

L-14:3-402

• User = arbitrary granularity

Max-min Fairness Example

- Ŕ
- Assume sources 1..n, with resource demands X1..Xn in ascending order
- Assume channel capacity C.
 - Give C/n to X1; if this is more than X1 wants, divide excess (C/n - X1) to other sources: each gets C/n + (C/n - X1)/(n-1)
 - If this is larger than what X2 wants, repeat process

Implementing max-min Fairness

- · Generalized processor sharing
 - Fluid fairness
 - Bitwise round robin among all queues
- Why not simple round robin?
 - Variable packet length → can get more service by sending bigger packets
 - Unfair instantaneous service rate
 What if arrive just before/after packet departs?

Bit-by-bit RR

- Single flow: clock ticks when a bit is transmitted. For packet i:
 - P_i = length, A_i = arrival time, S_i = begin transmit time, F_i = finish transmit time
 - $F_i = S_i + P_i = max (F_{i-1}, A_i) + P_i$
- Multiple flows: clock ticks when a bit from all active flows is transmitted → round number
 - \bullet Can calculate F_{i} for each packet if number of flows is know at all times
 - Why do we need to know flow count? → This can be complicated

L -14; 3 - 4 02

Delay Allocation Fair Queuing Tradeoffs FQ can control congestion by monitoring flows · Reduce delay for flows using less than fair share · Advance finish times for sources whose queues drain • Non-adaptive flows can still be a problem - why? temporarily · Complex state Schedule based on B_i instead of F_i · Must keep queue per flow • $F_i = P_i + \max(F_{i-1}, A_i) \rightarrow B_i = P_i + \max(F_{i-1}, A_i - \delta)$ · Hard in routers with many flows (e.g., backbone routers) • If $A_i < F_{i-1}$, conversation is active and δ has no effect • Flow aggregation is a possibility (e.g. do fairness per domain) • If $A_i > F_{i-1}$, conversation is inactive and δ determines Complex computation how much history to take into account · Classification into flows may be hard · Infrequent senders do better when history is used · Must keep queues sorted by finish times • dR/dt changes whenever the flow count changes L-14:3-402 L-14:3-40

3

Core-Stateless Fair Queuing

- Edge routers keep state about flows and do computation when packet arrives
- DPS (Dynamic Packet State)
 - Edge routers label packets with the result of state lookup and computation
- Core routers use DPS and local measurements to control processing of packets

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Core Router Behavior

- Keep track of fair share rate α
 - Increasing α does not increase load (F) by N * α
 - $F(\alpha) = \Sigma_i \min(r_i, \alpha) \rightarrow$ what does this look like?
 - Periodically update α

san Seshan. 2002

- Keep track of current arrival rate
 - Only update α if entire period was congested or uncongested
- Drop probability for packet = max(1- α/r , 0)

L-14:3-402

Estimating Fair Share Need F(α) = capacity = C Can't keep map of F(α) values → would require per flow state Since F(α) is concave, piecewise-linear F(0) = 0 and F(α) = current accepted rate = F_c F(α) = F_c/α F(α_{new}) = C → α_{new} = α_{vd} * C/F_c What if a mistake was made? Forced into dropping packets due to buffer capacity When queue overflowsα is decreased slightly

1.14.3.402

Deficit Round Robin

- Each queue is allowed to send Q bytes per round
- If Q bytes are not sent (because packet is too large) deficit counter of queue keeps track of unused portion
- If queue is empty, deficit counter is reset to 0
- Uses hash bins like Stochastic FQ
- Similar behavior as FQ but computationally simpler

L-14:3-402

Self-clocked FQ

asan Seshan. 2002

- Use the finish time of the packet being serviced as the virtual time
 - The difference in this virtual time and the real round number can be unbounded

1.14.3.402

 Amount of service to backlogged flows is bounded by factor of 2

Next Lecture: Naming

Ŕ

- DNS
- Assigned reading
 - [MD88] P. Mockapetris and K. Dunlap, Development of the Domain Name System
 - [JSBM01] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris, DNS Performance and the Effectiveness of Caching,

L-14; 3-4-02

© Srinivasan Seshan, 2002