a router \rightarrow where are the bottlenecks
- Challenge of doing fast route lookup/packet classification → reduce memory lookups
- Routing protocols
- Structure of the Internet
- · Routing protocols that match administrative structure
- · Overlay routing
 - · New approach to adding functionality to Internet
 - Key challenge of routing at a layer above
- Mobile routing
 - · Routing without addressing structure (Mobile IP and ad-hoc)

L-24:04

THE END!

- Networking has a wide variety of interesting topic areas
- Hopefully you should be able to pick up any networking research paper and understand both their motivation and methodology