
TVA
:A DoS-limiting Network Architecture

Soonho Kong
soonhok@cs.cmu.edu

10 November 2010

Xiaowei Yang, David Wetherall, and Tom Anderson
In IEEE/ACM Transactions on Networking (ToN), vol 16, no. 6, Dec. 2008.

*

Presented by

mailto:soonhok@cs.cmu.edu
mailto:soonhok@cs.cmu.edu


1
Problem, Goal, and Key Idea



Problem:
DoS(Denial of Service) Attack



Attacker

User



Server



Goal:
Effectively Communicate!



Attacker

User

Server



Idea: Capability

Short-term authorizations 
Senders obtain from receivers
Stamp on their packets



Idea: Capability

Request


Sender Receiver

Request

1 Request Capabilities



Idea: Capability


Sender Receiver

2 Send Capabilities



Idea: Capability


Sender Receiver

3 Send Packets with Capabilities



Idea: Capability



Sender

Receiver
Attacker

4 Filter Traffic without Capabilities



2
Key Challenges and Their Solutions



Challenge:
Request Flood


Receiver

Sender

Request

Re
qu

est

Request



Challenge:
Request Flood


Receiver

Sender

Attacker

Attacker

Request

Request

Re
qu

est

Re
qu

est

Request Request

Request



Challenge:
Request Flood


Receiver

Sender

Attacker

Attacker

Request

Request

Re
qu

est

Re
qu

est

Request Request

Request

DoS Attack!



Solution:
Rate-limiting Request + per-identifier Fair-Queuing


Receiver

Sender

Attacker

Attacker

Request

Request

Re
qu

est

Request

Re
qu

est



Solution:
Rate-limiting Request + per-identifier Fair-Queuing


Receiver

Sender

Attacker

Attacker

Request

Request

Re
qu

est

Re
qu

est

Request

Rate-limiting



Solution:
Rate-limiting Request + per-identifier Fair-Queuing


Receiver

Sender

Attacker

Attacker

Request

Request

Re
qu

est

Re
qu

est

Request

Request

Request

Rate-limiting



Solution:
Rate-limiting Request + per-identifier Fair-Queuing


Receiver

Sender

Attacker

Attacker

Request

Request

Re
qu

est

Re
qu

est

Request

Request

Request

per-IDFair-Queuing

Rate-limiting



Challenge:
Secure Capabilities



Attacker

Receiver

Forged/Copied

Sender

Forged/Copied

Forged/Copied

DoS Attack!



Solution:
Cryptographic Hash


Receiver

Sender

Request



Solution:
Cryptographic Hash


Receiver

Sender

Request

Request

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

Pre-Capabilities



Solution:
Cryptographic Hash


Receiver

Sender

Request

Request

Pre-Capabilities

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

Only known 
to the Router



Solution:
Cryptographic Hash

Request


Receiver

Sender

Request

Request

Pre-Capabilities

Pre-Capabilities

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

CapabilitiesCapabilities

Capabilities



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



Solution:
Cryptographic Hash


Receiver

Sender

Attacker

Copied

Capabilities



Solution:
Cryptographic Hash


Receiver

Sender

Attacker

Copied

Capabilities




Sender Receiver

Challenge:
Abuse Capabilities




Attacker Receiver

Challenge:
Abuse Capabilities

DoS Attack!




Sender Receiver

Solution:
Limit the Amount of Data & Period of Validity

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

the Amount of Data

the Period of Validity




Attacker Receiver

>N

Solution:
Limit the Amount of Data & Period of Validity

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

the Amount of Data




Attacker Receiver

after T

Solution:
Limit the Amount of Data & Period of Validity

3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If

the Period of Validity



Challenge:
Router States


Receiver

Sender

Sender

Need to remember
per-flow states?
(byte sent, time)



Solution:
Keep state only for flows that send >N/T


Receiver

Sender

Sender }
Router States

Router Capacity

Minimum Threshold

< C/(N/T )min



Solution:
Keep state only for flows that send >N/T


Receiver

Sender

Sender }Router Capacity 10Mbps

Minimum Threshold
= 100Kbps

< 10Mbps/100Kbps = 100slots

Router States



Challenge:
Colluding Attack


Receiver

Sender

Attacker Colluder

DoS Attack!



Solution:
Per-Destination Fair-Queuing


Receiver

Sender

Attacker Colluder



Summary:
Fair-Queuing of TVA Router 3

dest

(2)
response

request
(1)

sender router router

Fig. 1. A sender obtaining initial capabilities by (1) sending a
request to the destination, to which routers add pre-capabilities;
and (2) receiving a response, to which the destination added
capabilities.

A. Packets with Capabilities
To prevent a destination from losing connectivity because

of a flood of unwanted packets, the network must discard
those packets before they reach a congested link. Otherwise the
damage has already been done. This in turn requires that routers
have a means of identifying wanted packets and providing them
with preferential service. To cleanly accomplish this, we require
that each packet carry information that each router can check to
determine whether the packet is wanted by the destination. We
refer to this explicit information as a capability [3].

Capabilities have significant potential benefits compared to
other schemes that describe unwanted packets using implicit
features [16], [21]. They do not require a difficult inference
problem to be solved, are precise since attackers cannot spoof
them, and are not foiled by end-to-end encryption. However, to
be viable as a solution, capabilities must meet several implied
requirements. First, they must be granted by the destination to
the sender, so that they can be stamped on packets. This raises
an obvious bootstrap issue, which we address shortly. Second,
capabilities must be unforgeable and not readily transferable
across senders or destinations. This is to prevent attackers from
stealing or sharing valid capabilities. Third, routers must be
able to verify capabilities without trusting hosts. This ensures
malicious hosts cannot spoof capabilities. Fourth, capabilities
must expire so that a destination can cut off a sender from whom
it no longer wants to receive packets. Finally, to be practical,
capabilities must add little overhead in the common case. The
rest of our design is geared towards meeting these requirements.

B. Bootstrapping Capabilities
In our design, capabilities are initially obtained using request

packets that do not have capabilities. These requests are sent
from a sender to a destination, e.g., as part of a TCP SYN
packet. The destination then returns capabilities to the sender
if it chooses to authorize the sender for further packets, e.g.,
piggybacked on the TCP SYN/ACK response. This is shown
in Figure 1 for a single direction of transfer; each direction is
handled independently, though requests and responses in differ-
ent directions can be combined in one packet. Once the sender
has capabilities, the communication is bootstrapped in the sense
that the sender can send further packets with capabilities that
routers can validate.

Ignoring legacy issues for the moment, we expect the number
of packets without associated capabilities to be small in most
settings. This is because one capability covers all connections
between two hosts, and new capabilities for a long transfer
can be obtained using the current capability before it expires.

capability checking

regular packets 
yes

legacy packets

no

low priority queue

Hierarchical path!identifier queuerequests 

per!destination queue

Fig. 2. Queue management at a capability router. There are three types
of traffic: requests that are rate-limited; regular packets with associated
capabilities that receive preferential forwarding; and legacy traffic that
competes for any remaining bandwidth.

Pre!Capability (routers)

timestamp (8 bits)

Capability (hosts)

hash(pre!capability, N, T) (56 bits)timestamp (8 bits)

hash(src IP, dest IP, in iface, out iface,time, secret) (56 bits)

Fig. 3. Format of capabilities.

Nonetheless, it is crucial that the initial request channel not
open an avenue for DoS attacks, either by flooding a destination
or blocking the requests of legitimate senders. The first issue is
straightforward to address: we rate-limit requests at all network
locations so that they cannot consume all of the bandwidth.
Request packets should comprise only a small fraction of
bandwidth. Even with 250 bytes of request for a 10KB flow,
request traffic is 2.5% of the bandwidth. This allows us to rate-
limit request traffic to be no more than 5% of the capacity of
each link, with the added margin for bursts.

It is more challenging to prevent requests from attackers
from overwhelming requests from legitimate clients. Ideally,
we would like to use per-source fair queuing to ensure that no
source can overwhelm others, regardless of how many different
destinations it contacts. However, this is problematic because
source addresses may be spoofed, but per-source fair queuing
requires an authenticated source identifier. One possibility is
ingress filtering, but we discarded it as too fragile because
a single unprotected ingress allows remote spoofing. Another
possibility is to sign packets using a public key infrastructure,
but we discarded it as too much of a deployment hurdle.

Instead, we build a path identifier analogous to Pi [33] and
use it as an approximate source locator. Each router at the
ingress of a trust boundary, e.g., AS edge, tags the request with
a small (16 bit) value derived from its incoming interface that
is likely to be unique across the trust boundary, e.g., a pseudo-
random hash. This tag identifies the upstream party. Routers
not at trust boundaries do not tag requests as the upstream
has already tagged. The tags act as an identifier for a network
path. We then hierarchically fair-queue [8] requests using path
identifiers, as shown in Figure 2. The most recent tag is used to
identify the first-level queue, and the second most recent tag is
used to identify the second-level queue, and so on. If a queue
at the (n − 1)th-level is congested, a router will use the nth
most recent tag to separate packets into nth-level queues. If



3
Discussions



• Possible alternative End-to-End solutions?

• Incremental deployment issue when considering 
legacy internet traffic as low-priority?

• Work for DDoS attacks as well?

• Work well in the Internet-scale topology?

Discussion


