
1

15-744: Computer Networking

L-14 Fair Queuing

L -14; 3 -4-02© Srinivasan Seshan, 2002 2

Fair Queuing

• Fair Queuing
• Core-stateless Fair queuing
• Assigned reading

• [DKS90] Analysis and Simulation of a Fair
Queueing Algorithm, Internetworking: Research
and Experience

• [SSZ98] Core-Stateless Fair Queueing:
Achieving Approximately Fair Allocations in
High Speed Networks

L -14; 3 -4-02© Srinivasan Seshan, 2002 3

Overview

• Fairness
• Fair-queuing
• Core-stateless FQ
• Other FQ variants

L -14; 3 -4-02© Srinivasan Seshan, 2002 4

Fairness Goals

• Allocate resources fairly
• Isolate ill-behaved users

• Router does not send explicit feedback to
source

• Still needs e2e congestion control
• Still achieve statistical muxing

• One flow can fill entire pipe if no contenders
• Work conserving à scheduler never idles link if

it has a packet

L -14; 3 -4-02© Srinivasan Seshan, 2002 5

What is Fairness?

• At what granularity?
• Flows, connections, domains?

• What if users have different RTTs/links/etc.
• Should it share a link fairly or be TCP fair?

• Maximize fairness index?
• Fairness = (Σxi)2/n(Σxi

2) 0<fairness<1

• Basically a tough question to answer – typically
design mechanisms instead of policy
• User = arbitrary granularity

L -14; 3 -4-02© Srinivasan Seshan, 2002 6

Max-min Fairness

• Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

• Formally:
• Resources allocated in terms of increasing demand
• No source gets resource share larger than its

demand
• Sources with unsatisfied demands get equal share

of resource

2

L -14; 3 -4-02© Srinivasan Seshan, 2002 7

Max-min Fairness Example

• Assume sources 1..n, with resource
demands X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants,

divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

• If this is larger than what X2 wants, repeat
process

L -14; 3 -4-02© Srinivasan Seshan, 2002 8

Implementing max-min Fairness

• Generalized processor sharing
• Fluid fairness
• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length à can get more service

by sending bigger packets
• Unfair instantaneous service rate

• What if arrive just before/after packet departs?

L -14; 3 -4-02© Srinivasan Seshan, 2002 9

Bit-by-bit RR

• Single flow: clock ticks when a bit is
transmitted. For packet i:
• Pi = length, Ai = arrival time, Si = begin transmit

time, Fi = finish transmit time
• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all
active flows is transmitted à round number
• Can calculate Fi for each packet if number of

flows is know at all times
• Why do we need to know flow count? à This can be

complicated

L -14; 3 -4-02© Srinivasan Seshan, 2002 10

Bit-by-bit RR Illustration

• Not feasible to
interleave bits on
real networks
• FQ simulates bit-by-

bit RR

L -14; 3 -4-02© Srinivasan Seshan, 2002 11

Overview

• Fairness
• Fair-queuing
• Core-stateless FQ
• Other FQ variants

L -14; 3 -4-02© Srinivasan Seshan, 2002 12

Fair Queuing

• Mapping bit-by-bit schedule onto packet
transmission schedule

• Transmit packet with the lowest Fi at any
given time
• How do you compute Fi?

3

L -14; 3 -4-02© Srinivasan Seshan, 2002 13

FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)

L -14; 3 -4-02© Srinivasan Seshan, 2002 14

Bit-by-bit RR Example

F=10

Flow 1
(arriving)

Flow 2
transmitting Output

F=2

F=5

F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted

L -14; 3 -4-02© Srinivasan Seshan, 2002 15

Delay Allocation

• Reduce delay for flows using less than fair share
• Advance finish times for sources whose queues drain

temporarily

• Schedule based on Bi instead of Fi

• Fi = Pi + max (Fi-1, Ai) à Bi = Pi + max (Fi-1, Ai - δ)
• If Ai < Fi-1, conversation is active and δ has no effect
• If Ai > Fi-1, conversation is inactive and δ determines

how much history to take into account
• Infrequent senders do better when history is used

L -14; 3 -4-02© Srinivasan Seshan, 2002 16

Fair Queuing Tradeoffs

• FQ can control congestion by monitoring flows
• Non-adaptive flows can still be a problem – why?

• Complex state
• Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
• Classification into flows may be hard
• Must keep queues sorted by finish times
• dR/dt changes whenever the flow count changes

L -14; 3 -4-02© Srinivasan Seshan, 2002 17

Overview

• Fairness
• Fair-queuing
• Core-stateless FQ
• Other FQ variants

L -14; 3 -4-02© Srinivasan Seshan, 2002 18

Core-Stateless Fair Queuing

• Key problem with FQ is core routers
• Must maintain state for 1000’s of flows
• Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
• Edge routers should do complex tasks since they have

fewer flows
• Core routers can do simple tasks

• No per-flow state/processing à this means that core routers
can only decide on dropping packets not on order of
processing

• Can only provide max-min bandwidth fairness not delay
allocation

4

L -14; 3 -4-02© Srinivasan Seshan, 2002 19

Core-Stateless Fair Queuing

• Edge routers keep state about flows and do
computation when packet arrives

• DPS (Dynamic Packet State)
• Edge routers label packets with the result of

state lookup and computation
• Core routers use DPS and local

measurements to control processing of
packets

L -14; 3 -4-02© Srinivasan Seshan, 2002 20

Edge Router Behavior

• Monitor each flow i to measure its arrival
rate (ri)
• EWMA of rate
• Non-constant EWMA constant

• e-T/K where T = current interarrival, K = constant
• Helps adapt to different packet sizes and arrival

patterns

• Rate is attached to each packet

L -14; 3 -4-02© Srinivasan Seshan, 2002 21

Core Router Behavior

• Keep track of fair share rate α
• Increasing α does not increase load (F) by N *

α
• F(α) = Σi min(ri, α) à what does this look like?
• Periodically update α
• Keep track of current arrival rate

• Only update α if entire period was congested or
uncongested

• Drop probability for packet = max(1- α/r, 0)

L -14; 3 -4-02© Srinivasan Seshan, 2002 22

F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F

L -14; 3 -4-02© Srinivasan Seshan, 2002 23

Estimating Fair Share

• Need F(α) = capacity = C
• Can’t keep map of F(α) values à would require per

flow state
• Since F(α) is concave, piecewise-linear

• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α
• F(αnew) = C à αnew = αold * C/Fc

• What if a mistake was made?
• Forced into dropping packets due to buffer capacity
• When queue overflows α is decreased slightly

L -14; 3 -4-02© Srinivasan Seshan, 2002 24

Other Issues

• Punishing fire-hoses – why?
• Easy to keep track of in a FQ scheme

• What are the real edges in such a scheme?
• Must trust edges to mark traffic accurately
• Could do some statistical sampling to see if

edge was marking accurately

5

L -14; 3 -4-02© Srinivasan Seshan, 2002 25

Overview

• Fairness
• Fair-queuing
• Core-stateless FQ
• Other FQ variants

L -14; 3 -4-02© Srinivasan Seshan, 2002 26

Stochastic Fair Queuing

• Similar idea as Stochastic Fair Blue
• Compute a hash on each packet
• Instead of per-flow queue have a queue per hash bin
• An aggressive flow steals traffic from other flows in the

same hash

• Queues serviced in round-robin fashion
• Has problems with packet size unfairness

• Memory allocation across all queues
• When no free buffers, drop packet from longest queue

L -14; 3 -4-02© Srinivasan Seshan, 2002 27

Deficit Round Robin

• Each queue is allowed to send Q bytes per
round

• If Q bytes are not sent (because packet is
too large) deficit counter of queue keeps
track of unused portion

• If queue is empty, deficit counter is reset to
0

• Uses hash bins like Stochastic FQ
• Similar behavior as FQ but computationally

simpler

L -14; 3 -4-02© Srinivasan Seshan, 2002 28

Self-clocked Fair Queuing

• Virtual time to make computation of finish
time easier

• Problem with basic FQ
• Need be able to know which flows are really

backlogged
• They may not have packet queued because they

were serviced earlier in mapping of bit-by-bit to
packet

• This is necessary to know how bits sent map onto
rounds

• Mapping of real time to round is piecewise linear à
however slope can change often

L -14; 3 -4-02© Srinivasan Seshan, 2002 29

Self-clocked FQ

• Use the finish time of the packet being
serviced as the virtual time
• The difference in this virtual time and the real

round number can be unbounded

• Amount of service to backlogged flows is
bounded by factor of 2

L -14; 3 -4-02© Srinivasan Seshan, 2002 30

Start-time Fair Queuing

• Packets are scheduled in order of their start
not finish times

• Self-clocked à virtual time = start time of
packet in service

• Main advantage à can handle variable rate
service better than other schemes
• Useful for hierarchical schedulers

6

L -14; 3 -4-02© Srinivasan Seshan, 2002 31

Next Lecture: Naming

• DNS
• Assigned reading

• [MD88] P. Mockapetris and K. Dunlap,
Development of the Domain Name System

• [JSBM01] Jaeyeon Jung, Emil Sit, Hari
Balakrishnan, and Robert Morris, DNS
Performance and the Effectiveness of Caching,

