
1

15-744: Computer Networking

L-9 TCP Basics

L -9; 2 -12-02© Srinivasan Seshan, 2002 2

TCP Basics

• TCP reliability
• Assigned reading

• [FF96] Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP

L -9; 2 -12-02© Srinivasan Seshan, 2002 3

Key Things You Should Know Already

• Port numbers
• TCP/UDP checksum
• Sliding window flow control

• Sequence numbers

• TCP connection setup

L -9; 2 -12-02© Srinivasan Seshan, 2002 4

Overview

• TCP introduction

• TCP reliability: timer-driven

• TCP reliability: data-driven

L -9; 2 -12-02© Srinivasan Seshan, 2002 5

Introduction to TCP

• Communication abstraction:
• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

• Protocol implemented entirely at the ends
• Fate sharing

L -9; 2 -12-02© Srinivasan Seshan, 2002 6

What’s Different From Link Layers?

• Logical link vs. physical link
• Must establish connection

• Variable RTT
• May vary within a connection

• Reordering
• How long can packets live àmax segment lifetime

• Can’t expect endpoints to exactly match link
• Buffer space availability

• Transmission rate
• Don’t directly know transmission rate

2

L -9; 2 -12-02© Srinivasan Seshan, 2002 7

Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead
of small packets;

predicts congestion
collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

L -9; 2 -12-02© Srinivasan Seshan, 2002 8

TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
real congestion

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

Improving TCP
startup

1996
FACK TCP

(Mathis et al)
extension to SACK

L -9; 2 -12-02© Srinivasan Seshan, 2002 9

Integrity & Demultiplexing

• Port numbers
• Demultiplex from/to process
• Servers wait on well known ports (/etc/services)

• Checksum
• Is it sufficient to just checksum the packet contents?
• No, need to ensure correct source/destination

• Pseudoheader– portion of IP hdr that are critical
• Checksum covers Pseudoheader, transport hdr, and packet

body

• UDP provides just integrity and demux

L -9; 2 -12-02© Srinivasan Seshan, 2002 10

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

L -9; 2 -12-02© Srinivasan Seshan, 2002 11

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes

without receiving an acknowledgement
• When the data is acknowledged then the

window slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has
space for

• Original TCP always sent entire window
• Congestion control now limits this

L -9; 2 -12-02© Srinivasan Seshan, 2002 12

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

3

L -9; 2 -12-02© Srinivasan Seshan, 2002 13

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

L -9; 2 -12-02© Srinivasan Seshan, 2002 14

TCP Persist

• What happens if window is 0?
• Receiver updates window when application

reads data
• What if this update is lost?

• TCP Persist state
• Sender periodically sends 1 byte packets
• Receiver responds with ACK even if it can’t

store the packet

L -9; 2 -12-02© Srinivasan Seshan, 2002 15

Connection Establishment

• A and B must agree on initial sequence
number selection
• Use 3-way handshake

A B

SYN + Seq A
SYN+ACK-A + Seq B

ACK-B

L -9; 2 -12-02© Srinivasan Seshan, 2002 16

Sequence Number Selection

• Why not simply chose 0?
• Must avoid overlap with earlier incarnation

L -9; 2 -12-02© Srinivasan Seshan, 2002 17

Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

RcvSYN, ACK

rcvSYN
snd ACK

L -9; 2 -12-02© Srinivasan Seshan, 2002 18

Connection Tear-down

• Normal termination
• Allow unilateral close

• TCP must continue to receive data even
after closing

• Cannot close connection immediately
• What if a new connection restarts and uses

same sequence number?

4

L -9; 2 -12-02© Srinivasan Seshan, 2002 19

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

L -9; 2 -12-02© Srinivasan Seshan, 2002 20

Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

L -9; 2 -12-02© Srinivasan Seshan, 2002 21

Detecting Half-open Connections

1. (CRASH)
2. CLOSED
3. SYN-SENT à <SEQ=400><CTL=SYN>
4. (!!) ß <SEQ=300><ACK=100><CTL=ACK>
5. SYN-SENT à <SEQ=100><CTL=RST>
6. SYN-SENT
7. SYN-SENT à <SEQ=400><CTL=SYN>

(send 300, receive 100)
ESTABLISHED

à (??)
ß ESTABLISHED
à (Abort!!)

CLOSED
à

TCP BTCP A

L -9; 2 -12-02© Srinivasan Seshan, 2002 22

Observed TCP Problems

• Too many small packets
• Silly window syndrome
• Nagel’s algorithm

• Initial sequence number selection
• Amount of state maintained

L -9; 2 -12-02© Srinivasan Seshan, 2002 23

Silly Window Syndrome

• Problem: (Clark, 1982)
• If receiver advertises small increases in the

receive window then the sender may waste
time sending lots of small packets

• Solution
• Receiver must not advertise small window

increases
• Increase window by min(MSS,RecvBuffer/2)

L -9; 2 -12-02© Srinivasan Seshan, 2002 24

Nagel’s Algorithm

• Small packet problem:
• Don’t want to send a 41 byte packet for each

keystroke
• How long to wait for more data?

• Solution:
• Allow only one outstanding small (not full sized)

segment that has not yet been acknowledged

5

L -9; 2 -12-02© Srinivasan Seshan, 2002 25

Why is Selecting ISN Important?

• Suppose machine X selects ISN based on
predictable sequence

• Fred has .rhosts to allow login to X from Y
• Evil Ed attacks

• Disables host Y – denial of service attack
• Make a bunch of connections to host X
• Determine ISN pattern a guess next ISN
• Fake pkt1: [<src Y><dst X>, guessed ISN]
• Fake pkt2: desired command

L -9; 2 -12-02© Srinivasan Seshan, 2002 26

Time Wait Issues

• Web servers not clients close connection
first
• Established à Fin-Waits à Time-Wait à

Closed
• Why would this be a problem?

• Time-Wait state lasts for 2 * MSL
• MSL is should be 120 seconds (is often 60s)
• Servers often have order of magnitude more

connections in Time-Wait

L -9; 2 -12-02© Srinivasan Seshan, 2002 27

Overview

• TCP introduction

• TCP reliability: timer-driven

• TCP reliability: data-driven

L -9; 2 -12-02© Srinivasan Seshan, 2002 28

Reliability Challenges

• Like reliability on links
• Similar techniques (timeouts,

acknowledgements, etc.)
• New challenges

• Congestion related losses
• Variable packet delays

• What should the timeout be?
• Reordering of packets

• Ensure sequences numbers are not reused
• How long to packets live?

• MSL = 120 seconds based on IP behavior

L -9; 2 -12-02© Srinivasan Seshan, 2002 29

Standard Data Transfer

• Sliding window with cumulative acks
• Ack field contains last in-order packet received
• Duplicate acks sent when out-of-order packet

received

• Does TCP need to send an ack for every
packet?
• Delayed acks

L -9; 2 -12-02© Srinivasan Seshan, 2002 30

Delayed ACKS

• Problem:
• In request/response programs, you send

separate ACK and Data packets for each
transaction

• Solution:
• Don’t ACK data immediately
• Wait 200ms (must be less than 500ms – why?)
• Must ACK every other packet
• Must not delay duplicate ACKs

6

L -9; 2 -12-02© Srinivasan Seshan, 2002 31

Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low RTT à unneeded retransmissions
• High RTT à poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – more than

a window worth of packets in flight

L -9; 2 -12-02© Srinivasan Seshan, 2002 32

Initial Round-trip Estimator

• Round trip times exponentially averaged:
• New RTT = α (old RTT) + (1 - α) (new sample)
• Recommended value for α: 0.8 - 0.9

• 0.875 for most TCP’s

• Retransmit timer set to β RTT, where β = 2
• Every time timer expires, RTO exponentially backed-off
• Like Ethernet

• Not good at preventing spurious timeouts

L -9; 2 -12-02© Srinivasan Seshan, 2002 33

Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation or

RRTT
• rttvar = χ * dev + (1- χ)rttvar

• dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

L -9; 2 -12-02© Srinivasan Seshan, 2002 34

Retransmission Ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

L -9; 2 -12-02© Srinivasan Seshan, 2002 35

Karn’s RTT Estimator

• Accounts for retransmission ambiguity
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this
segment

• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful

transmission

L -9; 2 -12-02© Srinivasan Seshan, 2002 36

Timestamp Extension

• Used to improve timeout mechanism by
more accurate measurement of RTT

• When sending a packet, insert current
timestamp into option
• 4 bytes for seconds, 4 bytes for microseconds

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

7

L -9; 2 -12-02© Srinivasan Seshan, 2002 37

Timer Granularity

• Many TCP implementations set RTO in
multiples of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary

quickly due to cross traffic
• Make timers interrupts efficient

L -9; 2 -12-02© Srinivasan Seshan, 2002 38

Overview

• TCP introduction

• TCP reliability: timer-driven

• TCP reliability: data-driven

L -9; 2 -12-02© Srinivasan Seshan, 2002 39

TCP Flavors

• Tahoe, Reno, Vegas
• TCP Tahoe (distributed with 4.3BSD Unix)

• Original implementation of Van Jacobson’s
mechanisms (VJ paper)

• Includes:
• Slow start
• Congestion avoidance
• Fast retransmit

L -9; 2 -12-02© Srinivasan Seshan, 2002 40

Fast Retransmit
• What are duplicate acks (dupacks)?

• Repeated acks for the same sequence
• When can duplicate acks occur?

• Loss
• Packet re-ordering
• Window update – advertisement of new flow control

window
• Assume re-ordering is infrequent and not of large

magnitude
• Use receipt of 3 or more duplicate acks as indication of

loss
• Don’t wait for timeout to retransmit packet

L -9; 2 -12-02© Srinivasan Seshan, 2002 41

Fast Retransmit

Time

Sequence No Duplicate Acks

Retransmission
X

L -9; 2 -12-02© Srinivasan Seshan, 2002 42

Multiple Losses

Time

Sequence No Duplicate Acks

Retransmission
X

X

XX
Now what?

8

L -9; 2 -12-02© Srinivasan Seshan, 2002 43

Time

Sequence No
X

X

XX

Tahoe

L -9; 2 -12-02© Srinivasan Seshan, 2002 44

TCP Reno (1990)

• All mechanisms in Tahoe
• Addition of fast-recovery

• Opening up congestion window after fast retransmit

• Delayed acks
• Header prediction

• Implementation designed to improve performance
• Has common case code inlined

• With multiple losses, Reno typically timeouts
because it does not see duplicate
acknowledgements

L -9; 2 -12-02© Srinivasan Seshan, 2002 45

Reno

Time

Sequence No
X

X

XX

Now what? à timeout

L -9; 2 -12-02© Srinivasan Seshan, 2002 46

NewReno

• The ack that arrives after retransmission
(partial ack) should indicate that a second
loss occurred

• When does NewReno timeout?
• When there are fewer than three dupacks for

first loss
• When partial ack is lost

• How fast does it recover losses?
• One per RTT

L -9; 2 -12-02© Srinivasan Seshan, 2002 47

NewReno

Time

Sequence No
X

X

XX

Now what? à partial ack
recovery

L -9; 2 -12-02© Srinivasan Seshan, 2002 48

SACK

• Basic problem is that cumulative acks only
provide little information
• Ack for just the packet received

• What if acks are lost? à carry cumulative also
• Not used

• Bitmask of packets received
• Selective acknowledgement (SACK)

• How to deal with reordering

9

L -9; 2 -12-02© Srinivasan Seshan, 2002 49

SACK

Time

Sequence No
X

X

XX

Now what? –send
retransmissions as soon
as detected

L -9; 2 -12-02© Srinivasan Seshan, 2002 50

Performance Issues

• Timeout >> fast rexmit
• Need 3 dupacks/sacks
• Not great for small transfers

• Don’t have 3 packets outstanding
• What are real loss patterns like?

• Right edge recovery
• Allow packets to be sent on arrival of first and

second duplicate ack
• Helps recovery for small windows

• How to deal with reordering?

L -9; 2 -12-02© Srinivasan Seshan, 2002 51

TCP Extensions

• Implemented using TCP options
• Timestamp
• Protection from sequence number wraparound
• Large windows

L -9; 2 -12-02© Srinivasan Seshan, 2002 52

Protection From Wraparound

• Wraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds à < MSL!
• 1.2Gbps: 28 seconds

• Use timestamp to distinguish sequence
number wraparound

L -9; 2 -12-02© Srinivasan Seshan, 2002 53

Large Windows

• Delay-bandwidth product for 100ms delay
• 1.5Mbps: 18KB
• 10Mbps: 122KB > max 16bit window
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the

left
• Scaling factor exchanged during connection setup

L -9; 2 -12-02© Srinivasan Seshan, 2002 54

Maximum Segment Size (MSS)

• Exchanged at connection setup
• Typically pick MTU of local link

• What all does this effect?
• Efficiency
• Congestion control
• Retransmission

• Path MTU discovery
• Why should MTU match MSS?

10

L -9; 2 -12-02© Srinivasan Seshan, 2002 55

Next Lecture: Congestion Control

• Congestion control basics
• TCP congestion control
• Assigned reading

• [JK88] Congestion Avoidance and Control
• [CJ89] Analysis of the Increase and Decrease

Algorithms for Congestion Avoidance in
Computer Networks

