

Objectives

- Understand the state-of-the-art in network protocols, architectures and applications
- Understand how networking research is done
- How is class different from undergraduate networking (15-441)
 - Training network programmers vs. training network researchers

1.1.1.1.40

Course Materials

- Research papers
 - Links to ps or pdf on Web page
 - Combination of classic and recent work
 - ~40 papers
 - Optional readings
- Recommended textbook
 - For students not familiar with networking
 - Peterson & Davie 2nd edition
 - 2 copies on reserve

© Srinivasan Seshan, 2002

Statistical Multiplexing Gain

- 1 Mbps link; users require 0.1 Mbps when transmitting; users active only 10% of the time
- · Circuit switching: can support 10 users
- Packet switching: with 35 users, probability that >=10 are transmitting at the same time < 0.0017

1.1.1.1.4.02

Routing

- Forwarding tables at each router populated by routing protocols.
- Original Internet: manually updated
- Routing protocols update tables based on "cost"
 - Exchange tables with neighbors or everyone
 - Use neighbor leading to shortest path

Fourth Step: Application Demands Reliability Corruption Lost packets Flow and congestion control Fragmentation In-order delivery Etc...

E.g.: OSI Model: 7 Protocol Layers

- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end

U-1:1-140

- · Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

Example: Transport Layer

- · First end-to-end layer
- End-to-end state
- May provide reliability, flow and congestion control

L-1:1-1402

Is Layering Harmful?

- Sometimes..
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)

1-1-1-140

• Strict adherence to layering may hurt performance

Class Coverage

- No coverage of physical and data link layer
 Students expected to know this
- · Focus on network to application layer
- We will deal with:
 - Protocol rules and algorithms
 - Investigate protocol trade-offs
 - Why this way and not another?

Traditional • Layering • Internet architecture • Routing (IP) • Transport (TCP) • Queue management (FQ, RED) • Naming (DNS)	Recent Topics • Multicast • Mobility • Active networks • QOS • Security • Network measurement • Overlay networks • P2P applications
^o Srinivasan Seshan, 2002 L	-1;1-1402 51

