‘J
TCP Basics yEN
| I I I .
» TCP reliability
15-744: Computer Networking * [FF96] Simulation-based Comparisons of
I Tahoe, Reno, and SACK TCP
L-9 TCP Basics
LN '/'
Q. A »
'e \-.;’ A
LN " A = . A
: B ; 2
Key Things You Should Know Already "“+“’ Overview “{ﬁ;
| I I I | I I I .
* Port numbers
* TCP/UDP checksum ¢ TCP introduction
« Sliding window flow control
* Sequence numbers * TCP reliability: timer-driven
» TCP connection setup
e TCP reliability: data-driven
-~ 4 - LS 1 A
Introduction to TCP g What's Different From Link Layers? %7
| I I I L] | I I I .
« Communication abstraction: « Logical link vs. physical link
« Reliable * Must establish connection
« Ordered * Variable RTT

¢ Point-to-point
* Byte-stream
* Full duplex
* Flow and congestion controlled
* Protocol implemented entirely at the ends
* Fate sharing

© Srinivasan Seshan, 2002 L-92-12@

* May vary within a connection
* Reordering

* How long can packets live > max segment lifetime
« Can't expect endpoints to exactly match link

« Buffer space availability

e Transmission rate
» Don'’t directly know transmission rate

© Srinivasan Seshan, 2002 L-9,2-1202

Evolution of TCP

o

TCP Through the 1990s

-
1984
1975 g 1994 1996
Three-way handshake Nagel's algorithm 1087 TITCP SACK TCP.
10 reduce overhead .
Raymond Tomlinson Karn's algorithm 1900 (Braden) (Floyd et al)
of small packets; Transadion
In SIGCOMM 75 predicts congestion to better estimate 4.38SD Reno Tcp Selective
collapse round-trip time: fast retransmit Acknowledgement
delayed ACK's
1983 aved
BSD Unix 4.2 1986 lo88 1993 1994 199 1996
1074 supports TCP/IP Congestion Van Jacobson's TCP Vegas EON Hoe FACK TCP
TCP described by collapse algorithms (Brakmo et al) (Floyd) Improving TCP (Mathis et al)
Vint Cert and Bob Kahn observed congestion avoidance real congestion Explicit startup extension to SACK
In IEEE Trans Comm 1982 and congestion control avoidance Congestion
TCP & IP (most implemented in Notification
RPC 7928791 4.3BSD Tahoe)
>
peles wemes T i T T T >
1975 1980 1985 1990 1993 1994 1996
© Srinivasan Seshan, 2002 L-92-1202 7 © Srinivasan Seshan, 2002 L-9,2-12 8

Integrity & Demultiplexing tﬁq’

I I I I]
* Port numbers

« Demultiplex from/to process
« Servers wait on well known ports (/etc/services)
e Checksum
« Is it sufficient to just checksum the packet contents?

* No, need to ensure correct source/destination
« Pseudoheader— portion of IP hdrthat are critical
« Checksum covers Pseudoheader, transport hdr, and packet
body

« UDP provides just integrity and demux

© Srinivasan Seshan, 2002 L-92-12@ 9

TCP Header

i

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Source port

| Destination port

Sequence number

Acknowledgement

Heren| 0 | Flags

Advertised windo

Checksum

Urgent pointer

Options (variable)

©Srinivasan Seshan, 2002

L-9.2-12@

TCP Flow Control ﬁ%’

I I I I]
e TCP is a sliding window protocol

« For window size n, can send up to n bytes
without receiving an acknowledgement

* When the data is acknowledged then the
window slides forward
» Each packet advertises a window size

« Indicates number of bytes the receiver has
space for

« Original TCP always sent entire window
» Congestion control now limits this

© Srinivasan Seshan, 2002

L-92-12@ 11

Window Flow Control: Send Side

window

Sent and acked

Sent but notacked

Next to be sent

©Srinivasan Seshan, 2002

L-9.2-12@

- " A = . A
Window Flow Control: Receive Side %7 TCP Persist yEN
| I I I L] | I I I .
« What happens if window is 0?
* Receiver updates window when application
) reads data
' Receive buffer | o .
: i « What if this update is lost?
: e TCP Persist state
Acked but not Not yet | L
delﬁ/eeredltjolzjoser a‘ékiﬁ ! * Sender periodically sends 1 byte packets
: » Receiver responds with ACK even if it can’t
—_— store the packet
window !
© Srinivasan Seshan, 2002 L-9;2-12@ 13 © Srinivasan Seshan, 2002 L-9;2-12@ 14
LN " A = . A
Connection Establishment g Sequence Number Selection YN
| I I I L] | I I I .
» A and B must agree on initial sequence * Why not simply chose 0?
number selection « Must avoid overlap with earlier incarnation
¢ Use 3-way handshake
A B
SYN +Seq A
SYN+ACK-A +Seq B
ACK-B
© Srinivasan Seshan, 2002 L-9;2-12@ 15 © Srinivasan Seshan, 2002 L-9;2-12@ 16
-~ 4 - LS 1 A
. PR . P
Connection Setup Jugg Connection Tear-down =
| I I I L] | I I I .
» Normal termination
m‘: active OPEN)
! creafe TCB « Allow unilateral close
passive OPEN CLOSE Snd SYN i i
create TCB delete TCB. < TCP must continue to receive data even
[LisTEN | cLose after closing
delete TCB . . .
USYN SEND Cannot close connection immediately
snd SYN'ACK. snd SYN . .
SYN oV SYN SYN « What if a new connection restarts and uses
RS sndACK SEN same sequence number?
rcvACK of SYN RCVSYN,ACK
Snd ACK
CLOSI
S:nd FEN ESTAB

© Srinivasan Seshan, 2002 L-92-12@ 17

©Srinivasan Seshan, 2002 L-9,2-1202 18

- " A = . A
Tear-down Packet Exchange pucng Connection Tear-down yEN
| I I I L] | I I I .
Sender Receiver CLOSE
FIN send FIN ESTAB
I CLOSE revFIN
FIN-ACK _ - -~~~ T send FIN send ACK
[« Data write WAIT-1
/ revFIN
R - -, Data ack sndACK
cvFIN+ACK
EIN ADYRIATA snd ACK [CLOSIN
revACK of FIN revACK of FIN
e A
FIN-ACK ToVEIN TIME WAI F " -
snd ACK “delete TCB
© Srinivasan Seshan, 2002 L-9;2-12@ 19 © Srinivasan Seshan, 2002 L-9;2-12@ 20
LN " A = . A
: : IR P
Detecting Half-open Connections Josey Observed TCP Problems Yo
| I I I L] | I I I .
» Too many small packets
—_— - « Silly window syndrome
* Nagel's algorithm
3 eras) (send 300, receive 100) « Initial sequence number selection
3. SYN-SENT > <SEQ=400><CTL=SYN> > @7 . .
a4 & <SEQ=300><ACK=100><CTL=ACK> &« ESTABLISHED » Amount of state maintained
5. SYN-SENT - <SEQ=100><CTL=RST> - (Abort!!)
6. SYN-SENT CLOSED
7. SYN-SENT > <SEQ=400><CTL=SYN> >
© Srinivasan Seshan, 2002 L-9;2-12@ 21 © Srinivasan Seshan, 2002 L-9;2-12@ 22
-~ 4 - LS 1 A
q A_.\ » q ﬁ_._ »
Sllly Window Syndrome o gy Nagel S Algorlthm J g
I I I L] I I .

. Problem. (Clark, 1982)

* If receiver advertises small increases in the
receive window then the sender may waste
time sending lots of small packets

» Solution

¢ Receiver must not advertise small window
increases

« Increase window by min(MSS,RecvBuffer/2)

© Srinivasan Seshan, 2002 L-92-12@ 23

. SmaII packet problem:

« Don't want to send a 41 byte packet for each
keystroke

* How long to wait for more data?
* Solution:

« Allow only one outstanding small (not full sized)
segment that has not yet been acknowledged

©Srinivasan Seshan, 2002 L-9,2-1202

Why is Selecting ISN Important?_ pucng Time Wait Issues yEN
I] | - - - -
. Suppose machine X selects ISN based on » Web servers not clients close connection
predictable sequence first
* Fred has .rhosts to allow login to X from Y * Established - Fin-Waits - Time-Wait >
- Evil Ed attacks \?sted . o
« Disables host Y — denial of service attack) Y woe this be a pro enl.
» Make a bunch of connections to host X * Tlme—Walt state [asts for 2 M_SL
« Determine ISN pattern a guess next ISN * MSL is should be 120 seconds (is often 60s)
« Fake pktL: [<src Y><dst X>, guessed ISN] * Servers often have order of magnitude more
 Fake pkt2: desired command connections in Time-Wait
LN 4 A = 4 A
Overview o Reliability Challenges yEN
| I I I] | - - - -
« Like reliability on links
« TCP introduction * Similar techniques (timeouts,
acknowledgements, etc.)
S) » New challenges
« TCP rellablllty: timer-driven « Congestion related losses
 Variable packet delays
« TCP rel|ab|l|ty data-driven * What should the timeout be?
' « Reordering of packets
¢ Ensure sequences numbers are not reused
« How long to packets live?
* MSL = 120 seconds based on IP behavior
-~ 4 - LS 1 A
Standard Data Transfer g Delayed ACKS YN
| I I] - - - -
. SI|d|ng W|ndow with cumulative acks . Problem.

« Ack field contains last in-order packet received

« Duplicate acks sent when out-of-order packet
received

» Does TCP need to send an ack for every
packet?
« Delayed acks

© Srinivasan Seshan, 2002 L-92-12@ 29

© Srinivasan Seshan, 2002 L-9,2-1202

* In request/response programs, you send
separate ACK and Data packets for each
transaction

* Solution:
* Don't ACK data immediately
* Wait 200ms (must be less than 500ms — why?)
* Must ACK every other packet
* Must not delay duplicate ACKs

Round-trip Time Estimation Y
- s — — — - —

» Wait at least one RTT before retransmitting
 Importance of accurate RTT estimators:

e Low RTT - unneeded retransmissions
« High RTT - poor throughput

* RTT estimator must adapt to change in RTT
« But not too fast, or too slow!

* Spurious timeouts

« “Conservation of packets” principle — more than
a window worth of packets in flight

© Srinivasan Seshan, 2002 L-92-12@ 31

Initial Round-trip Estimator

| - - -
» Round trip times exponentially averaged:

* New RTT =a (old RTT) + (1 - a) (new sample)
« Recommended value fora: 0.8 - 0.9
« 0.875 for most TCP’s

* Retransmit timer settob RTT, where b =2
» Every time timer expires, RTO exponentially backed-off
* Like Ethernet

« Not good at preventing spurious timeouts

o

)

i<

© Srinivasan Seshan, 2002 L-9,2-1202

A
LN

Y

Jacobson’s Retransmission Timeout

» Key observation:
« At high loads round trip variance is high
* Solution:

* Base RTO on RTT and standard deviation or
RRTT

s
I
s

L
Retransmission Ambiguity ",'3*,
fr— i — - - L
A B

Original transmissjon

-

Sample ‘
e rttvar =c * dev + (1- c)rttvar RTT
« dev = linear deviation
« Inappropriately named — actually smoothed linear
deviation
© Srinivasan Seshan, 2002 L-9;2-12@ 33 © Srinivasan Seshan, 2002 L-9;2-12@ 34
-~ 4 - LS 1 A
’ : P : H £s
Karn's RTT Estimator ‘“-'“’ Tlmestamp Extension ‘,\-'“’
| I I I] | - - - -

 Accounts for retransmission ambiguity
« If a segment has been retransmitted:

* Don’'t count RTT sample on ACKs for this
segment

« Keep backed off time-out for next packet

* Reuse RTT estimate only after one successful
transmission

© Srinivasan Seshan, 2002 L-92-12@ 35

 Used to improve timeout mechanism by
more accurate measurement of RTT

» When sending a packet, insert current
timestamp into option
« 4 bytes for seconds, 4 bytes for microseconds
« Receiver echoes timestamp in ACK
« Actually will echo whatever is in timestamp
« Removes retransmission ambiguity
» Can get RTT sample on any packet

© Srinivasan Seshan, 2002 L-9,2-1202

= 4 A = 4 A
Timer Granularity pucng Overview ey
| I I I] | - - - -
» Many TCP implementations set RTO in
multiples of 200,500,1000ms « TCP introduction
* Why?
. AVP'I(dI Sgu”otus t'meot“t?f — RTTs can vary « TCP reliability: timer-driven
quickly due to cross traffic
* Make timers interrupts efficient o]
e TCP reliability: data-driven
© Srinivasan Seshan, 2002 L-9;2-12@ 37 © Srinivasan Seshan, 2002 L-9;2-12@ 38
e s
TCP Flavors Jugag Fast Retransmit Joget
| I I I] | I - I -
 Tahoe, Reno, Vegas » What are duplicate acks (dupacks)?
— . . *R ted acks for th
« TCP Tahoe (distributed with 4.3BSD Unix) . Wh:r‘]’?af] c?ljpslic(:arte Zzi;”‘;ziﬂ‘:ﬁ”ce
« Original implementation of Van Jacobson’s . LosS
mechanisms (VJ paper) « Packet re-ordering
« Includes: » Window update— advertisement of new flow control
* Slow start window L
« Congestion avoidance * Assume re-ordering is infrequent and not of large
) magnitude
« Fast retransmit . . L .
 Use receipt of 3 or more duplicate acks as indication of
loss
« Don't wait for timeout to retransmit packet
© Srinivasan Seshan, 2002 L-9;2-12@ 39 © Srinivasan Seshan, 2002 L-9;2-12@ 40
-~ 4 - LS 1 A
: I : P
Fast Retransmit posey Multiple Losses Yot
| I I I] | - - - -
E g N hat?
E E n/ low what?
X H - Retransmission X H u/ Retransmission
Sequence No E c:> & — Duplicate Acks Sequence No E § %% — Duplicate Acks
Time Time

© Srinivasan Seshan, 2002 L-92-12@ a

© Srinivasan Seshan, 2002 L-9,2-1202 a2

- " A = . A
Tahoe P TCP Reno (1990) vy
| I I I L] | I I I .
¢ All mechanisms in Tahoe
H s » Addition of fast-recovery
g ° » Opening up congestion window after fast retransmit
g‘ H « Delayed acks
X a -
Sequence No g oo » Header prediction
= s Implementation designed to improve performance
T « Has common case code inlined
- With multiple losses, Reno typically timeouts
L8 e because it does not see duplicate
acknowledgements
Time
© Srinivasan Seshan, 2002 L-9;2-12@ 43 © Srinivasan Seshan, 2002 L-9;2-12@ 44
e e
Reno prong NewReno pavst
| I I I L] | I I I .
» The ack that arrives after retransmission
: (partial ack) should indicate that a second
g loss occurred
W " Nowwhar > imeo » When does NewReno timeout?
Sequence No I « When there are fewer than three dupacks for
O first loss
= o ° - When partial ack is lost
s ° « How fast does it recover losses?
* One per RTT
Time
© Srinivasan Seshan, 2002 L-9;2-12@ 45 © Srinivasan Seshan, 2002 L-9;2-12@ 46
-~ 4 - LS 1 A
NewReno g SACK e
| I I I L] | I I I .
« Basic problem is that cumulative acks only
% . provide little information
5 ° « Ack for just the packet received
H C Now what? = partial ack « What if acks are lost? > carry cumulative also
X]
Sequence No E c:> o recovery * Not used
= e « Bitmask of packets received
. . Selective acknowledgement (SACK)
HE » How to deal with reordering

Time

© Srinivasan Seshan, 2002

L-92-12@

© Srinivasan Seshan, 2002 L-9,2-1202 8

AT,
o)
Al

[]

SACK

-2
I
o

Now what? —send
s retransmissions as soon

Sequence No as detected

ccccmmmsmmER
0000000 EEREERREEE
=

commmm

Time

© Srinivasan Seshan, 2002 L-92-12@ 49

)
./‘;5’_
a,

Lgn')

Performance Issues

| - - -
 Timeout >> fast rexmit
* Need 3 dupacks/sacks
* Not great for small transfers
« Don’t have 3 packets outstanding
* What are real loss patterns like?
 Right edge recovery

* Allow packets to be sent on arrival of first and
second duplicate ack

 Helps recovery for small windows
« How to deal with reordering?

© Srinivasan Seshan, 2002 L-9,2-1202 50

TCP Extensions ’+

N4
I I I I |

* Implemented using TCP options
¢ Timestamp
« Protection from sequence number wraparound
¢ Large windows

© Srinivasan Seshan, 2002 L-92-12@ 51

o
/‘}’_
a,

-

Protection From Wraparound

| - - -
» Wraparound time vs. Link speed

« 1.5Mbps: 6.4 hours

« 10Mbps: 57 minutes

* 45Mbps: 13 minutes

« 100Mbps: 6 minutes

* 622Mbps: 55 seconds > < MSL!

« 1.2Gbps: 28 seconds

 Use timestamp to distinguish sequence
number wraparound

© Srinivasan Seshan, 2002 L-9,2-1202 52

T
t)
)

Large Windows
I I I
. Delay-bandW|dth product for 100ms delay
1.5Mbps: 18KB
10Mbps: 122KB > max 16bit window
45Mbps: 549KB
100Mbps: 1.2MB
622Mbps: 7.4MB
1.2Gbps: 14.8MB

¢ Scaling factor on advertised window

« Specifies how many bits window must be shifted to the
left

« Scaling factor exchanged during connection setup

[]

N
I./

o,

o

© Srinivasan Seshan, 2002 L-92-12@ 53

]
/‘}’_
a,

Len

MaX|mum Segment Size (MSS)

- - -
. Exchanged at connection setup

 Typically pick MTU of local link
* What all does this effect?

« Efficiency

« Congestion control

* Retransmission
e Path MTU discovery

* Why should MTU match MSS?

© Srinivasan Seshan, 2002 L-9,2-1202 54

Next Lecture: Congestion Control

| I I I]
» Congestion control basics

» TCP congestion control
* Assigned reading
 [JK88] Congestion Avoidance and Control

« [CJ89] Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in
Computer Networks

© Srinivasan Seshan, 2002 L-92-12@

10

